
Theoretical Mathematics & Applications, vol.3, no.3, 2013, 87-106 
ISSN: 1792- 9687 (print), 1792-9709 (online) 
Scienpress Ltd, 2013 

 

A Mathematical Study of Electro-Magneto-

Thermo-Voigt Viscoelastic Surface Wave 

Propagation under Gravity Involving  

Time Rate of Change of Strain 

Rajneesh Kakar1and Arun Kumar2  

 

 

Abstract 

This research is a mathematical investigation of the propagation of surface 

wave in a Voigt viscoelastic medium. A mathematical model for wave 

propagation in electro-magneto-thermo heterogeneous viscoelastic isotropic 

half space under gravity involving time rate of change of strain of nth order 

is purposed. A solution to the partial differential equation of motion is 

assumed and is shown to satisfy the two necessary boundary conditions. The 

frequency equations for surface waves (Love, Rayleigh and Stoneley waves) 

are obtained with the help of Biot’s theory of incremental deformations. 

Heterogeneities in the medium are assumed to vary exponentially with 

depth. The problem investigated by Bullen [Cambridge University Press, pp. 

85-99, 1965] has been reduced as particular case. 
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1  Introduction  

 In the earlier times, sufficient interest has been led on wave propagation in 

that material whose mechanical characteristics and density are functions of space 

i.e. heterogeneous engineering material. It is perhaps due to lack of information 

(experimental or empirical) available in the literature concerning the precise 

mechanical behaviour of heterogeneous media, that not much work has been 

reported in this area of applied mechanics. Wave propagation in inhomogeneous 

medium is a challenge for both theoretical research and engineering practice. With 

the rapid development of science and technology, wave motion study of the 

heterogeneous medium (atmosphere, ocean, earth-crust, functionally graded 

materials and cycle grid structure, etc.) seems much more important.  

 Although most wave equations assume propagation in an elastic medium, it 

is well known that many solids do not exactly obey the laws of the theory of 

elasticity. The purpose of this research, therefore, is to assume a non-elastic 

medium that represented by a Voigt viscoelastic element, and investigate the 

conditions necessary for the propagation of a surface wave. To the earthquake 

seismologist and to those concerned with predicting the effects of explosives in 

solids, the surface wave is one of the most important types of waves that have 

been observed. With accurate earthquake seismograms of surface waves, the 

thickness of the superficial layer of the earth (the crust) may be determined. On a 

smaller scale, in seismic exploration, knowledge of the thickness of the weathered 

surface layer is of primary importance 
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        The investigation of viscoelastic wave propagation was initiated by Sezawa 

[1], who was concerned primarily with purely dilatational plane waves, and 

obtained his solution using Fourier integrals. Many years ago Bromwich [2] 

determined the influence of gravity on wave propagation in an elastic solid 

medium. Love [3] investigated the effect of gravity on Rayleigh wave velocity. 

Earlier, Thomson [4] discussed transmission of elastic waves through a stratified 

solid medium. Haskell [5], Ewing, Jardtezky and Press [6] studied wave 

propagation. De and Sen [7] presented note on elastic waves. Sen and Acharya [8] 

investigated the effect of gravity on waves in a thermoelastic layer. Das et al. [9] 

studied magneto-visco-elastic surface waves in stressed conducting media. 

Recently, Kakar et al. [10-13] presented many papers on surface waves in 

viscoelastic media. 

         In this paper, we have considered that the surface waves are propagating in 

isotropic, viscoelastic heterogeneous medium under the effect of temperature, 

electric field, magnetic field and gravity. The problem of nth order viscoelastic 

electro-magneto-thermo surface waves (Love, Stoneley and Rayleigh waves) 

under gravity involving time rate of strain in heterogeneous medium is studied in 

detail.   

 

 

2  Governing equations 

        The governing equations of motion for 3D viscoelastic solid medium in 

Cartesian co-ordinates with Eq. (1) are [3]  
2
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where ij jiτ τ= , ∀ i, j are the stress components and ρ is the density of the medium. 

