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24 Oblique derivative problems

1 Formulation of the oblique derivative prob-

lem for parabolic equations

Let Ω be a bounded multiply connected domain in RN with the boundary

∂Ω ∈ C 2
α (0 < α < 1). And let Q = Ω × I, where I = 0 < t ≤ T for

0 < T < ∞. The boundary of Q is ∂Q = S = ∂Q1 ∪ ∂Q2 = S1 ∪ S2, where

∂Q1 = S1 = Ω× {t = 0} is the bottom and ∂Q2 = S2 = ∂Ω× Ī is the lateral

boundary. We consider the nonlinear parabolic equation of second order

F (x, t, u,Dxu,D2
xu)− ut = 0 in Q.

Under certain conditions, the equation can be written as (see Section 1, Chap-

ter I, [6])
N∑

i,j=1

aijuxixj
+

N∑
i=1

biuxi
+ cu− ut = f in Q, (1.1)

where Dxu = (uxi
), D2

xu = (uxixj
), and

aij =

∫ 1

0

Fτrij
(x, t, u, p, τr)dτ, bi =

∫ 1

0

Fτpi
(x, t, u, τp, 0)dτ,

c=

∫ 1

0

Fτu(x, t, τu, 0, 0)dτ, f = −F (x, t, 0, 0, 0),

with

r = D2
xu, p = Dxu, rij =

∂2u

∂xi∂xj

, pi =
∂u

∂xi

.

Suppose that the above equation satisfies the following condition.

Condition C. For arbitrary functions u1(x, t), u2(x, t) ∈ B = C1,0
β,β/2(Q)∩

W 2,1
2 (Q), F (x, t, u, Dxu,D2

xu) satisfies the condition

F (x, t, u1, Dxu1, D
2
xu1)− F (x, t, u2, Dxu2, D

2
xu2)

=
N∑

i,j=1

ãijuxixj
+

N∑
i=1

b̃iuxi
+ c̃u,

where 0 < β < 1, u = u1 − u2, W 2,1
2 (Q) = W 2,0

2 (Q) ∩W 0,1
2 (Q), and

ãij =

∫ 1

0

Fuxixj
(x, t, ũ, p̃, r̃)dτ, b̃i =

∫ 1

0

Fuxi
(x, t, ũ, p̃, r̃)dτ

c̃ =

∫ 1

0

Fu(x, t, ũ, p̃, r̃)dτ



Guochun Wen, Yanhui Zhang and Dechang Chen 25

for

ũ = u2 + τ(u1 − u2), p̃ = Dx[u2 + τ(u1 − u2)], r̃ = D2
x[u2 + τ(u1 − u2)].

Here we assume that ãij, b̃i, c̃, f are measurable in Q and meet the following

inequalities

q0

N∑
j=1

|ξj|2 ≤
N∑

i,j=1

ãijξiξj ≤ q−1
0

N∑
j=1

|ξj|2, 0 < q0 < 1, (1.2)

sup
Q

N∑
i,j=1

ã2
ij(x, t)/ inf

Q
[

N∑
i=1

ãii(x, t)]2 ≤ q1 <
1

N − 1/2
. (1.3)

|ãij|≤k0, |b̃i|≤k0, i, j =1, ..., N, |c̃|≤k0 in Q, Lp[f, Q] ≤ k1, (1.4)

in which q0, q1, k0, k1, p (> N + 2) are non-negative constants. Moreover, for

almost every point (x, t) ∈ Q and D2
xu, ãij(x, t, u,Dxu,D2

xu), b̃i(x, t, u, Dxu),

c̃(x, t, u) are continuous in u ∈ R, Dxu ∈ RN .

There is an explanation on the condition (1.3). Consider the linear case of

parabolic equation (1.1), namely

N∑
i,j=1

aij(x, t)uxixj
+

N∑
i=1

bi(x, t)uxi
+ c(x, t)u− ut = f(x, t) in Q.

Divide the above equation by Λ = τ infQ

∑N
i=1 aii, where τ is an undeter-

mined positive constant. Denote âij = aij/Λ, b̂i = bi/Λ (i, j = 1, · · · , N), ĉ =

c/Λ, f̂ = f/Λ. Then the above equation is reduced to the form

L̂u=
N∑

i,j=1

âij(x, t)uxixj
+

N∑
i=1

b̂i(x, t)uxi
+ĉ(x, t)u−uΛt = f̂ , i.e.

