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Discreteness of the solutions to equations

of mathematical physics

L.I. Petrova1

Abstract

The equations of mathematical physics, which describe actual pro-
cesses, are defined on manifolds (tangent or others) that are not inte-
grable. The solutions of equations on such manifolds cannot be functions
since the derivatives of such solutions do not made up a differential. The
exact solutions (functions), which are possible only on integrable struc-
tures, can be realized only discretely under the realization of additional
conditions. The process of realization of discrete solutions reveals the
mechanism of generation of integrable structures, which format inte-
grable manifolds, and emergence of physical structures, which made up
physical fields and an occurrence of waves, eddies and so on.
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1 Introduction

The equations of mathematical physics, which describe physical processes

are defined on nonintegrable manifolds (for example, on such as tangent mani-
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fold). As is shown in present paper, such equations have solutions of two types:

the solutions that are not functions (depend on the integration path) and so

called generalized solutions, which are functions but are realized discretely.

The discreteness of generalized solutions relates to the fact that such solutions

are obtained only under realizations of additional conditions, which define in-

tegral structures. The realization of additional conditions (which are caused

by some degrees of freedom) proceeds with the help of degenerate transforma-

tion that executes the transition from original nonintegrable manifold to the

integrable structure being realized.

It should be noted that the results of present paper were obtained with the

help of skew-symmetric differential forms. In this case, in addition to closed

exterior forms, which possess the invariant properties, it has been used the

skew-symmetric differential forms, which are obtained from differential equa-

tions. These skew-symmetric forms are evolutionary ones. Such evolutionary

forms contain an unconventional mathematical apparatus that includes such

basic concepts as degenerate transformations and nonidentical relations and

can generate closed exterior forms.

In the second section of present paper the properties of solutions to the

equations of mathematical physics, which describe any processes, are studied

by the example of the first-order partial differential equations, and the con-

jugacy of derivatives with respect to different variables is analysed. In this

case the discreteness of solutions is due to the fact that the derivatives of the

function desired appear to be nonconjugated on the tangent manifold.

In the next section the set of differential equations of mechanics and physics

of material systems (continuous media) is considered. This is a set of equations

that describe the conservation laws for material systems (the conservation laws

for energy, momentum, angular momentum, and mass). From the equations

analysed it follows the nonidentical relation in skew-symmetric forms that just

describes the process of realization of generalized solutions. In this case, the

discreteness of solutions depends on the consistence of the equations and on the

properties of conservation laws. It is shown that the process of discrete realiza-

tion of generalized solutions has an unique mathematical and physical sense.

Such a process, firstly, discloses the mechanism of generation of integrable

structures and integrable manifolds and, secondly, explains the mechanism of

emergence of physical structures and advent formations in material systems
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like vortices, waves and so on.

In the last section it is shown that the peculiarities of solutions to the

equations of conservation laws for material systems disclose the connection

between the field-theory equations and the equations for material systems and

demonstrate the connection between physical fields and material systems.

2 Specific features of solutions to equations

describing actual processes; Main Results

Specific features of solutions to differential equations describing physical

processes can be demonstrated by the example of first-order partial differential

equation using the properties of skew-symmetric differential forms [1],[2].

Let us take the simplest case: the first-order partial differential equation

F (xi, u, pi) = 0, pi = ∂u/∂xi (1)

Let us consider the functional relation

du = θ (2)

where θ = pi dxi is a skew-symmetric differential form of the first degree (the

summation over repeated indices is implied).

By constructing the skew-symmetric form θ = pi dxi must be a differential

since pi are derivatives of the function desired.

However, in general case when differential equation (1) describes any phys-

ical processes, this differential form appears to be an unclosed form, and for

this reason it is not a differential. The differential form θ = pi dxi appears to

be an unclosed form because its differential is nonzero. Really, the differential

dθ is equal to Kijdxidxj, where Kij = ∂pj/∂xi−∂pi/∂xj are components of the

differential form commutator. From equation (1) it does not follow (explicitly)

that the derivatives pi = ∂u/∂xi, which obey to the equation (and to given

boundary or initial conditions), are consistent, that is, their mixed derivatives

are commutative. Components of commutator Kij is nonzero. Therefore, the

differential form commutator and the differential of form θ are nonzero.