We have assumed both the mediums are perfect electric conductor, therefore the 

governing equations of motion for such mediums are  

0∇ ⋅Ε =
 

, 0∇ ⋅Β =
 

, ,tB∇×Ε = −
  

, , .e te Eµ ε∇×Β =
  

                 (2)      

where, Ε


, Β


, eµ  and eε  are electric field, magnetic field induction, permeability 

and permittivity of the medium.                    

 The value of magnetic field intensity is 

( ) 00,0, iΗ Η = Η + Η
  

                                                 (3)      

where, magnetic field Η


is acting along y-axis. iΗ


 is the perturbation in the 

magnetic field intensity. 

The stress-strain relations for viscoelastic medium, according to Voigt are [15] 

                                              τij= 2Dµ eij + (Dλ ∆) δij                                (4a)             

Therefore, the stress-strain relations for general isotropic, thermo, magneto, 

electro, viscoelastic medium can be written as 

                  τij= 2Dµ eij + (Dλ ∆ – Dβ T + 2 2
E m0 0e e

E D H D+ ∆ + ∆ ) δij                  (4b)            

where , ∆= u v w
x y z

∂ ∂ ∂
∂ ∂ ∂

+ + , Dλ, Dµ, Dβ , me
D ,

Ee
D  are elastic constants. 

           Let initial temperature of both the medium is kept at constant absolute 

temperature T0. Fourier’s law of heat conduction is used to calculate T and it is 

given by 

                               p∇
2
T = ( )2

0 L
TC T G
t tν

∂ ∂ φ
∂ ∂

+ ∇ ,                                      (5)                                                

where, K be the thermal conductivity and obeys the law as given by K = K0 emz,  

p = 0

0

K
ρ

 and  Cν  be the specific heat of the body at constant volume. 
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3  Formulation of the problem 

          Consider a heterogeneous, thermo-electro-magneto-Voigt viscoelastic, 

isotropic, semi-finite media M1 and M2 (as shown in Figure 1).  

 

 

 

 

 

 

 

 

 

 

Figure 1: Geometry of the problem 

 

        The mechanical properties of M1 are different from those of M2. Let the 

components of displacements are u, v, w. The Cartesian co-ordinate system (x ,y , 

z) is located at the interface separating the two layers at z = 0. The z-axis is acting 

downward.  

Introducing Eq. (4a) in Eq. (1a), Eq. (1b), Eq. (1c), we get 
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We assume that the heterogeneities for the media M1 and M2 are given by 
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where λ0, M0, λ'0, µ'0ε'0  are elastic constants, whereas β0, β'0 are thermal 

parameters are ρ0, ρ'0, m, n are constants. λK, µK, εK (K = 0,1,2, .... n) are the 

parameters associated with Kth order viscoelasticity and β
K
 , (εe)K and (µe)K  

(K = 1, 2, ....., n) are the thermal, electric and magnetic parameters associated with 

Kth order. T is the absolute temperature over the initial temperature T0. In a thermo 

viscoelastic solid, the thermal parameters βK (K = 0, 1, ...... n) are given by  

βK = (3λK + 2µK) αt, where, αt be the coefficient of linear expansion of solid. 
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        To investigate the surface wave propagation along the direction of Ox, we 

introduce displacement potential φ (x, z, t) and ψ (x, z, t) which are related to the 

displacement components as follows: 

                         u= ∂φ
∂

∂ψ
∂x z

− , w = ∂φ
∂

∂ψ
∂z x

+ .                                                       (11)                              

          The displacement potential φ (x, z, t) and ψ (x, z, t) in Eq. (11) satisfy the 

following Laplace equation (known as dilation and rotation and are associated 

with P and SV waves) 
2 2

, , , ,, 2 .x z x zu w w uφ ψ∇ = + = ∆ ∇ = − = Ω                       (11a) 

Substituting Eq. (11) in Eqs (9a), (9b) and (9c), we get 

        GR ∇2 φ + mGs ( ), ,2 z xφ ψ+ – GL
T

,xgψ+  = ,ttφ ,                                        (12a)                                          

        GS ∇2 v + mG ,zv = ,ttv ,                                                                               (12b) 

        GS ∇2 ψ + mGP ,xφ + 2m Gs ,zψ – Gq ∇4 ψ ,xgφ−  = ,ttψ ,                          (12c)                      

Where,  
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By using Eq. (5), temperature T can be calculated. 

