Subclasses of Analytic Functions with Respect to Symmetric and Conjugate Points

B. Srutha Keerthi ${ }^{1}$ and S. Chinthamani ${ }^{2}$

Abstract

In this paper, we introduce new subclasses of analytic functions with respect to other points. The coefficient estimates for these classes are obtained.

Mathematics Subject Classification: 30C45
Keywords: Analytic; univalent; starlike with respect to symmetric points; coefficient estimates

1 Introduction

Let U be the class of functions which are analytic and univalent in the open unit disc $D=\{z:|z|<1\}$ given by

$$
w(z)=z+\sum_{k=1}^{n} b_{k} z^{k}
$$

[^0]Article Info: Received: December 14, 2012. Revised: March 20, 2013
Published online : September 1, 2013
and satisfying the conditions

$$
w(0)=0,|w(z)|<1, \quad z \in D
$$

Let S denote the class of functions f which are analytic and univalent in D of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Also let S_{S}^{*} be the subclass of S consisting of functions given by (1) satisfying

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in D
$$

These functions are called starlike with respect to symmetric points and were introduced by Sakaguchi in 1959. Ashwah and Thomas in [2] introduced another class namely the class S_{C}^{*} consisting of functions starlike with respect to conjugate points.

Let S_{C}^{*} be the subclass of S consisting of functions given by (1) and satisfying the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}\right\}>0, \quad z \in D
$$

Motivated by S_{S}^{*}, many authors discussed the following class C_{S} of functions convex with respect to symmetric points and its subclasses.

Let C_{S} be the subclass of S consisting of functions given by (1) and satisfying the condition

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right\}>0, \quad z \in D
$$

In terms of subordination, Goel and Mehrok in 1982 introduced a subclass of S_{S}^{*}, denoted by $S_{S}^{*}(A, B)$.

Let $S_{S}^{*}(A, B)$ be the class of functions of the form (1) and satisfying the condition

$$
\frac{2 z f^{\prime}(z)}{f(z)-f(-z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

Also let $S_{C}^{*}(A, B)$ be the class of functions of the form (1) and satisfying the condition

$$
\frac{2 z f^{\prime}(z)}{(f(z)+\overline{f(\bar{z})})} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

Let $C_{S}(A, B)$ be the class of functions of the form (1) and satisfying the condition

$$
\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D .
$$

Also let $C_{C}(A, B)$ be the class of functions of the form (1) and satisfying the condition

$$
\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{\left(f(z)+\overline{f(\bar{z}))^{\prime}}\right.} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1, z \in D
$$

In this paper, we introduce the class $M_{S}(\rho, \mu, A, B)$ consisting of analytic functions f of the form (1) and satisfying

$$
\begin{gathered}
\frac{2\left[\rho \mu z^{3} f^{\prime \prime \prime}(z)+(2 \rho \mu+\rho-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right]}{\rho \mu z^{2}\left[f^{\prime \prime}(z)-f^{\prime \prime}(-z)\right]+(\rho-\mu) z\left[f^{\prime}(z)+f^{\prime}(-z)\right]+(1-\rho+\mu)[f(z)-f(-z)]} \prec \frac{1+A z}{1+B z} \\
-1 \leq B<A \leq 1,0 \leq \mu \leq \rho \leq 1, z \in D .
\end{gathered}
$$

We note that $M_{S}(0,0, A, B)=S_{S}^{*}(A, B)$ and $M_{S}(1,0, A, B)=C_{S}(A, B)$. Also introduce the class $M_{C}(\rho, \mu, A, B)$ consisting of analytic functions f of the form (1) and satisfying

$$
\begin{aligned}
& \frac{2\left[\rho \mu z^{3} f^{\prime \prime \prime}(z)+(2 \rho \mu+\rho-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right]}{\rho \mu z^{2}(f(z)+\overline{f(\bar{z})})^{\prime \prime}+(\rho-\mu) z(f(z)+\overline{f(\bar{z})})^{\prime}+(1-\rho+\mu)(f(z)+\overline{f(\bar{z})})} \\
& \prec \frac{1+A z}{1+B z}
\end{aligned}
$$