Lu=∆u−uΛt =−
N∑

i,j=1

[âij(x, t)−δij]uxixj
−

N∑
i=1

b̂i(x, t)uxi
−ĉ(x, t)u+f̂ in Q,

where ∆u =
∑N

i=1 ∂2u/∂x2
i , δii = 1, δij = 0 (i 6= j, i, j = 1, ..., N). We require

that the above coefficients satisfy

sup
Q

[2
N∑

i,j=1,i<j

â2
ij+

N∑
i=1

(âii−1)2]=sup
Q

[
N∑

i,j=1

â2
ij+N−2

N∑
i=1

âii]<
1

2
, i.e.

sup
Q

[
N∑

i,j=1

â2
ij − 2

N∑
i=1

âii] <
1

2
−N,

(1.5)
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which is true for the constant τ = 2/(2N − 1) to be derived below. In fact,

consider

sup
Q

N∑
i,j=1

â2
ij − 2 inf

Q

N∑
i=1

âii <
1

2
−N, i.e.

supQ

∑N
i,j=1 a2

ij

τ 2 infQ[
∑N

i=1 aii]2
<

2

τ
+

1

2
−N, or

supQ

∑N
i,j=1 a2

ij

infQ[
∑N

i,j=1 aii]2
<f(τ)

for f(τ) = 2τ + (1/2 − N)τ 2. It is seen that the maximum of f(τ) on [0,∞)

occurs at the point τ = 2/(2N−1), and the maximum equals f(2/(2N−1)) =

1/(N − 1/2). The above inequality with τ = 2/(2N − 1) is just the inequality

(1.3). For convenience the item uΛt = ut′ (t
′ = Λt) in the equation will be

written as ut later on.

In this paper we mainly consider the nonlinear parabolic equations of sec-

ond order

N∑
i,j=1

aijuxixj
+

N∑
i=1

biuxi
+cu−ut =f+G(z, t, u,Dxu) in Q, (1.6)

where G(z, t, u, Dxu) possesses the form

G(x, t, u,Dxu) =
N∑

i=1

Bi|uxi
|σi + B0|u|σ0 . (1.7)

In (1.7), we assume

|Bi| ≤ k0, i = 0, 1, ..., N,

where k0, σi (i = 0, 1, ..., N) are positive constants. The above condition, to-

gether with Condition C, will be called Condition C ′.

Problem O. The so-called oblique derivative boundary value problem (Prob-

lem O) is to find a continuously differentiable solution u = u(x, t) ∈ B =

C1,0
β,β/2(Q) ∩W 2,1

2 (Q) of the equation that satisfies the initial-boundary condi-

tions

u(x, 0) = g(x), x ∈ S1, (1.8)

lu = d
∂u

∂ν
+ σu = τ(x, t), (x, t) ∈ S2, i.e.

lu =
N∑

j=1

dj
∂u

∂xj

+ σu = τ(x, t), (x, t) ∈ S2.
(1.9)
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In (1.8) and (1.9), g(x), d(x, t), dj(x, t)(j = 1, ..., N), σ(x, t), τ(x, t) are assumed

to satisfy the following requirements:

C2
α[g(x), S1]≤k2, C1,1

α,α/2[σ(x, t), S2]≤k0,

C1,1
α,α/2[dj(x, t), S2]≤k0, C1,1

α,α/2[τ(x, t), S2]≤k2,

cos(ν,n)≥q0 >0, d≥0, σ≥0, d+σ≥1, (x, t)∈S2,

(1.10)

where n is the unit outward normal on S2, α(0 < α < 1), k0, k2, q0(0 < q0 < 1)

are non-negative constants.

There are several special cases of Problem O. Problem O with ν = n, σ = 0

on S2 is called Problem N, where n is the normal vector on S2. Problem O

with f = 0 in (1.1) and g(x) = 0, τ(x, t) = 0 in (1.8),(1.9) is called Problem

O0.

Theorem 1.1. If equation (1.1) satisfies Condition C, then Problem O0 for

(1.1) only has the trivial solution.