Further, similar relations in medium M2 can be found out by replacing λK, µK, βK, 

ε’K, ρ0 by λ'K, µ'K, β' K, ε'K, ρ'0 and so on. 

 

 

4  Solution of the problem 

 Now our main objective to solve Eq. (12a), Eq. (12b), Eq. (12c) and Eq. (5), 

for this, we seek the solutions in the following forms. 

                 (φ, ψ, T, v)= [f (z), V (z), T1 (z), h (z)] eiα(x – ct)                             (14)                               

Using Eq. (14) in Eq. (12a), Eq. (12b), Eq. (12c) and Eq. (5), we get a set of 

differential equations for the medium 1M  as follows: 
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where, 
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 Eq. (15) and Eq. (17) must have exponential solutions in order that f, j, 1T , h 

will describe surface waves, and they must become varnishing small as z → ∞. 

Hence for the medium 1M  

φ (x, z, t)= { } ( )A e B e C e ez z z i x ct
1 1 1

1 2 3− − − −+ +λ λ λ α  

ψ (x, z, t)= { } ( )A e B e C e ez z z i x ct
2 2 2

1 2 3− − − −+ +λ λ λ α  

T (x, z, t)= { } ( )A e B e C e ez z z i x ct
3 3 3

1 2 3− − − −+ +λ λ λ α  

                        v (x, z, t)= ( )Ce z i x ct− + −λ α4                                                         (19a) 

          For finite disturbances as z → ∞, for medium M1 must hold Re (λi)>0 for 

i=1,2,3,4,5. Similarly for the medium M2 are given by 

φ (x, z, t)= { } ( )A e B e C e ez z z i x ct' ' '' ' '
1 1 1

1 2 3− − − −+ +λ λ λ α  
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ψ (x, z, t)= { } ( )A e B e C e ez z z i x ct' ' '' ' '
2 2 2

1 2 3− − − −+ +λ λ λ α  

T (x, z, t)= { } ( )A e B e C e ez z z i x ct' ' '' ' '
3 3 3

1 2 3− − − −+ +λ λ λ α  

                     v (x, z, t)= ( )C e z i x ct' '− + −λ α4                                                          (19b) 

         For finite disturbances as z → − ∞, for medium M2 must hold Re(λ'i)<0 for 

i=1,2,3,4,5. Where, λj and λ'j (j = 1, 2, 3) are the real roots of the Eqns.  

λ6 + ξ1 λ5 + ξ2 λ4 + ξ3 λ3 + ξ4λ2+ ξ5λ + ξ6 = 0,                        (20)                                                    

where, 

ξ1 = 2m {1 + f1
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ξ2 = K1
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2 + Bg1
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2 + 4m2A f1
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2 h1
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2 – α2B K1

2 g1
2.                                                   (21) 

λ'6+ξ'1 λ'5+ξ'2 λ'4+ξ'3 λ'3+ξ'4λ'2+ξ'5λ'+ξ'6= 0                                                 (22) 

 where,  

ξ'1 = 2l {1 + f1'2}, 

 ξ'2 = K1'2 + A' + 4l2 + h1'2 + B'g1'2, 

ξ'3 = 2lA' + 2lf1'2 (K1'2 + A) + 2lh1'2 + 2l B'g1'2, 

ξ'4 = A'K1'2 + 4l2A' f1'2 + (K1'2 + A') h1'2 + α2 l2 l1'2 f1'2 + B' K1'2 g1'2 – α2 B' g1'2, 

ξ'5 = 2lA'K1'2 f1'2 + 2lA'h1'2 – 2l α2 B'g1'2, 

ξ'6 = A'K1'2 h1'2 + A'α2 l2 ll'2 f1'2 – α2B' K1'2 g1'2.                                               (23) 

λ4 = {m + (m2- 4 K1
2) ½}/ 2,  

 λ'4  = {l + (l2- 4 K1'2) ½}/ 2 
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where the symbol used in eqns. (21) and (23) are given by eqns. (16) and (18). 