$$
-1 \leq B<A \leq 1,0 \leq \mu \leq \rho \leq 1, z \in D
$$

Note that $M_{C}(0,0, A, B)=S_{C}^{*}(A, B)$ and $M_{C}(1,0, A, B)=C_{C}(A, B)$.
By definition of subordination it follows that $f \in M_{S}(\rho, \mu, A, B)$ if and only if

$$
\begin{array}{r}
\frac{2\left[\rho \mu z^{3} f^{\prime \prime \prime}(z)+(2 \rho \mu+\rho-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right]}{\rho \mu z^{2}\left[f^{\prime \prime}(z)-f^{\prime \prime}(-z)\right]+(\rho-\mu) z\left[f^{\prime}(z)+f^{\prime}(-z)\right]+(1-\rho+\mu)[f(z)-f(-z)]} \\
=\frac{1+A w(z)}{1+B w(z)}=p(z), \tag{2}
\end{array}
$$

$w \in U$ and that $f \in M_{C}(\rho, \mu, A, B)$ if and only if

$$
\begin{align*}
& \frac{2\left[\rho \mu z^{3} f^{\prime \prime \prime}(z)+(2 \rho \mu+\rho-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)\right]}{\rho \mu z^{2}(f(z)+\overline{f(\bar{z})})^{\prime \prime}+(\rho-\mu) z\left(f(z)+\overline{f(\bar{z}))^{\prime}+(1-\rho+\mu)(f(z)+\overline{f(\bar{z})})}\right.} \\
& =\frac{1+A w(z)}{1+B w(z)}=p(z), \quad w \in U \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{4}
\end{equation*}
$$

We study the classes $M_{S}(\rho, \mu, A, B)$ and $M_{C}(\rho, \mu, A, B)$, the coefficient estimates for functions belonging to these classes are obtained. We also need the following lemma for proving our results.

Lemma 1.1. [3] If $p(z)$ is given by (4) then

$$
\begin{equation*}
\left|p_{n}\right| \leq A-B, \quad n=1,2,3, \ldots \tag{5}
\end{equation*}
$$

2 Main Results

In this section, we give the coefficient inequalities for the classes $M_{S}(\rho, \mu, A, B)$ and $M_{C}(\rho, \mu, A, B)$.

Theorem 2.1. Let $f \in M_{S}(\rho, \mu, A, B)$. Then for $n \geq 1,0 \leq \mu \leq \rho \leq 1$

$$
\begin{align*}
& \left|a_{2 n}\right| \leq \frac{(A-B)}{2^{n} n![(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \prod_{j=1}^{n-1}(A-B+2 j) \tag{6}\\
& \quad\left|a_{2 n+1}\right| \leq \frac{(A-B)}{2^{n} n![(2 n+1)(2 n) \rho \mu+(2 n)(\rho-\mu)+1]} \prod_{j=1}^{n-1}(A-B+2 j) \tag{7}
\end{align*}
$$

Proof. From (2) and (4), we have

$$
\begin{aligned}
& \left\{\rho \mu\left[6 a_{3} z^{3}+24 a_{4} z^{4}+\cdots+(2 n)(2 n-1)(2 n-2) a_{2 n} z^{2 n}+\cdots\right]\right. \\
& +(2 \rho \mu+\rho-\mu)\left[2 a_{2} z^{2}+6 a_{3} z^{3}+\cdots+(2 n-1)(2 n) a_{2 n} z^{2 n}+\cdots\right] \\
& \left.+\left[z+2 a_{2} z^{2}+3 a_{3} z^{3}+\cdots+2 n a_{2 n} z^{2 n}+\cdots\right]\right\} \\
& =\left\{\rho \mu \left[6 a_{3} z^{3}+20 a_{5} z^{5}+\cdots+(2 n-1)(2 n-2) a_{2 n-1} z^{2 n-1}\right.\right. \\
& \left.+(2 n+1)(2 n) a_{2 n+1} z^{2 n+1}+\cdots\right] \\
& +(\rho-\mu)\left[z+3 a_{3} z^{3}+\cdots+(2 n-1) a_{2 n-1} z^{2 n-1}+(2 n+1) a_{2 n+1} z^{2 n+1}+\cdots\right] \\
& \left.+(1-\rho+\mu)\left[z+a_{3} z^{3}+\cdots+a_{2 n-1} z^{2 n-1}+a_{2 n+1} z^{2 n+1}+\cdots\right]\right\} \\
& \left\{1+p_{1} z+p_{2} z^{2}+\cdots+p_{2 n-1} z^{2 n-1}+p_{2 n} z^{2 n}+\cdots\right\}
\end{aligned}
$$

