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Parametric euclidean algorithm
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Abstract

In this paper, we deal with the computation of generic greatest com-
mon divisors (gcd) of a finite set of parametric univariate polynomials.
We will describe a parametric version of the well-known euclidean al-
gorithm for computing gcds of univariate polynomials. We introduce
the notion of parametric greatest common divisor in order to uniformly
describe the gcd of univariate polynomials depending on parameters.
The main algorithm of the paper decomposes the parameters space into
a finite number of constructible sets such that a gcd of the parametric
univariate polynomials is given uniformly in each constructible set.
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1 Introduction

Consider k polynomials f1, . . . , fk ∈ Q[u1, . . . , ut][X] with polynomial co-

efficients in the variables u1, . . . , ut over Q. When we look at u1, . . . , ut as

parameters, we consider f1, . . . , fk as parametric univariate polynomials. Pa-

rameters take values from the space P = Qt
which we call the parameters

space, where Q is an algebraic closure of Q.

We begin the paper by introducing the problem with some notations and we

show the result of the main algorithm. For a polynomial g ∈ Q(u1, . . . , ut)[X]

and a value a = (a1, . . . , at) ∈ P , we denote by G (in capital letter if there

is no confusion on a) the polynomial of Q[X] obtained by specialization of

u by a in the coefficients of g if their denominators do not vanish at a, i.e.,

G = g(a1, . . . , at, X) ∈ Q[X].

For k = 2, if we look at f1 and f2 as univariate polynomials with coefficients

in the fraction field Q(u1, . . . , ut) of the ring Q[u1, . . . , ut] and if we compute

the sequence

{r0, r1, . . . , rs, rs+1 = 0} ⊂ Q(u1, . . . , ut)[X]

of remainders by successive euclidean divisions of the polynomials r0 = f1 and

r1 = f2 in Q(u1, . . . , ut)[X], i.e., for any 2 ≤ i ≤ s + 1, ri is the remainder of

the euclidean division of ri−2 by ri−1 in Q(u1, . . . , ut)[X]. This sequence does

not give the gcd of F1 and F2 in Q[X] for all specializations a ∈ P of the

parameters for both following reasons:

Problem 1: Zeros of the denominators of the coefficients of r0, r1, . . . , rs are not cov-

ered. This means that if a is a such zero, the sequence does not calculate

a gcd of F1 and F2.

Problem 2: Even for a value a ∈ P which does not vanish any denominator of the

coefficients of r2, . . . , rs, the polynomial Rs ∈ Q[X] is not necessarily a

gcd of F1 and F2. However rs is a gcd of f1 and f2 in Q(u1, . . . , ut)[X].

Example 1.1. Consider the two parametric univariate polynomials

r0 = f1 = uX2 + X − 1 and r1 = f2 = vX + 1,

where u and v are parameters. By the successive euclidean division of r0 by r1

in Q(u, v)[X], we get r2 = − 1
v
(1− u

v
)−1 and r3 = 0. Then it is obvious that for
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arbitrary values of u and v = 0, r2 is not defined. Moreover, for (u, v) = (2, 1),

then R2 = 0 and F2 = X + 1 is a gcd of F1 = 2X2 + X − 1 and F2, i.e., F2

divides F1.

The euclidean algorithm is known to be the oldest algorithm for computing

the greatest common divisor (gcd) of two univariate polynomials [9, 6, 3].

There are different versions of this algorithm for computing gcd of several

polynomials in one or several variables. The extended euclidean algorithm

expresses the gcd as a linear combination of the input polynomials. Different

algorithms deal with the computation of gcds depending on different models for

representing polynomials: sparse representation (only non-zero monomials are

represented with their coefficients) [8, 10], dense representation (all monomials

up to a certain degree are represented with their coefficients, including those

which are zeroes) [3, 4, 7] and straight-line programs (polynomials are given

by their evaluations) [5]. In [1], there is an algorithm for computing gcds of

two univariate polynomials with one parameter.

In order to compute the gcd of the polynomials F1, . . . , Fk ∈ Q[X] uni-

formly in the values a of the parameters in P , we introduce the notion of

parametric greatest common divisors:

Definition 1.2. A parametric greatest common divisor (pgcd) of the set

{f1, . . . , fk} is a couple (W, g) where W is a constructible subset of P and

g ∈ Q[u1, . . . , ut][X] is a parametric univariate polynomial such that for any

a ∈ P, the polynomial G is a gcd of the polynomials F1, . . . , Fk in Q[X].

The main algorithm of the paper is given in the following theorem.

Theorem 1.3. For a set {f1, . . . , fk} ⊂ Q[u1, . . . , ut][X] of parametric uni-

variate polynomials, the algorithm computes a finite number of pgcd (W1, g1),

. . . , (WN , gN) such that the sets W1, . . . , WN form a partition of the parameters

space P.