The constants Aj, Bj, Cj (j = 1, 2, 3) are related with A'j, B'j, C'j (j = 1, 2, 3) in Eq. 

(19a) and Eq. (19b) by means of first equations in Eq. (15) and Eq. (17). Equating 

the coefficients of 3 31 2 1 2 '' ', , , , ,z zz z z ze e e e e eλ λλ λ λ λ− −− − − −  to zero, after substituting Eq. 

(19a) and Eq. (19b) in the first and 3rd equations of Eq. (15) and Eq. (17) 

respectively, we get 

                      A2= γ1 A1,    B2 = γ2 B1,   C2 = γ3 C1, 

and    

                     A3= δ1 A1,     B3 = δ2 B1,     C3 = δ3 C1,                                         (24) 

where, 

γj=  −
− +

i m
m Kj j

α
λ λ

l1
2

2
1
22

 (j = 1, 2, 3), 

δj= 1

1
2g

 [λj
2 – 2m f1

2 λj + h1
2 + i α m f1

2 γj],    j = 1, 2, 3. 

Similar result holds for medium M2 and usual symbols replacing by dashes 

respectively. 

 

 
5  Boundary conditions  

There are two boundary conditions 

(i) The displacement components, temperature and temperature flux at the 

boundary surface between the media M1 and M2 must be continuous at all times 

and positions. 

i.e.                              u w T, p T
z M

, , ,ν
∂
∂





 1

= u w T,p T
z M

, , , 'ν
∂
∂





 2

 

(ii) The stress components τ31, τ32, τ33 must be continuous at the boundary z = 0. 
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i.e.[ ]τ τ τ31 32 33 1
, , M = [ ]τ τ τ31 32 33 2

, , M at z = 0,  respectively 

where,  

τ31= D
x z x zµ
∂ φ

∂ ∂
∂ ψ
∂

∂ ψ
∂

2
2 2

2

2

2+ −








 ,             τ32 = D

zµ
∂ν
∂

, 

τ33 =
2 2

2 2 2 2 2
m 0 E 022 e eBD D D T D H D E

z x zλ µ
∂ φ ∂ φφ φ φ
∂ ∂ ∂

 
∇ + + − + ∇ + ∇ 

 
.     (25)                              

Applying the boundary conditions, we get 

             A1 (1 – i γ1 ζ1) + B1 (1 – i γ2 ζ2) + C1 (1 – i γ3 ζ3) – A'1 (1 – i γ'1 ζ'1)   

                – B'1 (1 – i γ'2 ζ'2) – C'1 (1 – i γ '3 ζ'3) = 0                                          (26a) 

             C = C'                                                                                                    (26b) 

            A1 (γ1 + iζ1) + B1 (γ2 + iζ2) + C1 (γ3 + iζ3) – A'1 (γ'1 + iζ'1) 

                – B'1 (γ '2 + iζ'2) – C'1 (γ'3 + iζ'3) = 0                                                  (26c)  

            δ1A1 + δ2 B1 + δ3C1 = δ'1A'1 + δ'2 B'1 + δ'3C'1                                                     (26d) 

            pλ1δ1A1 + pλ2δ2 B1 + pλ3δ3C1 – p' λ'1δ'1A'1 + p' λ'2δ'2 B'1– p'λ'3δ'3C'1 = 0                      

                                                                                                                            (26e) 

µK
* [(2i ζ1 + γ1 + ζ1

2 γ1) A1 + (2i ζ2 + γ2 + ζ2
2 γ2) B1 + (2i ζ3 + γ3 + ζ3

2 γ3) C1] 

     = µ' *K [(2i ζ'1 + γ'1 + ζ1'2 γ'1) A'1 + (2i ζ'2 + γ'2 + ζ2'2 γ'2) B'1   

                  +(2i ζ'3 + γ '3 + ζ3'2 γ'3) C'1]              (26f) 

