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On computing Gaussian curvature  

of some well known distribution 

William W.S. Chen1 

 

 

Abstract  

The objective of this paper is to provide a deeper and broader understanding of the 

meaning of Gaussian curvature. It also suggests some more general alternative 

computational methods than Kass, R.E. and Vos, P.W. [1, 2]. It is not intended to 

compare the superiority of the four formulas to be used in computing the Gaussian 

curvature. We define the coefficients of the expected Fisher Information Matrix as 

the coefficients of the first fundamental form see Lehmann, E.L. [3]. Four 

different formulas adopted from Struik, D.J. [4] are used, and labeled here as (A), 

(B), (C), and (D).  It has been found that all four of these formulas can compute 

the Gaussian curvature effectively and successfully. This is demonstrated by four 

commonly used examples. Also it would be interested to compare our methods 

with Kass, R.E. and Vos, P.W. approach [1, 2].  
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1  Introduction  

The Gaussian curvature, K, of the surface, at the point p, is the product of 

the extreme values of curvatures in the family. If p is a point on a regular surface 

in 3R  and K(p) is positive, then the two curvatures have the same sign and the 

point p is called an elliptic point of the surface. Example 1 is one instance of this 

case. If K(p) is negative, then the two curvatures have opposite signs and the point 

p is called the hyperbolic point of the surface. Examples 2,3 and 4 demonstrate 

these cases. If exactly one curvature equals zero, then the point p is a parabolic 

point of the surface. If the Gaussian curvature equals zero, then the surface is 

either planar or developer. Computing the Gaussian curvature plays a central role 

in determining the shape of the surface. It is also a well known fact that two 

surfaces which have the same Gaussian curvature are always isometric and 

bending invariant. For instance, Struik, D.J. [4] on p120 provided an excellent 

example that demonstrated a correspondence between the points of a catenoid and 

that of a right helicoid, such that at corresponding points the coefficients of the 

first fundamental form and the Gaussian curvatures are identical. In fact, one 

surface can pass into the other by a continuous bending. This has been 

demonstrated by the deformation of six different stages. However, if the Gaussian 

curvature is different, then the two surfaces will not be isometric. For example, a 

sphere and plane are not locally isometric because the Gaussian curvature of a 

sphere is nonzero while the Gaussian curvature of a plane is zero. This is why any 

map of a portion of the earth must distort distances. In this paper, we define the 

coefficients of the expected Fisher Information Matrix as equal to the coefficients 

of the first fundamental form. There are numerous authors who have used this 
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concept, including Lehmann,E.L. [3] on p126, Barndorff-Nielsen O.E.,et.al. [5] 

and Kass R.E. [2]. Chen, W.W.S. [7] has compared “the Gaussian or Riemann 

curvature” in his McMaster University talk. Using these defined metric tensors, 

we can then adopt the same notation and apply the formulas listed in Struik, D.J. 

[4]. The Gaussian curvature then becomes a function of the coefficients of the first 

fundamental form and their first and second derivatives. In this paper, we suggest 

the following four systematic steps to compute the Gaussian curvature: Step 1-

compute the coefficients of the expected Fisher Information Matrix or coefficients 

of the first fundamental form, namely, E,F and G; Step 2-compute the needed first 

or second derivative of E,F and G, and thus the six Christoffel symbols; Step 3-

apply formula (D), which necessitates in the computation of the mixed Riemann 

curvature tensors 1 2
121 121 and  ℜ ℜ ; the subsequent computation of the inner product 

of this tensor with the metric tensor, F or G, results in the covariant Riemann 

curvature tensor 1212ℜ ; Step 4-observe that the Gaussian curvature has a very 

simple relation to Riemann symbols of the second kind. By adhearing to this 

procedure, the correct Gaussian curvature will be calculated. In the case where 

0F ≠  or the parametric lines on the surface are not orthogonal, the computational 

procedure can be extremely tedious. It is always prudent to find a proper 

transformation to form an orthogonal system of parametric lines in order to 

simplify the computational procedures. 