In the general case, when differential equation (1) describes any physical

processes, the functional relation (2) is nonidentical one. The left-hand side
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of this relation involves a differential, and the right-hand side includes the

differential form θ = pi dxi, which is not a differential.

The nonidentity of functional relation (2) means that equation (1) is non-

integrable: the derivatives pi of equation do not made up a differential. The

solution u of equation (1) obtained from such derivatives is not a function of

only variables xi. This solution will depend on the commutator Kij.

To obtain a solution that is a function (i.e., the derivatives of this solution

made up a differential), it is necessary to add the closure condition for the form

θ = pidxi and for the relevant dual form (in the present case the functional F

plays a role of a form dual to θ) [1]:





dF (xi, u, pi) = 0

d(pi dxi) = 0
(3)

If we expand the differentials, we get a set of homogeneous equations with

respect to dxi and dpi (in the 2n-dimensional space):





(
∂F

∂xi
+

∂F

∂u
pi

)
dxi +

∂F

∂pi

dpi = 0

dpi dxi − dxi dpi = 0

(4)

It is well known that vanishing the determinant composed of coefficients

at dxi, dpi is a solvability condition of the system of homogeneous differential

equations. This leads to relations:

dxi

∂F/∂pi

=
−dpi

∂F/∂xi + pi∂F/∂u
(5)

Relations (5) specify the integrating direction, which defines an integrable

structure, that is, a pseudostructure, on which the form θ = pi dxi turns out

to be closed one, i.e. it becomes a differential, and the identical relation follows

from relation (2). On the pseudostructure, which is defined by relation (5), the

derivatives of differential equation (1) constitute a differential δu = pidxi =

du (on the pseudostructure), and this means that the solution to equation

(1) becomes a function. Solutions, namely, functions on the pseudostructures,

are so-called generalized solutions. The characteristics, characteristic surfaces,

singular points, potential surfaces, and others are examples of pseudostructures

or their formations.
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One can see that the solutions, which are functions, are obtained only

under additional condition. This additional condition, as one can see, is van-

ishing the determinant. Such an additional condition is a condition of de-

generate transformation. The degenerate transformation executes a transition

from tangent nonintegrable manifold of differential equations to integral struc-

tures (pseudostructures) or the surfaces of cotangent manifold. (The Legendre

transformations are examples of such a transformation.)

It should be underlined the following.

The derivatives of differential equation are defined on tangent manifold,

that are not integrable. As it has been shown above, such derivatives do

not made up a differential. The solution that had been obtained from such

derivatives is not a function. This solution is defined on tangent manifold. And

the solution that is a function (generalized solution) is defined on integrable

structures or surfaces, which belong to cotangent integrable manifold.

Thus one obtains that the transition from the solution, which is not a

function, to generalized solution, which is a function, is realized as a transi-

tion from tangent nonintegrable manifold to integrable structures of cotangent

manifold. This means that the solutions, which are functions (i.e. generalized

solutions) are realizes under additional conditions (the conditions of degener-

ate transforms), are discrete solutions. Such solutions have discontinuities in

the direction normal to pseudostructures (to integrable structures or surfaces).

The first-order partial differential equation has been analyzed, and the

functional relation with the form of the first degree has been considered.

Similar functional properties have all differential equations describing ac-

tual processes. And, if the order of differential equation is k, the functional

relation with the k-degree form corresponds to this equation.

Thus one can see that the solutions to equations of mathematical physics,

on which no additional conditions are imposed, are not functions. They depend

on a quantity that relates to nonconjugacy of differential equation derivatives

(this quantity is described by the commutator of unclosed skew-symmetric form

made up of differential equation derivatives). The solutions that are functions

(generalized solutions) are realized only under additional requirements, namely,

the conditions of degenerate transformations, and hence, they are discrete

solutions (defined only on pseudostructures) and have discontinuities in the

direction normal to pseudostructures.
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[Investigation of nonidentical functional relations lies at the basis of the qualitative the-

ory of differential equations. It is well known that the qualitative theory of differential

equations is based on the analysis of unstable solutions and the integrability conditions.