Proof: Let u(x, t) be a solution of Problem O0 for (1.1). Then it is easy to see

that u(x, t) satisfies the equation and the boundary conditions

N∑
i,j=1

aijuxixj
+

N∑
i=1

biuxi
+ cu− ut = 0 in Q, (1.11)

u(x, 0) = 0 on S1, (1.12)

lu(x, t) = 0, i.e. d
∂u

∂ν
+ σu = 0 on S2. (1.13)

Introducing the transformation v = u exp(−Bt), where B is an appropriately

large number such that B > supQ c, we see that the boundary value problem

(1.11)–(1.13) is reduced to

n∑
i,j=1

aijvxixj
+

n∑
i=1

bivxi
−[B−c ]v−vt =0 in Q, (1.14)

v(x, 0) = 0 on S1, (1.15)

lv(x, t) = 0, i.e. d
∂v

∂ν
+ σv = 0 on S2. (1.16)
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Since B − supQ c > 0, (x, t) ∈ Q, there is no harm assuming that σ(x, t) > 0

on S2 ∩ {(x, t) ∈ S2, d 6= 0}. Otherwise through a transformation V (x, t) =

v(x, t)/Ψ(x, t), where Ψ(z, t) is a solution of the equation

∆v − vt = 0 in Q, i.e.
n∑

j=1

vx2
j
− vt = 0 in Q

with the boundary condition Ψ(z, t) = 1 on ∂Q, the requirement can be real-

ized and the modified equation satisfies the conditions similar to Condition C.

By the extremum principle of solutions for (1.14) (see Theorems 2.5 and 2.7,

Chapter I, [6]), we can derive that v(x, t) = u(x, t) = 0.

2 A priori estimates of solutions for oblique

derivative problems

In this section, we derive a priori estimates of solutions of Problem O for

equations (1.1) and (1.6). We begin with the C1,0(Q) estimates of solutions

u(x, t) of Problem O for (1.1).

Theorem 2.1. Under Condition C, any solution u(x, t) of Problem O for

(1.1) satisfies the estimate

C1,0[u, Q̄]= ||u||C1,0(Q) = ||u||C0,0(Q̄)+
N∑

i=1

||uxi
||C0,0(Q)≤M1, (2.1)

in which M1 = M1(q, p, α, k, Q) is a non-negative constant only dependent on

q, p, α, k, Q for q=q(q0, q1), k=k(k0, k1, k2).

Proof: Suppose that (2.1) is not true. Then there exist sequences of functions

{am
ij}, {bm

i }, {cm}, {f m} and {gm(x)}, {dm(x, t)}, {σm(x, t)}, {τm(t, x)}, such

that

1) these functions meet Condition C and the corresponding requirements in

(1.10);

2) {am
ij}, {bm

i }, {cm}, {fm} weakly converge to a0
ij, b0

i , c0, f 0, and {gm}, {dm},
{σm}, {τm} uniformly converge to g 0, d0, σ0, τ 0 on S1 or S2 respectively; and
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3) the initial-boundary value problem

n∑
i,j=1

am
ij u

m
xixj

+
n∑

i=1

bm
i um

xi
+ cmum − um

t = f m in Q, (2.2)

um(x, 0) = gm(x) on S1, (2.3)

lum(x, t)=τm(x, t), i.e. dm ∂um

∂ν
+σmum =τm(x, t) on S2 (2.4)

has a solution um(x, t) with unbounded ||um||Ĉ1,0(Q) = Hm(m = 1, 2, ...).

Clearly, there is no harm in assuming that Hm ≥ 1, and limm→∞ Hm = +∞.

It is easy to see that Um = um/Hm is a solution of the initial-boundary value

problem

N∑
i,j=1

am
ij U

m
xixj

− Um
t = Bm, Bm = −

N∑
i=1

bm
i Um

xi
− cmUm +

fm

Hm

, (2.5)

Um(x, 0) =
gm(x)

Hm

, x ∈ S1, (2.6)

lUm(x, t) =
τm

Hm

, i.e. dm ∂Um

∂ν
+ σmUm =

τm

Hm

, (x, t) ∈ S2. (2.7)

Noting that Lp[
∑N

i=1 bm
i Um

xi
+ cmUm, Q] is bounded and using the result in

Theorem 2.2 below, we can obtain the estimate

C1,0
β,β/2[U

m, Q] = ||Um||C1,0
β,β/2

(Q)