2 Parametric gcds

To avoid the problem 1, we compute a sequence of pseudo-remainders of

successive euclidean divisions:
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Definition 2.1. Let f1, f2 ∈ Q[u1, . . . , ut][X] be two parametric univariate

polynomials. Let m1 = degX(f1) and m2 = degX(f2).

• The pseudo-division of f1 by f2 is defined to be the euclidean division of

lc(f2)
m1−m2+1f1 by f2 in Q(u1, . . . , ut)[X], where

0 6= lc(f2) ∈ Q[u1, . . . , ut]

is the leading coefficient of f2. Then there exist unique polynomials q, r ∈
Q[u1, . . . , ut][X] such that

lc(f2)
m1−m2+1f1 = qf2 + r and degX(r) < degX(f2),

q is called the pseudo-quotient and r is the pseudo-remainder (denoted

by Prem(f1, f2)) of the pseudo-division of f1 by f2.

• The sequence of pseudo-remainders of successive pseudo-divisions appli-

cated to r̃0 = f1 and r̃1 = f2 is the sequence

{r̃0, r̃1, . . . , r̃s, r̃s+1 = 0}

where for any 2 ≤ i ≤ s + 1, r̃i is the pseudo-remainder of the pseudo-

division of r̃i−2 by r̃i−1.

The following lemma proves that the sequence of pseudo-remainders also

computes gcds.

Proposition 2.2. Let f1, f2 ∈ Q[u1, . . . , ut][X] be two parametric univariate

polynomials. Let {r̃0, r̃1, . . . , r̃s, r̃s+1 = 0} be the sequence of pseudo-remainders

of successive pseudo-divisions of r̃0 = f1 by r̃1 = f2. Then r̃s is a gcd of f1 and

f2 in Q[u1, . . . , ut][X] and for any a ∈ P which does not vanish any leading

coefficient of the polynomials in the sequence, the polynomial R̃s ∈ Q[X] is a

gcd of F1 and F2.

Proof. It is deduced from Theorem 6.62 of [9]. ¤

Example 2.3. Consider the two parametric univariate polynomials

r̃0 = f1 = X3 + uX2 + vX + 1 and r̃1 = f2 = X2 − uX − 1.



Ali Ayad, Ali Fares and Youssef Ayyad 17

By the successive pseudo-division of r̃0 by r̃1, we get





r̃2 = (2u2 + v + 1)X + (2u + 1),

r̃3 = 2u3 − 2u2v + 2u2 − v2 + uv + 5u− 2v,

r̃4 = 0.

By proposition 2.2, r̃3 is a gcd of f1 and f2 in Q[u, v][X]. But for (u, v) = (0, 0),

then R̃3 = 0 and R̃2 = X + 1 is a gcd of F1 = X3 + 1 and F2 = X2 − 1.

The problem 2 can be avoided by truncations of polynomials.

Definition 2.4. Let g = gmXm + · · ·+ g0 ∈ Q[u1, . . . , ut][X] be a non-zero

parametric univariate polynomial of degree m w.r.t. X.

• For any 0 ≤ i ≤ m, the truncation of g at i, denoted by Trui(g), is the

polynomial

Trui(g) = giX
i + · · ·+ g0 ∈ Q[u1, . . . , ut][X].

• The set of truncations of g, denoted by Tru (g), is the finite subset of

Q[u1, . . . , ut][X] defined recursively by:

Tru (g) =

{
{g} if gm = lc(g) ∈ Q,

{g} ∪ Tru (Trum−1(g)) else.

If gi /∈ Q for all 0 ≤ i ≤ m, then we add 0 to Tru (g).

Example 2.5. Consider the parametric univariate polynomials:

g = uX4 + uvX3 + 3X2 − u4X + 1 and h = u3X2 + uv2X + v2 + 1.

Then 



Tru(g) = {g, Tru3(g), T ru2(g)}, where

Tru3(g) = uvX3 + 3X2 − u4X + 1,

T ru2(g) = 3X2 − u4X + 1,

and 



Tru(h) = {h, Tru1(h), T ru0(h), 0}, where

Tru1(h) = uv2X + v2 + 1,

T ru0(h) = v2 + 1.
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Definition 2.6. [2]

Let f1, f2 ∈ Q[u1, . . . , ut][X] be two parametric univariate polynomials.

• For each nonzero polynomial r̃0 ∈ Tru (f1), we associate a tree of pseudo-

remainder sequences of r̃0 by f2, denoted by TPrems(r̃0, f2). The root

of this tree contains r̃0. The sons of r̃0 contain the elements of Tru(f2).

Each node N contains a polynomial Pol(N) ∈ Q[u1, . . . , ut][X]. A node

N is a leaf of the tree if Pol(N) = 0. If N is not a leaf, the sons of N con-

tain the elements of the set of truncations of Prem(Pol(p(N)), Pol(N))

where p(N) is the parent of N .

• The set of all the trees associated to the nonzero elements of Tru (f1) is

called the forest of pseudo-remainder sequences of f1 by f2, it is denoted

by T (f1, f2).

