A Generalization of Van der Pol Equation of degree five

Ana M. Marin¹, Rubén D. Ortiz² and Joel A. Rodríguez³

Abstract

In this paper we make an analysis of a generalization of van der Pol equation of degree five without periodic orbits in a domain on the plane. We use a Gasull’s result and Dulac’s theorem.

Mathematics Subject Classification: 34A34

Keywords: Dulac functions; Quasilinear partial differential equations; Bendixon - Dulac theorem

1 Introduction

It is important to make in differential equations the study of periodic orbits

¹ Grupo de Ondas, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Matemáticas, Sede Piedra de Bolivar, Cartagena de Indias, Bolivar, Colombia. E-mail: amarinr@unicartagena.edu.co
² Grupo de Ondas, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Matemáticas, Sede Piedra de Bolivar, Cartagena de Indias, Bolivar, Colombia. E-mail: rortizo@unicartagena.edu.co
³ Instituto Tecnológico de Morelia, Departamento de Ciencias Básicas. Edif. AD Morelia Michoacán, México. E-mail: joel@ifm.umich.mx

Article Info: Received : October 4, 2013. Revised : November 20, 2013. Published online : December 16, 2013.
in the plane. Certain systems do not have limit cycles. It should be considered: Bendixson’s theorem and critical points. (See [4, 5]). In this paper we are interested in studying a generalization of a van der Pol equation of degree five that has a periodic orbit but in a circular domain of radius one and center in the origin there is no this limit cycle (See [1]). We use the theorem of Bendixson–Dulac (See [3]) and paper of Gasull (See [1]).

2 Preliminary Notes

Theorem 2.1. (Bendixson–Dulac theorem)([3]) Let \(f_1(x_1, x_2), f_2(x_1, x_2) \) and \(h(x_1, x_2) \) be functions \(C^1 \) in a simply connected domain \(D \subset \mathbb{R}^2 \) such that \(\frac{\partial f_1 h}{\partial x_1} + \frac{\partial f_2 h}{\partial x_2} \) does not change sign in \(D \) and vanishes at most on a set of measure zero. Then the system

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2), \\
\dot{x}_2 &= f_2(x_1, x_2), \quad (x_1, x_2) \in D,
\end{align*}
\]

does not have periodic orbits in \(D \).

According to this theorem, to rule out the existence of periodic orbits of the system (1) in a simply connected region \(D \), we need to find a function \(h(x_1, x_2) \) that satisfies conditions of Bendixson–Dulac theorem, such function \(h \) is called a Dulac function.

Our goal is the study of a dynamical system on the plane that does not have periodic orbits in a circular domain of radius one.

3 Method to Obtain Dulac functions

A Dulac function for the system (1) satisfies the equation

\[
f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h \left(c(x_1, x_2) - \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right) \right)
\]
Theorem 3.1. (See [3]) For the system of differential equations (1), if (2) (for some function c which does not change of sign and it vanishes only on a subset of measure zero) has a solution h on D such that h does not change sign and vanishes only on a subset of measure zero, then h is a Dulac function for (1) on D.

Theorem 3.2. (See [1]) Assume that there exist a real number s and an analytic function h in \mathbb{R}^2 such that

$$f_1 \frac{\partial h}{\partial x_1} + f_2 \frac{\partial h}{\partial x_2} = h \left(c(x_1, x_2) - s \left(\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right) \right)$$

(3)

does not change sign in an open region $W \subset \mathbb{R}^2$ with regular boundary and vanishes only in a null measure Lebesgue set. Then the limit cycles of system (1) are either totally contained in $h_0 := \{ h = 0 \}$, or do not intersect h_0. Moreover the number N of limit cycles that do not intersect h_0 satisfies $N = 0$ if $s = 0$.

4 Main Results

These are the main results of the paper.

Theorem 4.1. Let $f(x_1, x_2), g(x_1)$ be functions C^1 in a simply connected domain $D = \{ h \leq 0 \} \subset \mathbb{R}^2$ where $h(x_1, x_2) = \psi(x_1) + ax_2^2 + bx_2 + c$ and $\psi(x_1)$ is a function C^1 in \mathbb{R}, $a, b, c \in \mathbb{R}$ with the following conditions $x_2 \psi'(x_1) - (g(x_1) + f(x_1, x_2)x_2)(2ax_2 + b)$ which does not change sign and it vanishes only in a null measure Lebesgue subset and $b^2 - 4a(\psi(x_1) + c) \geq 0$. Then the system

$$\begin{cases}
\dot{x}_1 = x_2, \\
\dot{x}_2 = -g(x_1) - f(x_1, x_2)x_2,
\end{cases}$$

(4)

does not have periodic orbits on D.

Proof. Applying Theorem 3.2 to (4) (this system has critical point on $x_2 = g(x_1) = 0$). From (3) we see function $f(x_1, x_2)$ and values of s satisfy the
A Generalization of Van der Pol Equation of degree five

\[x_2 h_{x_1} - (g(x_1) + f x_2) h_{x_2} = h(c(x_1, x_2) + s \frac{\partial f}{\partial x_2}(x_1, x_2) x_2 + f)) \]

for some \(h, c(x_1, x_2) \) with \(hc \) does not change of sign (except in a set of measure 0). Obviously \(h \) is a Dulac function in certain cases. We propose (instead of try to solve equation (5)) the function \(h = \psi(x_1) + ax_2^2 + bx_2 + c \) for adequate \(\psi \) such that \(h \) has a closed curve of level 0. When \(h = 0 \), we have \(x_2 = \frac{-b \pm \sqrt{b^2 - 4a(\psi(x_1) + c)}}{2a} \). Then \(b^2 - 4a(\psi(x_1) + c) \geq 0 \). We try to find the domain for which the system does not have periodic orbits. We have \(h_{x_1} = \psi'(x_1), \ h_{x_2} = 2ax_2 + b \). So we have

\[x_2 \psi'(x_1) - (g(x_1) + f x_2)(2ax_2 + b) - sh\left(\frac{\partial f}{\partial x_2}(x_1, x_2) x_2 + f(x_1, x_2)\right) \]

which does not change sign and it vanishes only in a null measure Lebesgue subset. Making \(s = 0 \) (this system would not have periodic orbits inside the domain with boundary \(h = 0 \)) we get that \(x_2 \psi'(x_1) - (g(x_1) + f(x_1, x_2)x_2)(2ax_2 + b) \) which does not change sign and it vanishes only in a null measure Lebesgue subset.

\[\text{Example 4.2.} \] Consider the system

\[\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = -x_1 + (d^2 - x_1^2)(1 + x_2^2)x_2, \end{cases} \]

Taking \(h(x_1, x_2) = x_1^2 + x_2^2 - 1 \) we obtain that the associated equation given in (3) with \(s = 0 \) is \(hc(x_1, x_2) = 2x_2^2(d^2 - x_1^2)(1 + x_2^2) \). So, this function does not change sign and it is zero only at \(x_2 = 0, x_1 = \pm d \). The system does not contain periodic orbits on \(D = \{x_1^2 + x_2^2 \leq 1\} \). By (6), we have \(\ddot{x}_1 + (x_1^2 - d^2)(\dot{x}_1^2 + 1)\dot{x}_1 + x_1 = 0 \). This equation is generalized by \(\ddot{x}_1 + f(x_1, \dot{x}_1)\dot{x}_1 + g(x_1) = 0 \). The last equation was studied in [2].

\[\text{Acknowledgements.} \] The authors express their deep gratitude to CONACYT-México, Programa de Mejoramiento del Profesorado (PROMEP) - México and Universidad de Cartagena for financial support.
References