From the functional relation it follows that the dependence of the solution on the commu-

tator leads to instability, and the closure conditions of skew-symmetric forms constructed

by derivatives are integrability conditions. That is, the qualitative theory of differential

equations, which solves the problem of unstable solutions and integrability, bases on the

properties of nonidentical functional relation.]

3 Properties of solutions for equations of me-

chanics and physics of continuous medium

While studying the solution of partial differential equations, the conjugacy

of derivatives with respect to different variables was analyzed. When describing

physical processes in continuous media (in material systems) one obtains not

one differential equation but a set of differential equations. And in this case it

is necessary to investigate the conjugacy of not only derivatives with respect

to different variables but also the conjugacy (consistency) of the equations of

this set. In this case, from this set of equations one also obtains a nonidentical

relation that enables one to investigate the integrability of equations and the

specific features of their solutions.

(In particular, the consistency of equations analysed in paper [3]. In that

paper the consistency conditions were referred to as dynamical conditions.)

The equations of mechanics and physics of continuous media (of material

systems) is a set of equations that describe the conservation laws for energy,

linear momentum, angular momentum, and mass. The Euler and Navier-

Stokes equations are examples of such a set of equations [4].

Let us analyze the consistency of the equations for energy and linear mo-

mentum.

In the accompanying reference system, which is tied to the manifold made

up by the trajectories of particles (elements of material system), the equation

for energy is written in the form

∂ψ

∂ξ1
= A1 (6)
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Here ξ1 are the coordinates along the trajectory, ψ is the functional of

the state that specifies material system, A1 is the quantity that depends on

specific features of the material system and on external (with respect to the

local domain) energy actions onto the system. {The action functional, entropy and

wave function can be regarded as examples of the functional ψ [5]. Thus, the equation for

energy expressed in terms of the action functional S has following form: DS/Dt = L, where

ψ = S and A1 = L is the Lagrange function. The equation for energy of ideal gas can be

presented in the form: Ds/Dt = 0, where s is entropy [4].}
In a similar manner, in the accompanying reference system the equation

for linear momentum appears to be reduced to the equation of the form

∂ψ

∂ξν
= Aν , ν = 2, ... (7)

where ξν are the coordinates in the direction normal to the trajectory, Aν are

the quantities that depend on the specific features of material system and on

external force actions.

Eqs. (6) and (7) can be convoluted into the relation

dψ = Aµ dξµ, (µ = 1, ν) (8)

where dψ is the differential expression dψ = (∂ψ/∂ξµ)dξµ.

Relation (8) can be written as

dψ = ω (9)

here ω = Aµ dξµ is the skew-symmetric differential form of the first degree. [It

should be noted that skew-symmetric differential forms, which are obtained from differential

equations, are not exterior skew-symmetric forms, because, in contrast to exterior forms,

they are defined on tangent or accompanying manifolds, which are not integrable. Such skew-

symmetric differential forms are evolutionary ones since they are obtained from evolutionary

equations [2]. Below it will be shown the properties of such evolutionary forms that enable to

study specific features of solutions to the equations of mathematical physics.] (A concrete

form of relation (9) and its properties in the case of the Euler and Navier-

Stokes equations were considered in papers [6, 7]. In this case the functional

ψ is the entropy s.)

Relation (9) has been obtained from the equation of conservation laws for

energy and linear momentum. In this relation the form ω is that of the first
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degree. Taking into account the equations of conservation laws for angular

momentum and mass, the evolutionary relation can be written as

dψ = ωp (10)

where the form degree p takes the values p = 0, 1, 2, 3. (A concrete form of

relation (10) for p = 2 were considered for electromagnetic field in paper [2]

(Appendix 3) and in paper http://arxiv.org/pdf/math-ph/0310050v1.pdf

The relation obtained possesses the properties that enable one to investigate

the integrability of original set of equations and the properties of its solutions.

This relation is, firstly, an evolutionary one since the original equations are

evolutionary.

Secondly, it, as well as functional relation (2), turns out to be nonidentical.

To justify this, we shall analyze the relation (9).