= ||Um||C0,0
β,β/2

(Q) +
N∑

i=1

||Um
xi
||C0,0

β,β/2
(Q) ≤ M2,

(2.8)

||Um||W 2,1
2 (Q) ≤ M2 = M2(q, p, α, k,Q), m = 1, 2, ..., (2.9)

where β (0<β≤α), M2 = M2(q, p, α, k, Q) are non-negative constants. Hence

from {Um}, {Um
xi
}, we can choose a subsequence {Umk} such that {Umk},

{Umk
xi
} uniformly converge to U0, U0

xi
in Q and {Umk

xixj
}, {Umk

t } weakly con-

verge to U0
xixj

, U0
t in Q respectively, where U0 is a solution of the boundary

value problem

N∑
i,j=1

a0
ijU

0
xixj

+
N∑

i=1

b0
i U

0
xi

+c0U0−U0
t =0, (x, t)∈Q, (2.10)

U0(x, 0) = 0, x ∈ S1, (2.11)
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lU0(x, t) = 0, i.e. d
∂U0

∂ν
+ σU0 = 0, (x, t) ∈ S2. (2.12)

According to Theorem 1.1, we know U0(x, t) = 0, (x, t) ∈ Q. However, from

||Um||C1,0(Q) = 1, there exists a point (x∗, t∗) ∈ Q, such that |U0(x∗, t∗)|+∑N
i=1 |U0

xi
(x∗, t∗)| > 0. This contradiction proves that (2.1) is true.

Theorem 2.2. Under Condition C, any solution u(x, t) of Problem O for

(1.1) satisfies the estimates

||u||C1,0
β,β/2

(Q) ≤ M3 = M3(q, p, α, k, Q), (2.13)

||u||W 2,1
2 (Q) ≤ M4 = M4(q, p, α, k,Q), (2.14)

where β (0 < β ≤ α), Mj (j = 3, 4) are non-negative constants.

Proof: First of all, we can find a solution û(x, t) of the equation

∆û− ût = 0 (2.15)

with the boundary conditions (1.8) and (1.9), which satisfies the estimate (see

[2,6])

||û||C2,1(Q̄) ≤ M5 = M5(q, p, α, k, Q) (2.16).

Thus the function

ũ(x, t) = u(x, t)− û(x, t) (2.17)

is a solution of the equation

Lũ =
N∑

i,j=1

aijũxixj
+

N∑
i=1

biũxi
+ cũ− ũt = f̃ , (2.18)

ũ(x, 0) = 0, x ∈ S1, (2.19)

lũ(x, t) = 0, (x, t) ∈ S2, (2.20)

where f̃ = f − Lû. Introduce a local coordinate system x = x(ξ) on the

neighborhood G of a surface S0 ∈ ∂Ω, i.e.

xi = hi(ξ1, ..., ξN−1)ξN + gi(ξ1, ..., ξN−1), i = 1, ..., N, (2.21)

where ξN = 0 is just the surface S0 : xi = gi(ξ1, ..., ξN−1) (i = 1, ..., N), and

hi(ξ) =
di(x)

d(x)

∣∣∣∣
xi=gi(ξ)

, i = 1, ..., N, d2(x) =
N∑

i=1

d2
i (x).
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Then the boundary condition (2.20) is reduced to the form

∂ũ

∂ξN

+ σ̃ũ = 0 on ξN = 0, (2.22)

where ũ = ũ[x(ξ), t], σ̃ = σ[x(ξ), t].

Secondly, from [2,6], we can find a solution v(x, t) of Problem N for equation

(2.15) with the boundary condition

∂v

∂ξN

= σ̃ on ξN = 0, (2.23)

such that v satisfies the estimate

||v||C2,1(Q) ≤ M6 = M6(q, p, α, k, Q) < ∞, (2.24)

and the function

V (x, t) = ũev(x,t) (2.25)

is a solution of the boundary value problem in the form

N∑
i,j=1

ãijVξiξj
+

N∑
i=1

b̃iVxi
+ c̃V − Vt = f̃ , (2.26)

∂V

∂ξN

= 0, ξN = 0. (2.27)

On the basis of Theorem 3.3, Chapter III, [6], we can derive the following

estimates of V (ξ, t):

||V ||C1,0
β,β/2

(Q) ≤ M7 = M7(q, p, α, k, Q), (2.28)

||V ||W 2,1
2 (Q) ≤ M8 = M8(q, p, α, k, Q), (2.29)

where β (0 < β ≤ α), Mj (j = 7, 8) are non-negative constants. Combining

(2.16), (2.24), (2.28) and (2.29), the estimates (2.13) and (2.14) are obtained.