 µK
* [– λ4C]= µ' *K [– λ'4 C']                                                                                 (26g) 

A1 [( λK
* + *( )e Kµ 2

0H *( ' )e Kε 2
0E ) (ζ1

2 – 1) + 2 µK
* (ζ1

2 –iζ1) – βK
* δ1]  

    + B1 [( λK
* + *( )e Kµ 2

0H *( ' )e Kε 2
0E ) (ζ2

2 – 1) + 2 µK
* (ζ2

2 –iζ2) – βK
* δ2]  

    + C1 [( λK
* + *( )e Kµ 2

0H *( ' )e Kε 2
0E ) (ζ3

2 – 1) + 2 µK
* (ζ3

2 – iζ3) – βK
* δ3] 

 = A'1 [( λ' *K + *( ' )e Kµ 2
0H *( ' )e Kε 2

0E )(ζ1'2–1)+2 µ' *K (ζ1'2–iζ'1)– β' *K δ'1] 

     + B'1 [( λ' *K + *( ' )e Kµ 2
0H *( ' )e Kε 2

0E ) (ζ2'2 – 1) + 2 µ' *K (ζ2'2 – iζ'2) – β' *K δ'2] 

     +C'1[( λ' *K + *( ' )e Kµ 2
0H *( ' )e Kε 2

0E ) (ζ3'2–1) + 2 µ' *K (ζ3'2 – iζ'3) – β' *K δ'3]    (26h) 
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where,  

ζj= 
λ

α
j ,      ζ'j = 

λ

α

' j ,     j = 1, 2, 3 

λ*K = ( )λ αK
K

K

n
i c−

=
∑

0
,    µK

* = ( )µ αK
K

K

n
i c−

=
∑

0
,     βK

* = ( )β αK
K

K

n
i c−

=
∑

0
, 

*( )e Kµ = ( )
0

( )
n

K
e K

K
i cµ α

=

−∑ ,     ( )*

0
( ) ( )

n
K

e K e K
K

i cε ε α
=

= −∑  

and 

λ' *K  = ( )λ α'K
K

K

n
i c−

=
∑

0
,     µ' *K = ( )µ α'K

K

K

n
i c−

=
∑

0
,     β' *K = ( )β α'K

K

K

n
i c−

=
∑

0
, 

*( ' )e Kµ = ( )
0

( ' )
n

K
e K

K
i cµ α

=

−∑ ,      *( ' )e Kε ( )
0

( ' )
n

K
e K

K
i cε α

=

= −∑  

          From Eq. (26b) and Eq. (26h), we have C = C' = 0. Thus there is no 

propagation of displacement v. Hence SH-waves do not occur in this case. Finally, 

eliminating the constants A1, B1, C1,  A'1, B'1, C'1 from the remaining equations, 

we get 

                                  

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

0

a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

=                                     (27) 

where,  

 a11 = 1 – iγ1 ζ1,    a12 = 1–iγ2ζ2,        a13 = 1–iγ3ζ3,     a14 = (i γ'1 ζ'1–1),  

a15 = (i γ '2 ζ'2–1),     a16 = (i γ'3 ζ'3 – 1), 

a21 = γ1 + iζ1,          a22 = γ2 + iζ2,        a23 = γ3 + iζ3,       a24 = (γ'1 + i ζ'1),  

a25 = (γ'2 + iζ'2),      a26 = (γ'3 + iζ'3), 

a31 = δ1,     a32 = δ2,      a33 = δ3,      a34 = – δ'1,      a35 = –δ'2,     a36 = –δ'3, 
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a41 = pλ1 δ1,         a42 = pλ2 δ2,        a43 = pλ3 δ3,       a44 = –p' λ'1 δ'1,    