Equating the coefficients of like powers of z, we have

$$
\begin{align*}
& 2 a_{2}[2 \rho \mu+(\rho-\mu)+1]=p_{1}, \quad 2 a_{3}[6 \rho \mu+2(\rho-\mu)+1]=p_{2} \tag{8}\\
& \left.\begin{array}{l}
4 a_{4}[12 \rho \mu+3(\rho-\mu)+1]=p_{3}+a_{3} p_{1}[6 \rho \mu+2(\rho-\mu)+1] \\
4 a_{5}[20 \rho \mu+4(\rho-\mu)+1]=p_{4}+a_{3} p_{2}[6 \rho \mu+2(\rho-\mu)+1]
\end{array}\right\} \tag{9}\\
& \begin{array}{l}
2 n a_{2 n}[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1] \\
=p_{2 n-1}+p_{2 n-3} a_{3}[6 \rho \mu+2(\rho-\mu)+1]+\cdots \\
\quad+p_{1} a_{2 n-1}[(2 n-1)(2 n-2) \rho \mu+(2 n-2)(\rho-\mu)+1]
\end{array} \\
& \begin{array}{l}
(2 n) a_{2 n+1}[(2 n+1)(2 n) \rho \mu+2 n(\rho-\mu)+1] \\
=p_{2 n}+p_{2 n-2} a_{3}[6 \rho \mu+2(\rho-\mu)+1]+\cdots \\
\quad+p_{2} a_{2 n-1}[(2 n-1)(2 n-2) \rho \mu+(2 n-2)(\rho-\mu)+1]
\end{array}
\end{align*}
$$

Using Lemma 1.1 and (8), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{(A-B)}{2[2 \rho \mu+(\rho-\mu)+1]}, \quad\left|a_{3}\right| \leq \frac{(A-B)}{2[6 \rho \mu+2(\rho-\mu)+1]} \tag{12}
\end{equation*}
$$

Again by applying (11) and followed by Lemma 1.1, we get from (9)

$$
\left|a_{4}\right| \leq \frac{(A-B)(A-B+2)}{(2)(4)[12 \rho \mu+3(\rho-\mu)+1]}, \quad\left|a_{5}\right| \leq \frac{(A-B)(A-B+2)}{(2)(4)[20 \rho \mu+4(\rho-\mu)+1]}
$$

It follows that (6) and (7) hold for $n=1,2$. We prove (6) using induction.
Equation (10) in conjunction with Lemma 1.1 yield

$$
\begin{align*}
\left|a_{2 n}\right| \leq & \frac{(A-B)}{2 n[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \\
& {\left[1+\sum_{k=1}^{n-1}[(2 k+1)(2 k) \rho \mu+2 k(\rho-\mu)+1]\left|a_{2 k+1}\right|\right] } \tag{13}
\end{align*}
$$

We assume that (6) holds for $k=3,4, \ldots,(n-1)$. Then from (13), we obtain

$$
\begin{array}{r}
\left|a_{2 n}\right| \leq \frac{(A-B)}{2 n[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \\
\cdot\left[1+\sum_{k=1}^{n-1} \frac{(A-B)}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right] \tag{14}
\end{array}
$$

In order to complete the proof, it is sufficient to show that

$$
\begin{align*}
& \frac{(A-B)}{2 m[(2 m-1)(2 m) \rho \mu+(2 m-1)(\rho-\mu)+1]} \\
& \quad \cdot\left[1+\sum_{k=1}^{m-1} \frac{(A-B)}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right] \\
& =\frac{(A-B)}{2^{m} m![(2 m-1)(2 m) \rho \mu+(2 m-1)(\rho-\mu)+1]} \prod_{j=1}^{m-1}(A-B+2 j), . \tag{15}
\end{align*}
$$

$m=3,4, \ldots, n$.
(15) is valid for $m=3$.