The following are the estimates of solutions for (1.6).

Theorem 2.3. Under Condition C ′, any solution u(x, t) of Problem O for

(1.6) satisfies the estimates

C1,0
β,β/2[u, Q] = ||u||C1,0

β,β/2
(Q) ≤ M9k∗, (2.30)
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||u||W 2,1
2 (Q) ≤ M10k∗, (2.31)

where β (0 < β ≤ α), Mj = Mj(q, p, β, k0, Q) (j = 6, 7) are non-negative con-

stants, k∗ = k1 + k2 + k3 with k1 and k2 as the constants stated in (1.4) and

(1.10) respectively and k3 = k0[
∑N

i=1 |uxi
|σi + |u|σ0 ].

Proof: If k∗ = 0, i.e. k1 = k2 = k3 = 0, from Theorem 1.1, it follows that

u(z) = 0, z ∈ Q. If k∗ > 0, it is easy to see that U(z) = u(z)/k∗ satisfies the

following equation and boundary conditions:

N∑
i,j=1

aijUxixj
+

N∑
i=1

biUxi
+c U−Ut =

f + G(x, t, u, Dxu)

k∗
in Q, (2.32)

U(x, 0) =
g(x)

k∗
on S1, (2.33)

lU = d
∂U

∂ν
+ σU =

τ(x, t)

k∗
on S2. (2.34)

Noting that Lp[(f + G)/k∗, Q] ≤ 1, C2
α[g(z)/k∗, S1] ≤ 1, C1,1

α,α/2[τ, S2]/k∗ ≤ 1,

and using the proof of Theorem 2.2, we have

C1,0
β,β/2[U, Q] ≤ M9k∗, ||U ||W 2,1

2 (Q) ≤ M10, (2.35)

From the above estimates, it immediately follows that (2.30),(2.31) hold.

3 Solvability of the oblique derivative problem

for parabolic equations

We first consider a special equation of (1.1), namely

∆u− ut = gm(x, t, u, Dxu,D2
xu),

gm =∆u−
N∑

i,j=1

aijmuxixj
−

N∑
i=1

bimu−cmu+fm in Q,
(3.1)

where the coefficients

aijm =

{
aij,

δij,
bim =

{
bi,

0,
cm =

{
c,

0,
fm =

{
f

0

in Qm,

in {RN × I}\Qm,

(3.2)
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with Qm = {(x, t) ∈ Q | dist((x, t), ∂Q) ≥ 1/m} for a positive integer m. In

particular, the linear case of equation (3.1) can be written as

∆u−ut =gm(x, t, u,Dxu,D2
xu), gm =

N∑
i,j=1

[δij−aijm(x, t)]uxixj

−
N∑

i=1

bim(x, t)uxi
−cm(x, t)u+fm(x, t) in Q.

(3.3)

The following theorem provides an expression of solutions of Problem O

for equation (3.1).

Theorem 3.1. Under Condition C, if u(x, t) is a solution of Problem O for

equation (3.1), then u(x, t) can be expressed in the form

u(x, t)=U(x, t)+V̂ (x, t)=U(x, t)+v0(x, t)+v(x, t),

v(x, t) = Hρ =

∫

Q0

G(x, t, ζ, τ)ρ(ζ, τ)dσζdτ,

G =

{
[4π(t− τ)]−N/2 exp[|x− ζ|2/4(τ − t)], t > τ, }
0, t ≤ τ, except t− τ = |x− ζ| = 0,