 

 

2  Notation and Terminology 

In this section, we define the basic notations and terminologies that will 

apply in the next two sections. These notations and symbols can also be found in 

Struik, D.J.[4] or Gray, A.[6]. First and foremost, we define the coefficients of the 

first fundamental form or metric tensors as; 
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2 2 2

2 2

ln ln ln( ),  F E( ) ,  and  G E( )f f fE E
u v u v

∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂
                       (2.1) 

where f(u,v) are two parameters of the probability density functions. It is clear that 

E, F and G are functions of the parameters u and v. The expectations apply to the 

whole sample space where the random variables are defined. We also assume that 

the regular conditions of the information metrics tensors are all satisfied. The 

details of these five conditions are summerized in Kass R.E. and Vos, P.W. [1] on 

p185. Since E, F and G are functions of parameters (u,v) and are continuously 

twice differentiable, , , , ,u v u v uE E F F G  and vG  all exists and are all well defined. 

Because 0F = , formula (A) turns out to be a simplified form of Gauss’ Equation. 

In the next section, we will demonstrate that formulas (C) and (D) are heavily 

dependent on the six Christoffel symbols. Additionally, no assumption is made 

regarding 0F = , and so the parametric lines are not necessarily orthogonal. 

However, if 0F = , the six Christoffel symbols can be greatly simplified. The four 

distributions discussed here belong to this case. 

 

 

3  Formula and Tables 

In this section, we select four formulas that can be used to compute the 

Gaussian curvature. 

(A)  1 1 1( ( ) ( ))G E
u u v vEG E G
∂ ∂ ∂ ∂

− +
∂ ∂ ∂ ∂

                      

(B) 2 2 2 2 2

1 1
4( ) 2

E F G
Gu Fv Fu EvEu Fu Gu

EG F u vEG F EG F EG FEv Fv Gv

 ∂ − ∂ −
− − − − ∂ ∂− − − 

   

(C) 2 2 1 1
11 12 22 12

1( ) ( ) ( ) ( )D D D D
v E u E D u G v G
∂ ∂ ∂ ∂   Γ − Γ = Γ − Γ   ∂ ∂ ∂ ∂   
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where 2 2 D .EG F= −  

(D) 1212
2 2

(12,12) ,
EG F EG F
ℜ

=
− −

  

where  

2

2

1212 121
1

(12,12) ,m
m

m
g

=

= ℜ ℜ∑                         

,     sum on m,l l l m l m l
ijk ik jk ik mj jk mi

j iu u
∂ ∂

ℜ = Γ − Γ +Γ Γ −Γ Γ
∂ ∂

    

where the quantities of l
ijkℜ  are components of a tensor of the fourth order. This 

tensor is called the mixed Riemann curvature tensor. Notice that 11 12,g g  and 22  g  

are simply tensor notation for E,F and G. Formula (B) was developed by G. 

Frobenius while formula (C ) was derived by J. Liouville. Clearly, formula (A) is 

a special case that is valid only when the parametric lines are orthogonal. Formula 

(D) is a general form represented in Riemann symbols of the first and second kind, 

respectively. In formula (D), 1212ℜ , the inner product of the mixed Riemann 

curvature tensor and the metric tensor, is called the covariant Riemann curvature 

tensor; it is a covariant tensor of the fourth order. The components l
ijkℜ  and 1212ℜ  

are also known as Riemann symbols of the first and second kind, respectively. 