Let us suppose that (15) is true for all $m, 3<m \leq(n-1)$. Then from (14)

$$
\begin{aligned}
& \frac{(A-B)}{2 n[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \cdot \\
& \cdot\left[1+\sum_{k=1}^{n-1} \frac{(A-B)}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right] \\
&= \frac{(n-1)}{n} \cdot \frac{(A-B)}{2(n-1)[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \cdot \\
& \cdot\left[1+\sum_{k=1}^{n-2} \frac{(A-B)}{2^{k} k!} \prod_{j=1}^{k-1}(A-B+2 j)\right] \\
&+\frac{(A-B)}{2 n[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \frac{(A-B)}{2^{n-1}(n-1)!} \\
& \cdot \prod_{j=1}^{n-2}(A-B+2 j) \\
&= \frac{(n-1)}{n} \cdot \frac{(A-B)}{2^{n-1}(n-1)![(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \\
& \cdot \prod_{j=1}^{n-2}(A-B+2 j) \\
&+\frac{(A-B)}{2 n[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \frac{(A-B)}{2^{n-1}(n-1)!} \\
& \cdot \prod_{j=1}^{n-2}(A-B+2 j)
\end{aligned}
$$

$$
\begin{aligned}
&= \frac{(A-B)}{2^{n-1}(n-1)![(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \\
& \cdot \prod_{j=1}^{n-2}(A-B+2 j)(A-B+2(n-1)) \\
&=\frac{(A-B)}{2^{n} n![(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \prod_{j=1}^{n-1}(A-B+2 j)
\end{aligned}
$$

Thus (15) holds for $m=n$ and hence (6) follows.
Similarly we can prove (7).

Theorem 2.2. Let $f \in M_{C}(\rho, \mu, A, B)$. Then for $n \geq 1,0 \leq \mu \leq \rho \leq 1$

$$
\begin{gather*}
\left|a_{2 n}\right| \leq \frac{(A-B)}{(2 n-1)![(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \prod_{j=1}^{2 n-2}(A-B+j) \tag{16}\\
\left|a_{2 n+1}\right| \leq \frac{(A-B)}{(2 n)![(2 n+1)(2 n) \rho \mu+(2 n)(\rho-\mu)+1]} \prod_{j=1}^{2 n-1}(A-B+j) \tag{17}
\end{gather*}
$$

Proof. From (3) and (4), we have

$$
\begin{aligned}
& \left\{\rho \mu\left[6 a_{3} z^{3}+24 a_{4} z^{4}+\cdots+(2 n)(2 n-1)(2 n-2) a_{2 n} z^{2 n}+\cdots\right]\right. \\
& +(2 \rho \mu+\rho-\mu)\left[2 a_{2} z^{2}+6 a_{3} z^{3}+\cdots+(2 n-1)(2 n) a_{2 n} z^{2 n}+\cdots\right] \\
& \left.+\left[z+2 a_{2} z^{2}+3 a_{3} z^{3}+\cdots+2 n a_{2 n} z^{2 n}+\cdots\right]\right\} \\
& =\left\{\rho \mu\left[2 a_{2} z^{2}+6 a_{3} z^{3}+\cdots+(2 n-1)(2 n) a_{2 n} z^{2 n}+\cdots\right]\right. \\
& +(\rho-\mu)\left[z+2 a_{2} z^{2}+\cdots+2 n a_{2 n} z^{2 n}+\cdots\right] \\
& \left.+(1-\rho+\mu)\left[z+a_{2} z^{2}+\cdots+a_{2 n} z^{2 n}+\cdots\right]\right\} \\
& \left\{1+p_{1} z+p_{2} z^{2}+\cdots+p_{2 n} z^{2 n}+\cdots\right\}
\end{aligned}
$$

Equating the coefficients of like powers of z, we have

$$
\begin{equation*}
a_{2}(2 \rho \mu+(\rho-\mu)+1)=p_{1}, \quad 2 a_{3}(6 \rho \mu+2(\rho-\mu)+1)=p_{2}+a_{2} p_{1}(2 \rho \mu+(\rho-\mu)+1) \tag{18}
\end{equation*}
$$

