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Sound Waves in Pipes
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Abstract

The purpose of this paper is to construct the asymptotic for natural
frequencies of the sound problem using the method of Wentzel-Kramers-
Brillouin (WKB) and find the secular equation for eigenvalues of a sound
wave in a pipe closed on the left and open on the right.
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1 Introduction

The sound wave is one of the elements most used. Therefore, the vibration

of sound waves has been studied extensively and continues to receive attention
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in the current literature. The wave equation for a vibrating sound wave can

be found in [4, 6]. General linearized wave equations are obtained by Pierce

and Goldstein [1, 5]. For the equation of the sound with a uniform small pa-

rameter, you can use the method (WKB) Wentzel - Kramers - Brillouin, also

known in the literature as the approximation Liouville - Green. In (Akulenko,

Nesterov [2], 2005) WKB method was used for finding asymptotic high fre-

quency, this method is to obtain asymptotic series for solutions powers with a

small parameter.

Although the WKB method is developed for differential equations of n-th

order (Fedoryuk [3], 1993), this technique can be applied to sound waves in a

pipe.

In the next section one takes the equation, for uniform sound waves in a

pipe.

2 Mathematical formulation

In this section we find the approximate solution as a linear combination of

two linearly independent solutions. After imposing the boundary conditions

for the case of sound waves in a pipe closed on the left and open on the

right, which is reduced to a system of two equations with two unknowns which

has nontrivial solutions if its determinant is zero. And finally we obtain the

asymptotic determinant equation when ε → 0. Then we have eigenvalues.

2.1 Sound equation

The sound equation for longitudinal vibrations in the uniform sound ap-

proximation have been described by (Feynman [4], 1969)

ρ
∂2s

∂t2
= B

∂2s

∂x2
, (1)

where B is the bulk modulus of sound, ρ is the density, and s is the longitudinal

displacement. It is assumed that 0 ≤ x ≤ l where l is the length of the pipe.

Looking for the solution of the equation of sound (1) in the form

y(x, t) = eiωtv(x), (2)
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where w is the frequency. Substituting (2) in the equation (1) we obtain second

order ordinary differential equation for v(x)

−ω2ρv(x) = Bv′′(x). (3)

Taking the boundary conditions for sound waves on both sides. Equation (3)

is transformed into the following problem:

−B

ρ
v′′(x) = ω2v(x) (4)

v(0) = v′(l) = 0.

The discrete spectrum of the problem (4) constitutes a sequence wn of real

numbers tending to infinity when n →∞. In view of the above can be consider

w2 = 1
ε2

, where ε → 0 (Akulenko, Nesterov [2], 2005). Therefore the problem

of sound waves, (4) becomes

−B

ρ
v′′(x) =

1

ε2
v(x), (5)

v(0) = v′(l) = 0. (6)

In the next section we calculate the secular equation of the problem (5)–(6).

3 Main result

This section states and solves the problem of sound waves at high frequency,

which is applied the WKB method. The mathematical formulation of the

problem is the searching for nontrivial solutions of the problem (5)–(6).

The main result is as follows

Theorem 3.1. The eigenvalues of the problem (5)–(6) are given by w2
n = 1

ε2
n
,

with

ωn =
(n− 1

2
)π√

ρ
B

l

(
1 + O

(
1

n

))
, n = 1, . . . , n →∞,

where εn is the solution of the secular equation (21).
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Proof. Given that ω2 = 1
ε2 then equation (5) can be transformed into

v(x) = −ε2B

ρ
v′′(x). (7)

Following the traditional WKB method, the analytical solution approximates

equation (5) can be replaced by a power series given by the following

v(x) = A(x, ε)e
iφ(x)

ε , ε → 0, (8)

where

A(x, ε) = A0(x) + εA1(x) + ε2A2(x) + . . . , ε → 0, (9)

with φ(x) and Aj(x), j = 0, 1, 2, . . . are smooth functions and unknown. Re-

placing (8) and each of the derivatives of v(x) in (7), we have the following

expression

A(x, ε) =
B

ρ
[−2εAx(x, ε) + φ2

x(x)A(x, ε)− 2iεφx(x)Ax(x, ε) (10)

− iεφxx(x)A(x, ε)] + O(ε2), ε → 0.

Replacing (9) on both sides of (10) we obtain

A0(x) + εA1(x) + ε2A2(x) + · · · = B

ρ

[
φ2

x(x)(A0(x) + εA1(x)

+ ε2A2(x) + · · · )− 2iεφx(x)(A0x(x) + εA1x(x) + ε2A2x(x) + · · · )
− iεφxx(x)

(
A0(x) + εA1(x) + ε2A2(x) + · · · )] + O(ε2)

=
B

ρ
φ2

x(x)A0(x) + ε

[
B

ρ
φ2

x(x)A1(x)

− 2iB

ρ
φx(x)A0x(x)− iB

ρ
φxx(x)A0(x)

]

+ O(ε2), ε → 0. (11)

Equating the coefficients of the asymptotic series in ε and taking corresponding

to ε0 in (11) and using that A0 6= 0 as seen in the equation (15), it can be

obtained

ε0 :
B

ρ
φ2

x(x) = 1. (12)
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From equation (12) and choosing the corresponding equality to ε1 in (11), we

obtain

ε1 :2φx(x)A0x(x) + φxx(x)A0(x) = 0. (13)

Equating the asymptotic series are obtained more equations but we will

consider only the first two equations, other equations are of order O(ε2). Since

equation (12) has two real roots with opposite signs, we obtain

φk(x) = (−1)k

√
ρ

B
x, k = 1, 2. (14)

From the equation (13) and separating the functions A0(x), φx(x) and inte-

grating on both sides, it follows that

A0(x) = C(φx(x))−
1
2 , (15)

where C is a non-zero arbitrary constant. Therefore, differentiating with re-

spect to x in the equation (14) and substituting (15), function A0(x) can be

expressed as follows

A0(x) = C. (16)

Therefore, replacing (14) and (16) in (8) which is the solution v(x) of (5), we

have

v1(x) = d1 sin

(√
ρ
B

x

ε

)
+ O(ε), ε → 0, (17)

v2(x) = d2 cos

(√
ρ
B

x

ε

)
+ O(ε), ε → 0, (18)

and writing the solution (5) as the first term of the linear combination of

v1(x), v2(x)

v(x) = c1 sin

(√
ρ
B

x

ε

)
+ c2 cos

(√
ρ
B

x

ε

)
, (19)

ε → 0, and c1, c2 are constants. It is noted that sin
(

x
ε

)
, cos

(
x
ε

)
are linearly

independent.
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The boundary conditions for a sound wave in a pipe closed on the left and

open on the right are given by

v(0) = v′(l) = 0. (20)

From the solution (19) and boundary conditions (20), yields a homogeneous

system of two equations for two constants ci, i = 1, 2. This system has non-

trivial solutions when
∣∣∣∣∣

0 1

cos (

√
ρ
B

l

ε
) sin(

√
ρ
B

l

ε
)

∣∣∣∣∣ = 0. (21)

The equation (21) is the secular equation for natural frequency ωn = ε−1
n .

Therefore

cos

(√
ρ
B

l

ε

)
= 0, ε → 0, ε = εn =

√
ρ
B

l

(n− 1
2
)π

(22)

then

ωn =
(n− 1

2
)π√

ρ
B

l

(
1 + O

(
1

n

))
, n →∞, n = 1, . . . .

From (22) and initial conditions, the eigenfunction is

vn(x) = c3sen

(√
ρ
B

x

εn

)
,

where c3 is an arbitrary constant.
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