Notice that Riemann symbols of the second kind will satisfy the relation 

1212 1221 2112 2121ℜ = −ℜ = −ℜ =ℜ , the well-known property of skew-symmetry with 

respect to the last two indices. It is useful to be aware of the fact that the 

Christoffel symbols depend only on the coefficients of the first fundamental form 

and their derivatives. The same holds true for the mixed Riemann curvature 

tensor. From this point of view, as long as we can find the coefficients of the first 

fundamental form of a given distribution and their first and second derivatives, we 

can uniquely define the corresponding Christoffel symbols and hence mixed 

Riemann curvature tensors. Thus, the process of computing the covariant Riemann 

curvature tensor and Gaussian curvature is simplified. From a different 
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perspective, we know that the mixed Riemann curvature tensor will link with the 

coefficient of the second fundamental form; namely e, f, and g, by 
2 2

121 ( )nn g eg fℜ = − , where  

             11 12 22
2 2 2,          ,       .G F Eg g g

EG F EG F EG F
−

= = =
− − −

                    (3.1) 

The above relation can then be easily used to derive 2
1212 eg fℜ = − , and the 

result will coincide with equation (7-3) of Struik, D.J. [4] on p.83, the original 

fundamental definition of Gaussian curvature. These points convince us that 

formulas (A) and (D) basically define the same quantity, but only in different 

forms. The reason why only formula (D) was selected for presentation is due to 

the following two facts:1. to avoid repetition of Kass R.E [1] on p.189; 2. when 

0F = , formulas (B) and (C) are trivially similar to formula (A). For example, in 

formula (C), we may substitute the following equation on the left hand side:  

           2 2
11 12( )    or    .

2 22 2
D G Ev Ev D G Gu Gu
E E G E E GEG EG

− −
Γ = = Γ = =           (3.2) 

We can immediately calculate the same results as found from formula (A) 

while formula (D) results in a Riemann representation. In this way, we have 

supplied some more general alternative methods to compute the Gaussian 

curvature, including the case when 0.F ≠  Next, we summarize the computational 

results of the four selected distributions into two tables. In Table 1, we tabulate the 

coefficients of the first fundamental form, their derivatives and their Gaussian 

curvature. In Table 2, assuming 0F = , we tabulate the six Christoffel symbols 

needed when we applied formulas (C) and (D) 
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Table 1: 

 

2

2 2 2 2

2 2 3 3 4

2 2 3 3 4

2

EvE  F G E E  G G EG Ku v u v EG
n(1-v) n -n(1-v)(1-2u) -n -n(1-2v) n - v 1Trinomial 0  0
u(1-u) v(1-v) (1 ) u(1-u) (1 ) (1 ) 4nu(1-u)

  - 2 -1 1 2 -2 -4 2Normal 0 0 0 2
v v v v v

 
-2  -21 1 -1 -1 1Cauchy 0 0 0 v

2v 2v v v 4v

r 1
t 0

v ( 3)

u u v v uv u

v

r

− − −

+
+ 3 3 4 22

- 2(r 1) -(r 3)
-2(r 1) -4r 2r (r 1)-1 3(r 1) 0 0 2r( 1- )
v ( 3) v ( 3) v ( 3)v r 3

v rr r r

+ +
+ ++
+ + ++
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Table 2: 

1 2 1 2 1 2
11 11 12 12 22 22

E -E E G -G Gu v v u u v  
2E 2G 2E 2G 2E 2G

 
2u-1 v(1-v) -1 2v-1

0 0
2u(1-u) 2u(1-u) 2(1-v) 2v(1-v)

1 -1 -1Normal 0 0 0
2v v v

1 -1 -10 0 0
v v v

r 1 -1 -10 0 0
2rv v v

Trinomial

Cauchy

t

Γ = Γ = Γ = Γ = Γ = Γ =

+
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4  Four examples  

In this section, we give the details of four examples and demonstrate how 

we could apply formula (D) and Table 1, 2 from the previous section to compute 

our Gaussian curvature. In example 1, we deal with trinomial families. We are 

given that the Gaussian curvature is equal to a sphere of radius 4n , a fact that 

can be calculated with a proper transformation. 