The evolutionary relation dψ = ω is a nonidentical relation as it involves

the unclosed skew-symmetric differential form ω = Aµdξµ. The commutator

of the form ω is nonzero. The components of commutator of such a form can

be written as follows:

Kαβ =

(
∂Aβ

∂ξα
− ∂Aα

∂ξβ

)

Such a commutator cannot vanish since the coefficients Aµ depend on external

energetic and force actions, which are not potential and consistent. This means

that the differential of the form ω is nonzero as well. Thus, the form ω proves

to be unclosed and cannot be a differential.

[The commutator of the form ω describes a force that causes the deformation of accom-

panying manifold, on which the form ω is defined. In this case an additional term in the

commutator, namely, the commutator of unclosed metric form of manifold, appears in the

process of manifold deformation.]

The nonzero value of the commutator, and accordingly, of the form differ-

ential, means that the differential form ω in the right-hand side of evolutionary

relation is unclosed form and cannot be a differential like left-hand side of this

relation. This points out to the fact that the evolutionary relation proves to

be nonidentical. (Nonidentical relation had been noted in paper [8]. In this

case, a possibility to make use a sign of equality of this relation was allowed.)

[Since the evolutionary relation has been obtained from the conservation law equations,

a nonidentity of this relation is a result of noncommutativity of conservation laws [7]. The
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noncommutativity of conservation laws, and, as a result, a nonidentity of evolutionary rela-

tion, is a reason of discreteness of the solutions to mathematical physics equations.]

The nonidentity of the evolutionary relation means that the initial equa-

tions of conservation laws are not consistent, and hence, they are not inte-

grable.

Without realization of additional conditions the solutions to these equa-

tions will depend on the evolutionary form commutator and hence cannot be

functions.

The equation can became integrable only under realization of additional

conditions, when the evolutionary form commutator and the form differential

vanish. These are just conditions of degenerate transformation when from the

evolutionary form (with nonzero differential) one obtains closed exterior form

(with vanishing differential). Under degenerate transformation, from noniden-

tical relation the relation that is identical on pseudostructure is obtained, and

this points out to consistency of equations and to local (on pseudostructure)

integrability of original equations. In this case the solutions to equations are

generalized solutions, which are functions, but realized discretely (only under

additional conditions).

The questions of how the conditions of degenerate transformation are real-

ized and how the degenerate transformation proceeds arise.

The conditions of degenerate transformation relate to degrees of freedom

of material system. Realization of these conditions proceeds while varying

evolutionary relation, which appears to be selfvarying one. (An evolutionary

relation contains two objects one of which appears to be unmeasurable and

cannot be compared with another one, and therefore the process of mutual

variation cannot terminate). The selfvariation of evolutionary relation leads

to realization of the conditions of degenerate transformation.

If the conditions of degenerate transformation are realized, from the un-

closed evolutionary form with nonvanishing differential dωp 6= 0 one can ob-

tain a differential form closed on pseudostructure. The differential of this form

equals zero. That is, it is realized the transition

dωp 6= 0 → (degenerate transformation) → dπωp = 0, dπ
∗ωp = 0

where the conditions dπωp = 0 and dπ
∗ωp = 0 are conditions of closuring

the exterior and dual forms.

The condition dπ
∗ωp = 0 is an equation of a certain pseudostructure π, on
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which the differential of evolutionary form vanishes: dπωp = 0. That is, the

closed (inexact) exterior form ωp
π is obtained on pseudostructure.

On the pseudostructure from evolutionary relation dψ = ωp it is obtained

the identical relation dπψ = ωp
π, since the closed exterior form ωp

π is a differen-

tial of some differential form. (The relation obtained will be identical one as

the left- and right-hand sides of the relation contain differentials).

The identity of the relation obtained from the evolutionary relation means

that on pseudostructures the original equations for material system (the equa-

tions of conservation laws) become consistent and integrable. This points to

the fact that pseudostructure is an integrable structure.

Pseudostructures constitute the integrable surfaces (such as characteristics,

singular points, potentials of simple and double layers, and others) on which

the quantities of material system desired (such as the temperature, pressure,

density) become functions of only independent variables and do not depend

on the commutator (and on the path of integrating). This are generalized

solutions. They may be found by means of integrating the equations of con-

servation laws for material systems.

Since generalized solutions are defined only on realized integrable struc-

tures (pseudostructures), they or their derivatives have discontinuities in the

direction normal to integrable structure [9].