 a45 = –p' λ'2 δ'2,        a46 = –p' λ'3 δ'3, 

a51 = µK
*  (2i ζ1 + γ1 + γ1 ζ1

2),       a52 = µK
* (2i ζ2 + γ2 + γ2 ζ2

2),  

a53 = µK
* (2i ζ3 + γ3 + γ3 ζ3

2),       a54 = µ' *K (2i ζ'1 + γ'1 + γ'1 ζ1'2),  

a55 = µ' *K (2i ζ'2 + γ'2 + γ'2 ζ2'2),  

a56 = µ' *K (2i ζ'3 + γ'3 + γ'3 ζ3'2), 

a61 = ( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ1

2 – 1) + 2 µK
* (ζ1

2 –iζ1) – βK
* δ1,  

a62 = ( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ2

2 – 1) + 2 µK
* (ζ2

2 –iζ2) – βK
* δ2, 

a63 = ( λK
* + *( )e Kµ + *( )e Kε 2

0E 2
0H ) (ζ3

2 – 1) + 2 µK
* (ζ3

2 – iζ3) – βK
* δ3,  

a64 = ( λ' *K + *( ' )e Kµ 2
0H + *( )e Kε 2

0E ) (ζ1'2–1) + 2 µ' *K (ζ1'2–iζ'1)– β' *K δ'1, 

a65 = ( λ' *K + *( ' )e Kµ 2
0H + *( )e Kε 2

0E ) (ζ2'2 – 1) + 2 µ' *K (ζ2'2 – iζ'2) – β' *K δ'2,  

a66 = ( λ' *K + *( ' )e Kµ 2
0H + *( )e Kε 2

0E ) (ζ3'2–1) + 2 µ' *K (ζ3'2 – iζ'3) – β' *K δ'3.          (28) 

         From Eq. (27), we obtain velocity of surface waves in common boundary 

between two viscoelastic, heterogeneous solid media under the influence of 

thermal, electric and magnetic field, where the viscosity is of general nth order 

involving time rate of change of strain. 

 

 

6  Particular cases 

Stoneley Waves: 

 Eq. (27) determine the wave velocity equation for Stoneley waves in the 

case of general magneto-thermo viscoelastic, heterogeneous solid media of nth 

order involving time rate of strain. Clearly from Eq. (27), it is follows that the 

wave velocity equation for Stoneley waves depends upon the heterogeneity of the 

material medium, temperature, electric, magnetic and viscous field. This equation, 

of course, is in well agreement with the corresponding classical result, when the 
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effects of thermal, electric, magnetic and viscous field and heterogeneity are 

absent. 

 

Rayleigh Waves: 

        To investigate the possibility of Rayleigh waves in a electro, magneto, 

thermo viscoelastic, heterogeneous elastic media, we replace media M2 by 

vacuum, in the proceeding problem; we also note the SH-waves do not occur in 

this case. 

Since the temperature difference across the boundary is always small so thermal 

condition given by 

 ∂
∂
T
z

hT+  = 0 at z = 0, respectively (28) 

Thus Eq. (26f) and Eq. (26h) reduces to, 

(2i ζ1 + γ1 + γ1 ζ1
2) A1 + (2i ζ2 + γ2 + γ2 ζ2

2) B1 + (2i ζ3 + γ3 + γ3 ζ3
2) C1 = 0  

     (29a) 

[( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ1

2 – 1) + 2 µK
* (ζ1

2 –iζ1) – βK
* δ1] A1 

 + [( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ2

2 – 1) + 2 µK
* (ζ2

2 –iζ2) – βK
* δ2] B1 

+ [( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ3

2 – 1) + 2 µK
* (ζ3

2 – iζ3) – βK
* δ3] C1 = 0     (29b) 

From Eq. (28), we have 

                            (λ1 – h) δ1 A1 + (λ2 – h) δ2 B1 + (λ3 – h) δ3 C1 = 0        (29c) 