Example 1: Let ℵ  be the trinomial family with one observation. The region of ℵ  

may be represented as a simplex, that is, 

}{ 1 2 3 1 2 3( , , ) | 1, 0, 1, 2,3i iπ π π π π π πℵ= + + = ≥ =  

in 3ℜ . We can write the trinomial densities as follows : 
31 2

1 2 1 2 3( | , ) ,yy yf y π π π π π∝  

where  1 2 3 1,π π π+ + =   and  1 2 3 1.y y y+ + = If we consider a proper 

transformation iiz π2= , 1, 2,3i = , then we could map this simplex into the 

positive portion of the sphere with radius 2. The geometrical interpretation of this 

distribution may be seen from the spherical representation of the trinomial family. 

Let us introduce spherical polar coordinates ( , )θ ϕ , defined by 1cos ( ),vθ −=  

1sin ( )uϕ −= , where 3,v π=  2

1 2

u π
π π

=
+

 or we can represent , 1, 2,3i iπ =  as a 

function of u, v. We obtain 3 2 1, (1 ), (1 )(1 )v u v u vπ π π= = − = − −  and the 

trinomial likelihood becomes 

                                  2 1 1 2 1 21
1 2( | , ) (1 ) (1 )y y y y y yl y u u v vπ π − − += − −                         (4.1)        

Based on the likelihood equation (4.1), we can routinely compute our 

coefficient of the first fundamental form E,F and G. It is straightforward to write 

the logarithm of the likelihood and their first two partial derivatives with respect 

to u and v as follows: 
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               2 1 1 2 1 2ln ln ln(1 ) (1 ) ln ( ) ln(1 )   l y u y u y y v y y v= + − + − − + + −         (4.2) 

From (4.2), we derive, 

              

2 1

1 1 1 2

2
2 1

2 2 2

2
3 1 2

2 2 2

ln ,
1

1ln ,    
1

ln ( ),  
(1 )

ln ( ).
(1 )

y yl
u u u

y y y yl
v v v

y yl
u u u

y y yl
v v v

∂
= −

∂ −
− − +∂

= −
∂ −
∂

= − +
∂ −

+∂
= − +

∂ −

                                                    (4.3)                                                                    

It is well-known that the trinomial random variables 1 2 3, ,y y y  have 

expected values (1 )(1 )n u v− − , (1 )nu v−  and nv , respectively. Hence, we know 

that 1 2( ) (1 )E y y n v+ = − . Taking the expected values of both sides of (4.3), and 

substituting the expected values of 1 2,y y , and 3y  we finally get: 

2 2 2

2 2

ln (1 ) ln ln( ) ,    ( ) 0,    ( ) .
(1 ) (1 )

l n v l l nE E F E G E
u u u v u v v v

∂ − ∂ ∂
= − = = − = = − =

∂ − ∂ ∂ ∂ −
 (4.4) 

It is important to know that E,F and G themselves are still functions of u 

and v. Therefore, it is possible to make a further computation on these 

coefficients: 

 2 2

(1 )(1 2 )  ,  0,   ,
(1 ) (1 )

n n v uE G Ev u uu u u u
− − − −

= = =
− −

  and 2 2

(1 2 )
(1 )

n vGv v v
− −

=
−

      (4.5) 

If we want to apply formula (A) or (B), then it is by a straightforward 

substitution that these results are calculated and simplified. If formula (C) is 

selected, then it would be necessary to compute the six Christoffel symbols. 

However, due to the reasons that we stated before, only formula(D) is presented. 

Since 12 0,g F= =  we only need to find 2
121ℜ . 
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2
2 2 2 2 2
121 11 21 11 2 21 1

1

2 1 2 2 2
11 21 11 11 22

( )

      (4.6)
v

(1 ) 1 (1 ) (1 ) 2 1 1      ( ) ( )( ) ( )( ) .
v 2 (1 ) 2(1 ) 2 (1 ) 2 (1 ) 2 (1 ) 4 (1 )

m m
m m

mv u

v v v v v v v v
u u v u u u u v v u u

=

∂ ∂
ℜ = Γ − Γ + Γ Γ −Γ Γ

∂ ∂
∂

= Γ −Γ Γ +Γ Γ
∂
∂ − − − − − −

= − + =
∂ − − − − − −

∑

 
Notice that the Christoffel symbols in this case satisfied :      