One can see that the integrable surfaces are obtained from the condition

of degenerate transformation of the evolutionary relation. The conditions of

degenerate transformation are a vanishing of such functional expressions as

determinants, Jacobians, Poisson’s brackets, residues, and others. They are

connected with the symmetries, which can be due to the degrees of freedom

of the material systems under consideration (for example, the translational,

rotational and oscillatory degrees of freedom of material system).

The degenerate transformation is realized as a transition from the nonin-

ertial frame of reference to the locally inertial system, i.e. a transition from

nonintegrable manifold (for example, tangent or accompanying) to integrable

structures and surfaces.

Thus, one can see that the solutions to the set of equations, as well as

in the case of a single equation, may be of two types: the solutions that

are not functions, that is, they depend not only on independent variables,

and generalized solutions, which are functions, and are obtained onto under
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realization of additional conditions (which determine integrable structures or

surfaces). Since generalized solutions are obtained only under realization of

additional conditions, they are discrete solutions. (Solutions to the Euler and

Navier-Stokes equations are examples of such solutions [10]).

Under the realization of additional conditions, which determine integrable

structures, it is carried out a transition from the solutions, which are not

functions, to generalized solutions (functions). This transition proceeds as a

transition from tangent (accompanying) manifold (on which are defined the

solutions that are not functions) to integrable structures, on which generalized

solutions are defined.

3.1 Mathematical and physical meaning of discrete re-

alization of the solutions to equations of mathemat-

ical physics

The discrete realization of generalized solution to equations of mathemati-

cal physics relates to a realization of dual form, which describes a pseudostruc-

ture, and this points to realization of integrable structure. It appears that

integrable structures and integrable manifolds are generated by the equations

of mathematical physics that describes physical processes in material systems.

The realization of dual form and associated closed exterior form is a re-

alization of differential-geometrical structure, namely, a pseudostructure with

conservative quantity. (Below it will be shown that such structures, which can

be called as ”physical structures”, have a physical meaning. Structures that

form physical fields and associated pseudometric and metric manifolds are just

such structures [11].)

On the other hand, a realization of differential-geometrical structure means

that the integrable structure (pseudostructure) is realized and it is obtained

a function that corresponds to generalized solution. Such a function or its

derivative have a discontinuity in the direction normal to integrable struc-

ture. Realization of integrable structure with such a discontinuous function

and transition from nonintegrable tangent manifold to integrable structure

describes emergence of a certain formation. Waves, vortices, fluctuations, tur-

bulent pulsations and so on are examples of such formations [6,7,12].
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Thus we obtain that the discrete realization of generalized solution points to

an occurrence of a differential-geometrical structure (physical structure), and,

on other hand, an emergence of a certain (observable) formation in material

system that is described by generalized solution. It will be shown below that

such a duality has a physical meaning, namely, it discloses a relation of physical

fields and material systems and enables one to understand peculiarities of field-

theory equations.

4 Connection between the field-theory equa-

tions and the equations for material systems

A connection between the field-theory equations and the equations for ma-

terial systems bases on the properties of conservation laws.

4.1 Conservation laws

The field-theory equations, as well as the equations for material systems,

are connected with the properties of conservation laws. However, conservation

laws for physical fields, which are described by field-theory equations, and con-

servation laws for material systems have a different meaning. The conservation

laws for material systems are conservation laws for energy, linear momentum,

angular momentum, and mass that establish the balance between the change of

physical quantities and the external action. They are described by differential

(or integral) equations.

In field theory ”conservation laws” are those that claim an existence of

conservative physical quantities or objects. Such conservation laws are de-

scribed by closed exterior skew-symmetric forms. (The Noether theorem is an

example.) These are conservation laws for physical fields.

Since the conservation laws for physical fields and the conservation laws for

material systems have a different meaning, the equations for material systems

and the field-theory equations are equations of different type.

It appears that the field-theory equations, unlike the equations for material

systems, have a form of relations. This is due to the fact that the solutions to
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field theory equations must be differentials (rather then derivatives) since the

closed exterior forms, i.e. differentials, are assigned to conservation laws for

physical fields.

