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Statistical Lacunary Invariant Summability

Nimet Pancaroglu' and Fatih Nuray?

Abstract

In this paper, we define statistical lacunary invariant summability
and strongly lacunary ¢-invariant convergence 0 < ¢ < oo and investi-
gate some relations between lacunary invariant statistical convergence,
statistical lacunary invariant summability and strongly ¢- invariant con-

vergence.
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1 Introduction

Let o be a mapping of the positive integers into itself. A continuous linear
functional ¢ on [, the space of real bounded sequences, is said to be an

invariant mean or a ¢ mean, if and only if|

1. ¢(x) > 0, when the sequence = = (z,,) is such that x,, > 0 for all n,
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2. ¢(e) = 1,where e = (1,1, 1....),
3. (o)) = ¢(x) for all x € l.

The mappings ¢ are assumed to be one-to-one and such that ¢™(n) # n
for all positive integers n and m, where 0™ (n) denotes the mth iterate of
the mapping o at n. Thus ¢ extends the limit functional on ¢, the space of
convergent sequences, in the sense that ¢(x) = limx for all x € ¢. In case o is
translation mappings o(n) = n + 1, the o mean is often called a Banach limit
and V,, the set of bounded sequences all of whose invariant means are equal,
is the set of almost convergent sequences.

If v = (), set Te = (Txn) = (Tom)). It can be shown that

V, ={z = (z,) : im vy, () = L uniformly in n,L = o — limx}

where,

o+ T2, +...+Tx,
m+ 1 '
For example, the sequence z = (z,,) defined as

{1 n is odd
Ty =

Vpnn(Z) =

0 n is even

is o-convergent to % for o(n) = n + 1, but not convergent. The concept of
statistical convergence for sequences of real numbers was introduced Fast[1],
Salat[7] and others. Let K C N and K,, = {k <n:k € K}. Then the natural
density of K is defined by §(K) = lim, n™!|K,| if the limit exists, where |K,|
denotes the cardinality of K,.

A sequence x = (xy) real numbers is said to be statistically convergent to

L if for each € > 0,
1
lim—{k<n:|lzy—L| >} =0
non

By a lacunary sequence we mean an increasing integer sequence 6 = (k,.) such
that kg = 0 and h, := k. — k,_; — o0 as r — oo. Throughout this paper
the intervals determined by # will be denoted by I, := (k,_1,k.]. By using
lacunary sequences, Freedman, Sember and Raphael[2] defined the sequence

space Ny as follows: For any lacunary sequence 6 = (k,.),

1
Ny = {x = (xx) : for some L,llrmh— Z |z, — L| = 0}

" kel,
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In [3], lacunary statistically convergent sequence is defined as follows:
Let @ be a lacunary sequence; the number sequence (zy) is lacunary statis-
tically convergent to L provided that for every e > 0,

1
lim h—|{k: €l :|xzy—L| >¢e}| =0.

Definition 1.1. [6] A set E of positive integers said to have uniform in-
variant density of zero if and only if the number of elements of E which lie in

the set {o(m),c%(m),...,c™(m)} is o(n) as n — oo, uniformly in m.
Definition 1.2. [6] A complex number sequence x = (xy) is said to be o
statistically convergent to L if for every e > 0,
1
lim —[{k <n: |2ok(, — L] > €} =0
non
uniformly inm=1,2...
Definition 1.3. [9] Let be 0 = (k) be a lacunary sequence; the number
sequence x = (xy) is Sye convergent to L provided that for every € > 0,
1
hmh—|{/€ € [7“ . |$ok(m) — L| > E}| =0

uniformly inm =1,2...

2 Main Results

Now we define some new concepts by using the notions of uniform invariant

density and lacunary invariant statistical convergence.

Definition 2.1. A sequence x = (zy) is said to be lacunary invariant
summable to L if
limt,,(x) =L

1
uniformly in m = 1,2... where t,,(z) = ™ Zjeb T i (m)-
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This will be denoted ¢6 — lim, z, = L.

Definition 2.2. A sequence x = (xy) is said to be statistically lacunary
invariant summable(or statistically lacunary o summable) to L if for every
e >0,

1
lim—[{r <n:l|tym(x) — L >¢c}| =0
non

uniformly in m.

In other words, a sequence x = (xj) is statistically lacunary invariant
summable to L if and only if the sequence (t,,,(x)) is statistically convergent
to L. In this case we write S, —lim z = L. We denote the set of all statistically

lacunary invariant summable sequences by Sy, .

Definition 2.3. [8] A sequence x = (x) is said to be strongly lacunary

g-invariant convergent (0 < q¢ < o0) to the limit L if

o1
i 7= 3 fosny — LI = 0
jel,
uniformly in m = 1,2, ... and we write it as vy — L([Vio|q). In this case L is
called the [Vis |, limit of x. We denote the set all strongly lacunary q-invariant

convergent sequences by [Vis |,

Now we prove some relations between lacunary invariant statistical conver-
gence, statistical lacunary invariant summability, strong lacunary g-invariant
convergence and statistical convergence.

In the first theorem we investigate a relation between lacunary invariant

statistical convergence and statistical lacunary invariant summability.