            

2 1 2
12 22 21

2
1 2 2

1212 121 2 121 12 121 22 121
1

1212
2

0 

  

1        
4 (1 ) (1 ) 4 (1 )

(1 ) 1   
4 (1 ) 4

m
m

m
g g g G

v n n
u u v v uv u

n uv uK
EG uv u n n

=

Γ = Γ = Γ =

ℜ = ℜ = ℜ +ℜ =ℜ

−
= =

− − −
ℜ −

= = =
−

∑
                                    (4.7) 

This result shows that the trinomial model space is locally isometric to the 

sphere of radius 4 .n  In our four selected examples, only the trinomial model has 

a positive Gaussian curvature. The remaining three examples will deal with the 

location-scale family of densities and the methods of finding those with negative 

Gaussian curvature. Kass, R.E. [1], gave the general form of a location-scale 

manifold of density: 

1( ) ( )  | (u,v) R Rx up x f
v v +

− = ∈ × 
 

, 

for some density function f. Then, the information metric of the Riemannian 

geometry space has constant negative curvature. We provide the derivation of the 

formula for the Gaussian curvature of normal distribution in Example 2, Cauchy 

distribution in Example 3 and t family distribution in Example 4.  

 

Example 2: Let 1Ω  be a location scale manifold of density that has the following 

general form:  
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2

1 22

1 ( )( ) exp( ) | (u,v) R R ,
22

x uf x
vvπ

+

 −
Ω = = − ∈ × 

 
 

where u is the location parameter and v is the scale parameter. We also assume 

that the regular conditions of the information metric are satisfied. The first and 

second partial derivative, with respect to parametric lines u and v, are given as: 

               

2

2

2 2

2 2 2

3 2 2 4

ln ,    

ln 1

ln 1 ( ) ln 1 3( ),     and   .

f x u
u v

f
u v

f x u f x u
v v v v v v

∂ −
=

∂
∂ −

=
∂

∂ − − ∂ −
= + = −

∂ ∂

                 (4.8)           

It is commonly known that the expected value and variance of the random 

variable x  are 2  and  ,u v  respectively. From this, we could easily derive the 

coefficient of the first fundamental form  

                                          2 2

1 2,    0,    ,E F G
v v

= = =  

as well as their corresponding derivatives with respect to the parametric lines u 

and v : 

             
3 3 4

2

2

2 4 2 0,    ,    0,    ,      ,  

2 1   and   .
2

E E G G EGu v u vv v v
vEG

v EG

− −
= = = = =

= =
               (4.9) 

Substituting the listed results into formula (A), (B) or (C), it should be easy 

to compute the Gaussian curvature, obtaining 1
2
− . Again, we present the details 

for formula (D) only. Similar to equation (4.6), however, this time we have  
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1 2 1
11 12 22

2 2 1 2 2 2
121 11 21 11 11 22 2

2
1212 121 2 2 4

4
1212

4

0.
1 1 1 1 1 1( ) ( )( ) ( )( ) .
2 2 2 2

1 2 1   .
2

1 1.
2 2

v v v v v v v v

G
v v v

v
EG v

Γ = Γ = Γ =
∂ ∂ − − −

ℜ = Γ −Γ Γ +Γ Γ = − + =
∂ ∂

− −
ℜ =ℜ = =

ℜ − −
Κ = = =

       (4.10) 

 

Example 3: Let 2Ω  be the location scale manifold of density which has the 

following general form:  

2 2 2

1( )  |  x R,  (u,v) R R ,
( )

vf x
v x uπ +

 
Ω = = ∈ ∈ × + − 

 

where u is the location parameter and v is the scale parameter. The logarithm of 

the likelihood function of Cauchy density with one observation can be written as 

2 2ln ln ln( ( ) )vf v x u
π

= − + − . 

As before, we can derive the first two partial derivatives with respect to the 

parametric lines u and v. 