And jet, as it will be shown, there exist a connection between the field-

theory equations and those for material systems [13]. The connection between

the field-theory equations and equations for material systems points to the

fact that there exists a correspondence between field-theory equations and

evolutionary relation obtained from the equations for material systems.

4.2 Correspondence between field-theory equations and

evolutionary relation

The nonidentical evolutionary relation is a relation for functionals such

as wave-function, action functional, entropy, and others [5]. The field-theory

equations are those for such functionals.

Another correspondence between the field-theory equations and the non-

identical evolutionary relation relates to the fact that all field-theory equations

have the form of relations. They can be relations in differential forms or in

the forms of their tensor or differential (i.e. expressed in terms of derivatives)

analogs.

The Einstein equation is a relation in differential forms.

The Dirac equation relates Dirac’s bra- and cket- vectors, which made up

a differential form of zero degree.

The Maxwell equations have the form of tensor relations.

The Schrődinger’s equations have the form of relations expressed in terms

of derivatives and their analogs.

The fact that from the field-theory equations, as well as from the noniden-

tical evolutionary relation, the identical relation, which contains the closed

exterior form, is obtained also points to a correspondence between the non-

identical evolutionary relations and the field-theory equations.

The closed exterior forms or their tensor or differential analogs, which are

obtained from identical relations, are solutions to the field-theory equations.

As one can see, from the field-theory equations it follows such identical

relation as
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(1) the Poincare invariant, which connects closed exterior forms of first

degree;

(2) the relations dθ2 = 0, d∗θ2 = 0 are those for closed exterior forms of

second degree obtained from Maxwell equations;

(3) the Bianchi identity for gravitational field.

From the Einstein equation it is obtained the identical relation in the case

when the covariant derivative of the energy-momentum tensor vanishes.

Thus one can see that there exists a correspondence between the field-

theory equations and evolutionary relation obtained from the equations for

material systems.

Such a correlation between the field-theory equations and nonidentical re-

lation points to the fact that the equations of field theory are connected with

the equations for material systems. It has been shown in paper [2, 13, 14] that

such a connection enables one to understand basic principles of field theory.

The connection between field-theory equations, which are based on conser-

vation laws for physical fields, and the equations for material systems, that

are conservation law equations for material systems, points to the fact that

there exists a connection between conservation laws for material systems and

conservation laws for physical fields.

One can see that physical structures (on which the conservation laws for

physical fields are fulfilled) are those from which physical fields and relevant

manifolds are formatted.

5 Conclusion

The equations of mathematical physics, which describe physical processes,

are defined on tangent nonintegrable manifold. In present paper it has been

shown that such equations have the solutions of two types: the solution that

are not functions (depend on the integration path) and generalized solutions,

which are functions but are realized discretely. The realization of generalized

solution relates to the realization of integral structure (pseudostructure). The

integrable manifolds with generalized solutions (such as characteristic mani-

folds, potential surfaces, and others) are formatted by these integrable struc-

tures. It occurs that integrable manifolds are generated by the equations of
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mathematical physics that describe physical processes proceeded in material

systems.

The discrete realization of generalized solutions has an unique physical

meaning.

The process of realization of generalized solution reveals the processes that

proceed in material systems, namely, a generation of physical structures and

an emergence of any observable formations in material system.

It appears that physical structures, of which physical fields and pseudomet-

ric or metric manifolds are formatted, are just such physical structures. This

demonstrates that physical fields are generated by material systems and points

out to a connection between the equations of field theory and the equations

for material systems.

And the formations emerged in material systems, such as fluctuations,

waves, turbulent pulsations, are formations that are described by discrete gen-

eralized solutions.

The properties of generalized solutions and the process of their realization

discloses a role of conservation laws in evolutionary processes.

It should be emphasized that the results presented have been obtained

due to the apparatus of skew-symmetric differential forms. In this case in

addition to closed exterior forms, which possess the invariant properties, it

has been used the skew-symmetric differential forms. These skew-symmetric

forms are obtained from differential equations and are evolutionary ones. Such

evolutionary skew-symmetric forms possess a specific feature, namely, they

can generate closed exterior forms. This enables one to describe the discrete

transitions, the processes of conjugating various operators and the mechanisms

of evolutionary processes.
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