Theorem 2.4. If sequence x = (x1) is bounded and lacunary invariant

statistically convergent to L then it 1s statistically lacunary invariant summable
to L.

Proof. Let x = (x}) be bounded and lacunary invariant statistically convergent

to L; them we write, for each m > 1,

Koo(e) = {kr—1 < J < kp 1 |Toigm) — L| > €}
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Hence,

1
trm(z) — L| = h. ngj(m) N L‘
" jel,
1
=7 Z(xaf(m) - 1L)
T jel,
1
< - Z (Zo3(m) — L)
TjEKQO(E)
1
§h—(sup |Z g (my — L|)| Koo (€)] — 0

T 7m

as r — 00, which implies that t¢,,,(z) — L uniformly in m. That is, z is
lacunary invariant convergent to L and hence statistically lacunary invariant

summable to L. This completes proof of theorem. n

Now we shall give relation between lacunary invariant statistical conver-

gence and strong lacunary g-invariant convergence in the following theorem.

Theorem 2.5. 7)If0 < g < 00 and a sequence x = (xy) is strongly lacunary
q-invariant convergent to the limit L, then it is lacunary invariant statistically
convergent to L.

i)If (zx) is bounded and lacunary invariant statistically convergent to L

then x — L([Violq)-

Proof. (1))If 0 < ¢ < oo and x, — L([Vis],), then as r — oo, for each m > 1,

1 1
07 Z |Zgs(my — L|* > . Z |Zgs(my — L|*

That is,

1
lim —{k—1 < j < k2o — L| > €} =0

—
T—00 r

uniformly in m. Hence x = () is invariant statistically convergent to L.
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(ii)Suppose that = = (x}) is bounded and lacunary invariant statistically

convergent to L. Then for € > 0, we have

1
lim h—|{j €l |Tpigmy — L] 2 €} =0

uniformly in m. Since z € £, there exists M > 0 such that |2, — L| < M,
(j=1,2...)and (m =1,2...) and we have

1 1 1
=D Nt = L= D Besm — LT+ = D s — LI

JElr

where

Now if j ¢ Kyg(e) then S(r) < 9. For j € Kyy(e), we have

Koo(e)|

Since,

Sa(r) < (sup |zgs(m) — L|)—— < M

J€EIL, Jelr
j¢K09 (5) JEKs0 (5)

= 51(7’) + 52(7’)

1
Sir) = - > @i — LI
jel,
ngUQ(E)

n

Sa(r) = 3~ > |wesm — LI
jel,
jGKa-g(E)

[ Koo(e)|
he hr

1
h_ Z ‘Iaj(m) - L‘q =0

" jel,

uniformly in m. We have z — L([Vyo],)-

This completes the proof of the theorem.

]

In the next result we classify statistically lacunary invariant summable

sequences through the lacunary invariant summability of subsequences.

Theorem 2.6. A sequence x = (xy) is statistically lacunary invariant

summable to L if and only if there exists a set K = {(r;) : r; < rix1} C N such
that 6(K) =1 and o — limx,, = L.
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Proof. Suppose that there exists a set K = {(r;) : 7; < 1301} € N such that
d(K)=1and o — limz, = L. Then there is a positive integer N such that
for n > N and for each m > 1,

trm(z) — L] <e (1)
Put K.(0o) = {n € N : |t, m(x) — L| > €} and K" = {ryi1,7n12,..-}-
Then §(K’') =1 and K.(6o) C N — K’ which implies that

1
lim —|{r <n:l|t, m(x) =L >¢c}|=0
n—oo M,
uniformly in m. Hence x = (z}) is statistically lacunary invariant summable
to L.

Conversely, let z = (xj) be statistically lacunary invariant summable to L.

1
Forr=1,2...andm=1,2... put K,(0o) = {j € N: |, ;m(z) —L| > -} and
p

1
My(o) ={j € N: |t,m(z) — L| < ]—?} Then

1 1
lim —[{j <n: |trjm(x) —L|>-}=0
p

n—0o0 T
and
M,(0c) D My(8o) D Ms(fo) D ..... D M;(0c) D M;11(00) D ... (2)
and . )
Jim {7 <ty (@) = L] < ]—?}| =1 (3)

uniformly in m.
Now we have to show that for j € My(00), (vy,) is lacunary invariant
summable to L. Suppose that (z,) is not lacunary invariant summable to L.

Therefore there is € > 0 such that [t, ,,(2) — L| > ¢ for infinitely many terms.
1

Let M.(0c) ={j € N: |t, (x) = L| <e}and e > - (p=1,2...). Then,
p

lim L < n: ftn(e) — L < £} = 0 (@)

n—oo M,

uniformly in m and by (2), we have M, (0c) C M.(6o). Hence
n—oo M

1 1
i 7 < ltm(@) = L < 24 =0 (5)

uniformly in m which contradicts (3) and therefore (zy,) is lacunary invariant

summable to L. This completes proof of the theorem. Il
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Similarly we can prove the following dual statement.

Theorem 2.7. A sequence x = (xy) is lacunary invariant statistically con-

vergent to L if and only if there exists a set K = {(k;) : ki < kiy1} C N such
that 0g,(K) =1 and o0 — limxy, = L.
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