                         

2 2

2 2 2

2 2 2

2 2

2 2 2

2 2 2 2

2

2 2 2

ln 2( ) ,    
( )

ln 2(( ) ) ,
(( ) )

ln 1 2 ,    
( )

ln 1 2( ( ) ) ,
( ( ) )

ln 4 ( )
( ( ) )

f x u
u v x u

f x u v
u x u v

f v
v v v x u

f v x u
v v v x u

f v x u
v u v x u

∂ −
=

∂ + −

∂ − −
=

∂ − +
∂

= −
∂ + −

∂ − − −
= +

∂ + −

∂ − −
=

∂ ∂ + −

                                              (4.11) 

Taking the expected values of equations (4.11), we finally get the following 

results: 



98                           On computing Gaussian curvature of some well known distribution 

   

2 2 2

2 2 2 2 2 2

2

2 2 2

2 2 2

2 2 2 2 2 2 2 2

ln ( ) 1 1( ) 2 ( ) 2( ) ,
(( ) ) 4 2

ln 4 ( )( ) ( ) 0,
( ( ) )

ln 1 ( ) 1 1 1( ) ( 2 ( ) ( 2 ) 
( ( ) ) 4 2

f x u vE E E
u x u v v v

f v x uF E E
v u v x u

f v x uG E E
v v v x u v v v

∂ − − −
= − = − = − =

∂ − +

∂ −
= − = =

∂ ∂ + −

∂ − − − −
= − = − + = − + =

∂ + −

     (4.12)       

The details of deriving the expected values of (4.12) can be found in the 

appendix. The derivatives of the coefficients of the first fundamental form and six 

Christoffel symbols are all straightforward computations. We list only their 

results in Table 1,2. Due to the fact that the Cauchy distribution is the same as the 

normal distribution, that is, 1 2 1
11 12 22 0Γ = Γ = Γ = . We use formula (D) to derive the 

Gaussian curvature.  

     

2 2 1 2 2 2
121 11 21 11 11 22 2

4

2
2 2

1212 121 2 121 2 2 4
1

41212
4

1 1 1 1 1 1( ) ( )( ) ( )( ) .
v

1 .
4

1 1 1 ( )( ) .
2 2

14 ( ) 2.
2

m
m

v v v v v v v

EG
v

g G
v v v

v
EG v

=

∂ ∂ − − −
ℜ = Γ −Γ Γ +Γ Γ = − + =

∂ ∂

=

− −
ℜ = ℜ =ℜ = =

ℜ −
Κ = = = −

∑
            (4.13)                               

 

Example 4: Let 3Ω  be the location-scale manifold of density that has the student 

t distribution and generally has the form: 

1
2 2

3

1( )1 12( ) (1 [( ) ] )  | R,    ( , ) R R ,
( )
2

r
r

x uf x x u vrv r vrπ

+
−

+

+ Γ −
Ω = = + ∈ ∈ × 

 Γ
 

 

where u is location parameter and v is scale parameter. Let us define the 

following variables to simplify the notation:  
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1( )1 1 2,         ,         .
2 ( )

2

r
ra b cr rr rπ

+
Γ+

= = =
Γ

 

Then the logarithm of likelihood function of family t, can be written as follows: 

                                2ln ( ) ln ln(1 ( ) ) ln .r
x uf x c b a v

v
−

= − + −                          (4.14) 

From equation (4.14), we can derive the first and second partial derivatives : 

      

]

2 2

2 3
1

2 2

2 2 2

2 2 2 2

2 2 2 2 2 2 4 4
2

2 2 2 2

2

ln 2 ( ) ,
( )

ln 2 ( ) ,   
1 ( )

ln 2 ( ( ) ) (4.15)
( ( ) )

ln 6 ( ) (1 ( ) ) 4 ( )1
(1 ( ) )

ln 4 ( )
(

f ab x u
u v a x u

f ab x u v v
v a x u v

f ab a x u v
u a x u v

f ab x u v a x u v a b x u vv
v a x u v

f abv x u
v u

−
−

−

− − −
−

−

∂ −
=

∂ + −

∂ −
= −

∂ + −

∂ − −
=

∂ − +

∂ − − + − + −
= +∂ + −

∂ −
=

∂ ∂ 2 2 2 .
( ) )a x u v− +

                                              