$3 a_{4}(12 \rho \mu+3(\rho-\mu)+1)=p_{2}+a_{2} p_{2}(2 \rho \mu+(\rho-\mu)+1)+a_{3} p_{1}(6 \rho \mu+2(\rho-\mu)+1)$

$$
\begin{align*}
4 a_{5}(20 \rho \mu+4(\rho-\mu)+1)= & p_{4}+a_{2} p_{3}(2 \rho \mu+(\rho-\mu)+1) \\
& +a_{3} p_{2}(6 \rho \mu+2(\rho-\mu)+1) \\
& +a_{4} p_{1}(12 \rho \mu+3(\rho-\mu)+1) \tag{20}
\end{align*}
$$

$$
\begin{align*}
& (2 n-1) a_{2 n}((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1) \\
& \quad=\quad p_{2 n-1}+a_{2} p_{2 n-2}(2 \rho \mu+(\rho-\mu)+1) \\
& \quad \quad+\cdots+a_{2 n-1} p_{1}((2 n-2)(2 n-1) \rho \mu+(2 n-2)(\rho-\mu)+1) \tag{21}
\end{align*}
$$

$$
\begin{align*}
& (2 n) a_{2 n+1}((2 n+1)(2 n) \rho \mu+(2 n)(\rho-\mu)+1) \\
& \quad=\quad p_{2 n}+a_{2} p_{2 n-1}(2 \rho \mu+(\rho-\mu)+1)+\cdots \\
& \quad \quad+a_{2 n} p_{1}((2 n)(2 n-1) \rho \mu+(2 n-1)(\rho-\mu)+1) \tag{22}
\end{align*}
$$

By using Lemma 1.1 and (18), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{(A-B)}{[2 \rho \mu+(\rho-\mu)+1]}, \quad\left|a_{3}\right| \leq \frac{(A-B)(A-B+1)}{2(6 \rho \mu+2(\rho-\mu)+1)} \tag{23}
\end{equation*}
$$

Again by applying (23) and followed by Lemma 5, we get from (19) and (20), we have

$$
\begin{aligned}
\left|a_{4}\right| & \leq \frac{(A-B)(A-B+1)(A-B+2)}{(2)(3)(12 \rho \mu+3(\rho-\mu)+1)} \\
\left|a_{5}\right| & \leq \frac{(A-B)(A-B+1)(A-B+2)(A-B+3)}{(2)(3)(4)(20 \rho \mu+4(\rho-\mu)+1)}
\end{aligned}
$$

It follows that (16) hold for $n=1,2$. We now prove (16) using induction. Equation (21) in conjunction with Lemma 1.1 yield

$$
\begin{align*}
\left|a_{2 n}\right| \leq & \frac{(A-B)}{(2 n-1)[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \\
& \times\left[1+\sum_{k=1}^{n-1}\left|a_{2 k}\right|+\sum_{k=1}^{n-1}\left|a_{2 k+1}\right|\right] \tag{24}
\end{align*}
$$

We assume that (16) holds for $k=3,4, \ldots,(n-1)$. Then from (24), we obtain

$$
\begin{align*}
\left|a_{2 n}\right| \leq & \frac{(A-B)}{(2 n-1)[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \\
& \times\left[1+\sum_{k=1}^{n-1} \frac{A-B}{(2 k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)+\sum_{k=1}^{n-1} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \tag{25}
\end{align*}
$$

In order to complete the proof, it is sufficient to show that

$$
\begin{align*}
& \frac{(A-B)}{(2 m-1)[(2 m-1)(2 m) \rho \mu+(2 m-1)(\rho-\mu)+1]} \\
& \quad \cdot\left[1+\sum_{k=1}^{m-1} \frac{A-B}{(2 k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)+\sum_{k=1}^{m-1} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \\
& =\frac{(A-B)}{(2 m-1)!((2 m-1)(2 m) \rho \mu+(2 m-1)(\rho-\mu)+1)} \cdot \\
& \quad \cdot \prod_{j=1}^{2 m-2}(A-B+j), \tag{26}
\end{align*}
$$