(3.4)

where ρ(x, t) = ∆u−ut = gm. In (3.4), V̂ (x, t) = v0(x, t)+v(x, t) is a solution

of the Dirichlet problem (Problem D) for (3.1) in Q0 = Ω0×I (Ω0 = {|x| < R})
with the boundary condition ReV̂ (x, t) = 0 on ∂Q0, where R is a large number

such that Ω0 ⊃ Ω. U(x, t) is a solution of Problem Õ for LU = ∆U − Ut = 0

in Q with the initial-boundary condition (3.12) − (3.13) below, which satisfies

the estimates
C1,0

β,β/2[U, Q] + ||U ||W 2,1
2 (Q) ≤ M11,

C1,0
β,β/2[V̂ , Q0] + ||V̂ ||W 2,1

2 (Q0) ≤ M12,
(3.5)

for non-negative constants β (0 < β ≤ α), Mj = Mj(q, p, β, k, Qm) (j = 11, 12)

with q = q(q0, q1) and k = k(k0, k1, k2).

Proof: It is easy to see that the solution u(x, t) of Problem O for equation

(3.1) can be expressed by the form (3.4). Noting that aijm = 0 (i 6= j), bim =

0, cm = 0, fm(x, t) = 0 in {RN × I}\Qm and V̂ (x, t) is a solution of Problem

D for (3.1) in Q0, we can obtain that V̂ (x, t) in Q̂2m = Q\Q2m satisfies the

estimate

Ĉ2,1[|V̂ (x, t)|σ0+1, Q̂2m] ≤ M13 = M13(q, p, α, k, Qm).
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On the basis of Theorem 2.3, we can see that U(x, t) satisfies the first estimate

in (3.5), and then V̂ (x, t) satisfies the second estimate in (3.5).

Theorem 3.2. Under Condition C, Problem O for (3.3) has a solution

u(x, t).

Proof: We prove the existence of solutions of Problem O for the nonlinear

equation (3.1) by using the Larey-Schauder theorem. To begin, we introduce

the equation with the parameter h ∈ [0, 1]

∆u− ut = hgm(x, t, u, Dxu,D2
xu) in Q. (3.6)

Denote by BM a bounded open set in the Banach space B = C1,0
β,β/2(Q) ∩

W 2,1
2 (Q)(0 < β ≤ α), the elements of which are real functions V (x, t) satisfying

the inequalities

C1,0
β,β/2[V, Q̄] + ||V ||W 2,1

2 (Q) < M14 = M12 + 1, (3.7)

in which W 2,1
2 (Q) = W 2,0

2 (Q) ∩ W 0,1
2 (Q), M12 is a non-negative constant as

stated in (3.5). We choose any function Ṽ (x, t) ∈ BM and substitute it into

the appropriate positions on the right hand side of (3.6), and then we make

an integral ṽ(x, t) = Hρ as follows

ṽ(x, t) = Hρ, ρ(x, t) = ∆Ṽ − Ṽt. (3.8)

Next we find a solution ṽ0(x, t) of the initial-boundary value problem in Q0:

∆ṽ0 − ṽ0t = 0 on Q0, (3.9)

ṽ0(x, t) = −ṽ(x, t) on ∂Q0, (3.10)

and denote by V̂ (x, t) = ṽ(x, t) + ṽ0(x, t) the solution of the corresponding

Problem D in Q0. Moreover we can find a solution Ũ(x, t) of the corresponding

Problem Õ in Q

∆Ũ − Ũt = 0 on Q, (3.11)

Ũ(x, 0) = g(x)− V̂ (x, 0) on Ω, (3.12)

∂Ũ

∂ν
+ σ(x, t)Ũ = τ(x, t)− ∂V̂

∂ν
+ σ(x, t)V̂ on S2. (3.13)
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Now we consider the equation

∆V − Vt = hgm(x, t, ũ, Dxũ, D2
xŨ + D2

xV̂ ), 0 ≤ h ≤ 1, (3.14)

where ũ = Ũ + V̂ .

By Condition C, applying the principle of contracting mapping, we can find

a unique solution V (x, t) of Problem D for equation (3.14) in Q0 satisfying the

initial-boundary condition

V (x, t) = 0 on ∂Q0. (3.15)

Set u(x, t) = U(x, t)+V (x, t), where the relation between U and V is the same

as that between Ũ and Ṽ . Denote by V = S(Ṽ , h), u = S1(Ṽ , h) (0 ≤ h ≤ 1)

the mappings from Ṽ onto V and u respectively. Furthermore, if V (x, t) is a

solution of Problem D in Q0 for the equation

∆V − Vt = hgm(x, t, u,Dxu, D2
x(U + V )), 0 ≤ h ≤ 1, (3.16)

where u = S1(V, h), then from Theorem 3.1, the solution V (x, t) of Problem

D for (3.16) satisfies the estimate (3.7), and consequently V (x, t) ∈ BM . Set

B0 = BM × [0, 1].