        We can now take the expected values of (4.15) and leave the details of 

computing the expectations to the appendix,       

                  

2

2 2 2

2

2

2 2

ln 1( ) 2 ( ) ,  
3) ( 3)

ln ( ) 0,

ln 1 1( ) (1 3 ).
3

f r rE E ab
u v r v r

fF E
v u

f rG E
v v r

∂ − +
= − = − =

∂ + +

∂
= − =

∂ ∂
∂ − +

= − = −
∂ +

                           (4.16)                       

It now becomes a routine procedure to compute the derivative of the 

coefficient of the first fundamental form and six Christoffel symbols. Compute 

the Riemann symbols of the first and second kind, respectively. Thus, the 

Gaussian curvature is calculated. 



100                           On computing Gaussian curvature of some well known distribution 

2 2 1 2 2 2
121 11 21 11 11 22 2

2
2 2

1212 121 121 2 2 4
1

4 2
1212

4

1 1 1 1 1 ( 1)( ) ( )( ) ( )( ) 
2 2 2 2

( 1) 2 ( 1)  (4.17)
2 ( 3) ( 3)

( 1) ( 3) ( 3) .
( 3) 2 ( 1) 2

m

r r r r
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=

∂ ∂ + − + + − − +
ℜ = Γ −Γ Γ +Γ Γ = − + =

∂ ∂
− + − +

ℜ = ℜ =ℜ = =
+ +

ℜ − + + − +
Κ = = =

+ +

∑

      

 

5  Concluding remark   

One of the most important theorems of the 19th century is ‘Theorema 

Egregium’. Many mathematicians at the end of the 18th century, including Euler 

and Monge, had used the Gaussian curvature, but only when defined as the 

product of the principal curvatures. Since each principal curvature of a surface 

depends on the particular way the surface is defined in 3R , there is no obvious 

reason for the product of the principal curvatures to be intrinsic to that particular 

surface. Gauss published in 1827 that the product of the principal curvatures 

depends only on the intrinsic geometry of the surface revolutionized differential 

geometry.   

Gauss wrote “The Gaussian curvature of a surface is a bending invariant’’, 

’a most excellent theorem’,’ This is a Theorema egregium’’. In this theorem, 

Gauss proved that the Gaussian curvature, K, of a surface, depends only on the 

coefficient of the first fundamental form and their first and second derivatives. 

This important geometric fact will link the concepts of bending and isometric 

mapping. By bending invariant, we mean that it is unchanged by such 

deformations of the surface when restricted to a limited region that does not 

involve stretching, shrinking, or tearing. When measured along a curve on the 

surface, the distance between two points on the surface is unchanged. The angle 

of the two tangent directions at the point is also unchanged. This property of 

surfaces expressible as bending invariant is called the intrinsic property. We 



William W.S. Chen                                                                                                          101 

would like to conclude this study by repeating Kass’ (1989,1997) favorite and 

most interesting piece of trivia: “Suppose we ask which distribution in the t 

family is half way between Normal and Cauchy on the statistical curvature scale, 

the scale of sufficiency loss of the Maximum Likelihood Estimator. For Normal, 

0γ =  and for Cauchy, 5
2

γ = . Thus, we seek γ  such that 1 5
2 2

γ = . There is no 

reason why γ  should turn out to be an integer; it merely has to be a number 

greater than 1. Since 1γ =  for Cauchy and γ = ∞  for Normal, the answer is 

3γ = . Thus, in the sense of the insufficiency of the MLE, as measured by 

statistical curvature , the t, on 3 degrees of freedom, is halfway between Normal 

and Cauchy. This means that the statistical curvature of the 3t  distribution is the 

arithmetic mean of the statistical curvatures for the Cauchy and Normal 

distribution. From the Gaussian curvature that we derived in this paper, we 

showed that in Normal distribution we obtain 1
2

Κ = − , and in Cauchy 

distribution we obtain 2,Κ = −  while in t family distribution with r degrees of 

freedom, we get 3
2

r
r
+

Κ = − . In other words, the Gaussian curvature of the 3t  

distribution is the geometric mean of the curvatures for the Cauchy and Normal 

distribution. Thus, we conclude that whether one uses statistical or geometric 

mean curvature, the 3t  may be considered half way in between a Normal and 

Cauchy distribution.” 
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6  Appendix 