$m=3,4,5, \ldots, n$. (3.21) is valid for $m=3$.
Let us suppose that (3.21) is true for all $m, 3<m \leq(n-1)$. Then from (25)

$$
\begin{aligned}
& \frac{(A-B)}{(2 n-1)[(2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1]} \cdot \\
= & \cdot\left[1+\sum_{k=1}^{n-1} \frac{A-B}{(2 n-1)!} \prod_{j=1}^{2 k-2}(A-B+j)+\sum_{k=1}^{n-1} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \\
& \cdot\left[1+\sum_{k=1}^{n-2} \frac{A-B}{(2 k-1)!} \prod_{j=1}^{2 k-2}(A-B+j)+\sum_{k=1}^{n-2} \frac{(A-B)}{(2 k)!} \prod_{j=1}^{2 k-1}(A-B+j)\right] \\
& +\frac{(A-B)}{(2 n-1)((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)} \cdot \\
& \cdot\left[\frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2 n-4}(A-B+j)\right] \\
& +\frac{(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)}{(2 n-1)((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)} \frac{A-B}{(2(n-1))!} \prod_{j=1}^{2 n-3}(A-B+j) \\
= & \frac{(2 n-3)}{(2 n-1)} \frac{(2(n-1)-1)!((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)}{(2 n-1)} \prod_{j=1}^{2 n-4}(A-B+j) \\
& +\frac{(A-B)}{(2 n-1)((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)} \\
& \cdot \frac{A-B}{(2(n-1)-1)!} \prod_{j=1}^{2 n-4}(A-B+j)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(A-B)}{(2 n-1)(2(n-1)-1)!((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)} \\
& +\frac{\prod_{j=1}^{2 n-3}(A-B+j)}{(2 n-1)((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)} \frac{A-B}{(2(n-1))!} . \\
& \quad \cdot \prod_{j=1}^{2 n-3}(A-B+j) \\
& =\frac{(A-B)}{(2 n-1)!((2 n-1)(2 n) \rho \mu+(2 n-1)(\rho-\mu)+1)} \prod_{j=1}^{2 n-2}(A-B+j)
\end{aligned}
$$

Thus (26) holds for $m=n$ and hence (16) follows. Similarly we can prove (17).

On specializing the values of ρ, μ in Theorem 2.1 and 2.2 , we get the following.

Remark 2.3. In Theorem 2.1, if we set $\mu=0$ and $\rho=0$, we get starlike functions with respect to symmetric points and if we set $\mu=0$ and $\rho=1$, we get convex functions with respect to symmetric points.

Remark 2.4. In Theorem 2.2, if we set $\mu=0$ and $\rho=0$, we get starlike functions with respect to conjugate points and if we set $\mu=0$ and $\rho=1$, we get convex functions with respect to conjugate points. For other values of μ and ρ, the transition is smooth.

Acknowledgements. The present investigation was supported by Science and Engineering Research Board, New Delhi - 110016 project no: SR/S4/MS:716/10 with titled "On Classes of Certain Analytic Univalent Functions and Sakaguchi Type Functions".

References

[1] R.N. Das and P. Singh, On subclass of Schlicht mapping, Indian J. Pure Appl. Math., 8, (1977), 864-872.
[2] R.M. El-Ashwah and D.K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2, (1987), 86-100.
[3] R.M. Goel and B.C. Mehrok, A subclass of starlike functions with respect to symmetric points, Tamkang J. Math., 13(1), (1982), 11-24.
[4] A. Janteng and S.A.F.M. Dahhar, A subclass of starlike functions with respect to conjugate points, Int. Mathematical Forum, 4, (2009), 13731377.
[5] A. Janteng and S.A. Halim, A subclass of Quasi-convex functions with respect to symmetric points, Applied Mathematical Sciences, 3, (2009), 551-556.
[6] A. Janteng and S.A. Halim, Coefficient estimates for a subclass of close-toconvex functions with respect to symmetric points, Int. J. Math. Analysis, 3, (2009), 309-313.
[7] Sakaguchi, K. On a certain univalent mapping, J. Math. Soc. Japan, 11, (1959), 72-75.
[8] C. Selvaraj and K.A. Selva Kumararn, Fekete-Szegö problem for some subclasses of analytic functions, Far East Journal of Mathematical Sciences, 29, (2008), 643-652.
[9] C. Selvaraj and N. Vasanthi, Subclasses of analytic functions with respct to symmetric and conjugate points, Tamkang Jour. of Mathematics, 42, (2011), 87-94.
[10] B. Srutha Keerthi, S. Chinthamani, Certain coefficient inequalities for Sakaguchi type functions and applications to fractional derivatives, International Mathematical Forum, 7(14) (2012), 695-706.

[^0]: ${ }^{1}$ Department of Mathematics, School of Advanced Sciences, VIT Chennai Campus, Chennai - 600127, India.
 ${ }^{2}$ Research Scholar, Anna University.