In the following, we verify that the mapping V = S(Ṽ , h) satisfies the three

conditions of Leray-Schauder theorem:

1) For every h∈ [0, 1], V =S(Ṽ , h) continuously maps the Banach space

B into itself, and is completely continuous on BM . Besides, for every function

Ṽ (x, t) ∈ BM , S(Ṽ , h) is uniformly continuous with respect to h ∈ [0, 1].

2) For h = 0, from Theorem 2.2 and (3.7), it is clear that V = S(Ṽ , 0) ∈
BM .

3) From Theorem 2.2 and (3.7), we see that V = S(Ṽ , h)(0 ≤ h ≤ 1)

does not have a solution V (x, t) on the boundary ∂BM = BM\BM .

Hence we know that Problem D for equation (3.6) with h = 1 has a

solution V (z, t) ∈ BM , and then Problem O of equation (3.6) with h = 1, i.e.

(3.1) has a solution

u(x, t)=S1(Ṽ , h)=U(x, t)+V (x, t)=U(x, t)+v0(x, t)+v(x, t) ∈ B.

Theorem 3.3. Under Condition C, Problem O for (1.1) has a solution.
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Proof: By Theorems 2.3 and 3.2, Problem O for equation (3.1) possesses

a solution um(x, t) satisfying the estimates (2.13) and (2.14), where m =

1, 2, .... Thus, we can choose a subsequence {umk
(x, t)}, such that {umk

(x, t)},
{umkxi

(x, t)}(i = 1, ..., N) in Q uniformly converge to u0(x, t), u0xi
(x, t) (i =

1, ..., N) respectively. Obviously, u0(x, t) satisfies the boundary conditions of

Problem O. On the basis of the principle of compactness of solutions for equa-

tion (3.1) (Theorem 4.6, Chapter I, [6]), we see that u0(x, t) is a solution of

Problem O for (1.1).

Theorem 3.4. Let the complex equation (1.6) satisfy Condition C ′.

(1) When 0 < σ0, σ1, ..., σN < 1, Problem O for (1.6) has a solution

u(x) ∈ B = C1,0
β,β/2(Q) ∩W 2,1

2 (Q).

(2) When min(σ0, σ1, ..., σN) > 1, Problem O for (1.6) has a solution

u(x) ∈ B, provided that

M17 = Lp[f, Q] + C2
α[g, S1] + C1,1

α,α/2[τ, S2] (3.17)

is sufficiently small.

Proof: (1) Noting that

(M9+M10){Lp[f, Q̄]+
N∑

i=1

L∞[Bi, Q̄]tσi+L∞[B0, Q]tσ0+C2
α[g, ∂Q]+C1,1

α,α/2[τ, S2]}= t,

(3.18)

where M9,M10 are the positive constant as in (2.30),(2.31).

Because 0 < σ0, σ1, ..., σN < 1, the above equation has a unique solution

t = M18 > 0.

Now we introduce a bounded, closed and convex subset B∗ of the Banach

space B = C1,0(Q)∩W 2,1
2 (Q), whose elements are of the form {u(x)} satisfying

the condition

B∗ = {u(x, t) |C1,0[u, Q]+||u,Q||W 2,1
2 (Q) ≤ M18}. (3.19)

We choose any function ũ(x, t) ∈ B∗ and substitute it into the corresponding

positions in the coefficients of (1.6), (1.8), and (1.9) to obtain the following

F̃ (x, t, u, Dxu,D2
ux, ũ,Dxũ, D2

xũ)=G̃(x, t, u, Dxu, ũ,Dxũx), (3.20)
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u(x, 0) = g(x) on S1,

d(x)
∂u

∂ν
+ σ(x, t)u = τ(x, t) on S2.

(3.21)

where

F̃ (x, t, u, Dxu,D2
xu, ũ,Dxũ, D2

xũ)=
N∑

i,j=1

aijuxixj
+

N∑
i=1

biuxi
+cu−f,

G̃(x, t, u, Dxu, ũ,Dxũx) =
N∑

i=1

Bi|uxi
|σi + B0|u|σ0 .