Eliminating A1, B1 and C1 from Eqns. (29a), (29b) and (29c), we get 

det (bij)= 0, i, j = 1, 2, 3.                                                 (30) 

where, 

b11 = (2i ζ1 + γ1 + γ1 ζ1
2), b12 = (2i ζ2 + γ2 + γ2 ζ2

2), b13 = (2i ζ3 + γ3 + γ3 ζ3
2), 

b21 = [( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ1

2 – 1) + 2 µK
* (ζ1

2 –iζ1) – βK
* δ1], 

b22 = [( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ2

2 – 1) + 2 µK
* (ζ2

2 –iζ2) – βK
* δ2], 

b23 = [( λK
* + *( )e Kµ 2

0H + *( )e Kε 2
0E ) (ζ3

2 – 1) + 2 µK
* (ζ3

2 – iζ3) – βK
* δ3], 
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b31  = (λ1 – h) δ1,  

b32=  (λ2 – h) δ2, 

b33 = (λ3 – h) δ3.                                                                                                   (31) 

         Thus, Eq. (30) gives the wave velocity equation for Rayleigh waves in a 

heterogeneous, electro, magneto-thermo viscoelastic solid media of nth order 

involving time rate of strain. 

         From Eq. (30), it is follows that dispersion equation of Rayleigh waves 

depends upon the heterogeneity, the viscous, magnetic and thermal fields. 

When the effects of thermal, electro, magnetic viscous field and heterogeneity are 

absent, this equation, of course, is in complete agreement with the corresponding 

classical result by Bullen [14]. 

 

Love Waves: 

         To investigate the possibility of love waves in a heterogeneous, viscoelastic 

solid media, we replace medium M2 is obtained by two horizontal plane surfaces 

at a distance H-apart, while M1 remains infinite. For medium M1, the displacement 

component ν remains same as in general case given by equation (19). For the 

medium M2, we preserve the full solution, since the displacement component 

along y-axis i.e. v no longer diminishes with increasing distance from the 

boundary surface of two media. 

Thus   

                         v' = ( ) ( )4 4' '
1 2

z i x ct z i x ctC e C eλ α λ α+ − − + −+                                            (32) 

In this case, the boundary conditions are 

(i) v and τ32 are continuous at z = 0 

(ii) τ'32 = 0 at z = –H. 

Applying boundary conditions (i) and (ii) and using eqns (19) and (26), we get 

                          C= C1 + C2    (33) 
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 – µK
* λ4C = (µ'K)* [λ'4C1 – λ'4C2]  (34) 

                         4 4' '
1 2

H HC e C eλ λ− − = 0                                                                (35) 

On eliminating the constants C, C1 and C2 from Eqns. (33), (34) and (35), we get 

   tanh (λ'4H) =-
( )

*
4

4' ' *
K

K

λ µ
λ µ

.                                                             (36) 

Thus Eq. (36) gives the wave velocity equation for Love waves in a 

heterogeneous, electro, magneto, thermo viscoelastic solid medium of nth order 

involving time rate of strain. Clearly it depends upon the heterogeneity, magnetic 

and viscous fields and independent of thermal field. 

 

 

7  Conclusions  

• The time rate of strain parameters influence the wave velocity of surface 

waves to an extent depending on the corresponding constants characterizing 

the electro-magneto thermo and viscoelasticity of the material. So the results 

of this analysis become useful in circumstances where these effects cannot be 

neglected. These velocities depend upon the wave number ‘ α ’  confirming 

that these waves are affected by heterogeneity of the material medium.  

• It has been observed that temperature has no effect on Love waves. However, 

viscosity, gravity, magnetic fields, electric fields and heterogeneity of the 

medium effects the propagation of Love waves. 

• The dispersion of Rayleigh waves is observed due to the presence of 

heterogeneity, temperature, gravity, magnetic field, electric field and viscosity 

of the medium. 

• The wave velocity equation of Stoneley waves is very similar to the 

corresponding problem in the classical theory of elasticity. The dispersion of 

waves is due to the presence of heterogeneity, gravity, magnetic field, electric 
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field, temperature and viscoelasticity of the solid. Also, wave velocity 

equation of this generalized type of surface wave is in complete agreement 

with the corresponding classical result in the absence of all fields and 

heterogeneity. 

• The solution of wave velocity equation for Stoneley waves cannot be 

determined by easy analytical methods however we can apply numerical 

techniques to solve this determinantal equation by choosing suitable values of 

physical constants for both media M1 and M2.  
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