In this section we show some expected value computations. Taking the 

expected value of equation (4.15) with respect to the random variable x, where x 

is defined, and obtain n: 

Let x uy
v
−

= ,  
2

2

2( 2) 1
way

b
=

+ −
,  ]

11
22 (2( 2) 1) ( )  ,

4
rb a

r
α

−
= + − = +

 then 

y wα= . In general, the lth moments of the t distribution with r degrees of 

freedom is defined as  

       

2
,

1
4

1 3 ( 1) ,                        
( )( 2) ( 2)

1 4( ) ( )4 4 ( 2)2 2  .( 3)( 1)5( ) ( )22

l

l r

r r

lr and
r l r l r

r r
r r r rC C r r rr rr

µ

−
+

⋅ ⋅⋅ ⋅ −
=

− − + ⋅⋅⋅ −
+ +

Γ Γ+ + += =
+ ++Γ Γ

                       (6.1) 

{ }

2 2 2 2
2 2

2 2 2 2 2 2

3 1 1
2, 4 4 42

1 1
2 2

2

2

( ) 1 ( )( ) ( )(1 ( ) )
( ( ) ) ( ( ) )

    

1 4 4 ( 2) 1 4 ( ) ( )   1
( 3)( 1) 2 4

 
( 3)

b
r

r
r r r

a x u v a x u v x uE C a v dx
a x u v v a x u v v

C a C C
v

r r r r r r
v r r r r r r r

r
v r

α µ α

− −

− −
+ + +

−

− − − − −
= +∫

− + − +

= −

+ + + + = − + + + + 
−

=
+

   (6.2)         

                 

2 2 2 2 2 4 4
2

2 2 2

1 1 3 5
4 2, 4, 4, 42

3
1 2
2

12
2

2

6 ( ) (1 ( ) ) 4 ( )1
(1 ( ) )

2 (3 )

1 4( ) ( )1 1 1 4 3 ( 1)2 21 2 ( ) 52 ( ) ( ) ( 4) ( 2)2 2
1 (1 3

r
r r r r

ab x u v a x u v a b x u vv E
a x u v

C C abC a
v

r r
r r r a

r rv r r r r

r
v

α µ α µ

− − −
−

−

− −
+ + +

 − − + − + −
+ + − 

 = − + 

+ + Γ Γ + + +
= − + Γ Γ + + 

= −
1)
3r

+
+

        (6.3) 



William W.S. Chen                                                                                                          103 

2 2
2 2 2 2 2 2

2 ( 2)

( ) ( )4 ( ) 4 (1 ( ) )  
( ( ) ) ( ( ) )

4 (1 ) 0.

b
r

br

v x u v x uabE abC a x u v dx
a x u v a x u v

abC y ay dy
v

− −

− +

− −
= + −∫

− + − +

= + =∫

      (6.4)    

 Next, we define the six well known Christoffel symbols see Struik D.J. [4], 

or Gray A.  

 

1 2 2
11 12 112 2 2

1 1 2
22 12 222 2 2

2 2,  ,   ,
2( ) 2( ) 2( )

2 2,  ,  .
2( ) 2( ) 2( )

u u v u v u v u

v u v v u v v u

GE FF FE EG FE EF EE FE
EG F EG F EG F

GF GG FG GE FG EG FF FG
EG F EG F EG F

− + − − −
Γ = Γ = Γ =

− − −
− − − − +

Γ = Γ = Γ =
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