In accordance with the method in the proof of Theorem 3.2, we can prove

that the boundary value problem (3.20), (3.21) has a unique solution u(x).

Denote by u(x) = T [ũ(x)] the mapping from [ũ(x)] to [u(x)]. Noting that

Lp[
N∑

i=1

biũxi
, Q]≤M6k0(k1+k2+k3), Cα[cũ, D]≤M6k0(k1+k2+k3), (3.22)

from Theorem 2.2, we have

C1,0
β,β/2[u, Q]+||u||W 2,1

2 (Q)≤M7{Lp[f, Q]+C2
α[g, S1]+C2,1

α [τ, S2]+L∞[G,Q]}
≤ M7{M17 +

∑N
i=1 L∞[Bi, Q]C[uxi

Q̄]σi + L∞[B0, Q]C[ũ, Q̄]σ0} ≤ M18.

(3.23)

This shows that T maps B∗ onto a compact subset in B∗.

Next, we verify that T in B∗ is a continuous operator. In fact, we arbitrarily

select a sequence {ũn(z)} in B∗, such that

C1,0(ũn − ũ0, Q) + ||ũn − ũ0)||W 2,1
2 (Q) → 0 as n →∞. (3.24)

By Theorem 2.3, we can see that

Lp[F̃ (x, t,un,Dxũn,D
2
xun,ũn,Dxũn,V )−F̃ (x, t,u0,Dxu0,D

2
xu0,ũ0,Dxũ0,V ),Q] → 0,

Lp[G̃(x, t, un, Dxun, ũn, Dxũn)−G̃(x, t, u0, Dxu0, ũ0, Dxũ0), Q] → 0 as n→∞,

(3.25)

in which V (x) ∈ Lp(Q).

Moreover, from un = T [ũn], u0 = T [ũ0], it is clear that un−u0 is a solution

of Problem O for the following equation and boundary conditions:

F̃ (x, t, un,Dxun,D
2
xun, ũn,Dxũn,D

2
xũn)− F̃ (x, t, u0,Dxu0,D

2
xu0, ũ0,Dxũ0,D

2
xu0)+

G(x, t, un,Dxun, ũn,Dxũn)−G(x, t, u0, Dxu0, ũ0, Dxũ0) = 0 in Q,

(3.26)
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u(x, 0) = 0 on S1,

d(x)
∂(un−u0)

∂ν
+σ(x)(un−u0)=0 on S2.

(3.27)

In accordance with the method in proof of Theorem 2.2, we can obtain the

estimate

C1,0
β,β/2[u, D]+||un − u0||W 2,1

p0
(Q)

≤M19{Lp[G̃(x, t, un, Dxun, ũn, Dxũn)−G̃(x, t, u0, Dxu0, ũ0, Dxũ0), Q]

+Lp[F̃ (x, t,un,Dxũn,D2
xun,ũn,Dxũn,V )−F̃ (x, t,u0,Dxu0,D

2
xu0,ũ0,Dxũ0,V ),Q]},

(3.28)

in which M19 = M19(q0, p0, β, k0, Q). From the above estimate, we obtain

C1,0
β,β/2[un − u0, Q]+ ||un − u0||W 2,1

p0
(Q) → 0 as n → ∞. On the basis of the

Schauder fixed-point theorem, there exists a function u(x) ∈ B∗ such that

u(x) = T [u(x)], and from Theorem 2.3, it is easy to see that u(x) ∈ B∗,

and u(x) is a solution of Problem O for the equation (1.6) and the boundary

condition (1.8),(1.9) with 0 < σ0, ..., σN < 1.

(2) If min(σ0, ..., σN) > 1, (3.18) has the solution t = M20 provided that

M17 in (3.17) is small enough. Consider a closed and convex subset B∗ in the

Banach space B = C1,0(Q) ∩W 2,1
2 (Q), i.e.

B∗ = {u(x) |C1,0[u, Q]+||u||W 2,1
2 (Q) ≤ M20}.

Applying a method similar to that in (1), we can verify that there exists a

solution u(x) ∈ B∗ of Problem O for (1.6), when the constant

min(σ0, σ1, ..., σN) > 1.
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