Remark 2.7. Each tree TPrems(r̃0, f2) in the definition 2.6 terminates

since the transition from a level to another one in the tree is performed by a

pseudo-division then the degrees of the polynomials w.r.t. X decrease. Thus

we have a finite number of leaves in the tree.

Example 2.8. Return to example 2.3 and take the same parametric uni-

variate polynomials f1 and f2. We have Tru(f1) = {f1} and Tru(f2) = {f2},
then the forest T (f1, f2) contains only one tree which is TPrems(r̃0, f2) with

root r̃0 = f1, this root has r̃1 = f2 as its unique son. But Prem(r̃0, r̃1) =

(2u2 + v + 1)X + (2u + 1), then the sons of r̃1 are the elements of

Tru
(
Prem(r̃0, r̃1)

)
=

{
(2u2 + v + 1)X + (2u + 1), (2u + 1), 0

}
.

• If r̃2 = (2u2 + v + 1)X + (2u + 1) is a son of r̃1 then

Prem(r̃1, r̃2) = 2u3 − 2u2v + 2u2 − v2 + uv + 5u− 2v.

Hence the sons of r̃2 are r̃3 = 2u3− 2u2v +2u2− v2 +uv +5u− 2v and 0.

• If r̃2 = (2u + 1) is a son of r̃1 then Prem(r̃1, r̃2) = 0.

The forest T (f1, f2) is described in the following graph:
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Definition 2.9. Let f1, f2 ∈ Q[u1, . . . , ut][X] be two parametric univariate

polynomials. Let r̃0 ∈ Tru (f1) \ {0} and TPrems(r̃0, f2) the tree with root

contains r̃0. For each leaf L of TPrems(r̃0, f2), we consider the unique path

PL = {r̃0, r̃1, . . . , r̃s, r̃s+1 = Pol(L) = 0}

from the root r̃0 to L where r̃1 ∈ Tru (f2) is a son of r̃0 and we associate to L

a constructible subset WL of P defined by the following quantifier-free formula:

∧
2≤i≤s+1

[
degX(r̃i) = degX

(
Prem(r̃i−2, r̃i−1)

)]
.

Corollary 2.10. Let f1, f2 ∈ Q[u1, . . . , ut][X] be two parametric univariate

polynomials. The constructible sets WL where L are the leaves of the forest

T (f1, f2) form a partition of P. Moreover, for every leaf L of T (f1, f2), the

path

PL = {r̃0, r̃1, . . . , r̃s, r̃s+1 = Pol(L) = 0}

is a parametric pseudo-remainder sequence of f1 and f2, i.e., for any a ∈ WL,

the set {R̃0, R̃1, . . . , R̃s, R̃s+1 = Pol(L) = 0} ⊂ Q[X] is the sequence of pseudo-

remainders of F1 and F2. In particular, 0 6= R̃s ∈ Q[X] is a gcd of F1 and F2,

i.e., (WL, r̃s) is a pgcd of f1 and f2.

Proof. It is deduced from proposition 2.2. ¤
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Example 2.11. Return to Example 2.8. The forest T (f1, f2) contains 4

leaves, then we get 4 pgcds (W1, g1), (W2, g2), (W3, g3), (W4, g4) of f1 and f2 as

follows:

P = W1 ∪W2 ∪W3 ∪W4,

{
W1 = {2u2 + v + 1 6= 0, g1 6= 0},
g1 = 2u3 − 2u2v + 2u2 − v2 + uv + 5u− 2v,

{
W2 = {2u2 + v + 1 6= 0, g1 = 0},
g2 = (2u2 + v + 1)X + 2u + 1,

{
W3 = {2u2 + v + 1 = 0, 2u + 1 6= 0},
g3 = 2u + 1,

{
W4 = {2u2 + v + 1 = 0, 2u + 1 = 0},
g4 = f2.

Corollary 2.12. Let f1, . . . , fk ∈ Q[u1, . . . , ut][X] be k parametric univari-

ate polynomials where k ≥ 3. One can compute a finite number of pgcd (V , g)

of the set {f1, . . . , fk} such that the constructible sets V form a partition of P
and g ∈ Q[u1, . . . , ut][X].

Proof. The proof is done by induction on k:

• The case k = 2 is exactly the corollary 2.10.

• Suppose that at the (k−1)-th step of the induction, we have a partition of

P into a finite number of pgcd (V, h) of the set {f1, . . . , fk−1} where h ∈
Q[u1, . . . , ut][X]. For each pgcd (V, h), we compute the forest T (h, fk)

as in the corollary 2.10 and for each leaf L of this forest, we take the

following constructible set VL = V ∩WL where WL is the constructible

set associated to L in T (h, fk) (see Definition 2.9). The sets VL where

L are the leaves of T (h, fk) for all pgcd (V, h) of {f1, . . . , fk−1} form a

partition of P . Moreover, for each leaf L in T (h, fk), the couple (VL, g) is

a pgcd of the set {f1, . . . , fk} where g = Pol(p(L)) ∈ Q[u1, . . . , ut][X]. ¤
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