A Dulac function for a quadratic system

A. Magnolia Marin ${ }^{1}$, Rubén D. Ortiz ${ }^{2}$ and Joel A. Rodríguez ${ }^{3}$

Abstract

In this work we find a Dulac function for a Quadratic System. We use Dulac's criterion that gives sufficient conditions for the non-existence of periodic orbits of dynamical systems in simply connected regions of the plane. Using a Dulac function we can rule out periodic orbits.

Mathematics Subject Classification: 34A34, 34C25
Keywords: Dulac functions, Quasilinear differential equations, BendixsonDulac criterion

1 Introduction

It is important to study in differential equations the analysis of the periodic orbits that there are in a system in the plane. It is well known certain systems

[^0]Article Info: Received: April 24, 2013. Revised : May 31, 2013
Published online : June 25, 2013
have no limit cycles. For this should be considered: Bendixson's criteria, indices, invariant lines and critical points. See $[1,2,3,4,5,6]$.

In this paper we are interested in constructing a general system that not have periodic orbits using Dulac functions. We use the criterion of BendixsonDulac, see [7].

Theorem 1.1. (Bendixson-Dulac criterion [7]) Let $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)$ and $h\left(x_{1}, x_{2}\right)$ be functions C^{1} in a simply connected domain $D \subset \mathbb{R}^{2}$ such that $\frac{\partial\left(f_{1} h\right)}{\partial x_{1}}+\frac{\partial\left(f_{2} h\right)}{\partial x_{2}}$ does not change sign in D and vanishes at most on a set of measure zero. Then the system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right), \tag{1}\\
\dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in D
\end{array}\right.
$$

does not have periodic orbits in D.

According to this criterion, to rule out the existence of periodic orbits of the system (1) in a simply connected region D, we need to find a function $h\left(x_{1}, x_{2}\right)$ that satisfies the conditions of the theorem of Bendixson-Dulac, such function h is called a Dulac function. In Saez and Szanto [6] was constructed Lyapunov functions using Dulac functions to assure the nonexistence of periodic orbits. Our goal is to find a general dynamical system on the plane that not have periodic orbits using Dulac functions.

2 Method to obtain Dulac functions

A Dulac function for the system (1) satisfies the equation

$$
\begin{equation*}
f_{1} \frac{\partial h}{\partial x_{1}}+f_{2} \frac{\partial h}{\partial x_{2}}=h\left(c\left(x_{1}, x_{2}\right)-\left(\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}\right)\right) \tag{2}
\end{equation*}
$$

(see [7]).

Theorem 2.1. [7] For the system of differential equations (1) a solution h of the associated system (2) (for some function c which does not change sign and vanishes only on a subset of measure zero) is a Dulac function for (1) in any simply connected region A contained in $D \backslash\left\{h^{-1}(0)\right\}$.

Theorem 2.2. [7] For the system of differential equations (1), if (2) (for some function c which does not change of sign and it vanishes only on a subset of measure zero) has a solution h on D such that h does not change sign and vanishes only on a subset of measure zero, then h is a Dulac function for (1) on D.

3 Main Result

Theorem 3.1. The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=A_{1} x_{1}^{2}+B_{1} x_{1} x_{2}+F_{1} \\
\dot{x}_{2}=A_{2} x_{1}^{2}+C_{2} x_{2}^{2}+F_{2}
\end{array}\right.
$$

with $A_{1}, B_{1}, F_{1}, A_{2}, C_{2}, F_{2}$ positive constants, does not have periodic orbits in a simply connected domain $D \subset \mathbb{R}^{2}$ where h is well defined.

Proof. Taking

$$
z=\alpha x_{1}+\beta x_{2}+\gamma
$$

we obtain

$$
\frac{\partial z}{\partial x_{1}}=\alpha, \quad \frac{\partial z}{\partial x_{2}}=\beta
$$

Substituting in (2) and by chain rule we have

$$
\left[\alpha\left(A_{1} x_{1}^{2}+B_{1} x_{1} x_{2}+F_{1}\right)+\beta\left(A_{2} x_{1}^{2}+C_{2} x_{2}^{2}+F_{2}\right)\right] \frac{d \widetilde{h}}{d z}=\widetilde{h}\left(c\left(x_{1}, x_{2}\right)-\operatorname{div} F\right)
$$

We want

$$
\left[\eta\left(\alpha x_{1}+\beta x_{2}+\gamma\right)^{2}+\mu\left(\alpha x_{1}+\beta x_{2}+\gamma\right)+\nu\right] \frac{d \widetilde{h}}{d z}=\widetilde{h}\left(c\left(x_{1}, x_{2}\right)-\operatorname{div} F\right)
$$

so we have

$$
\left[\eta z^{2}+\mu z+\nu\right] \frac{d \widetilde{h}}{d z}=\widetilde{h}\left(c\left(x_{1}, x_{2}\right)-\operatorname{divF}\right)
$$

Namely,

$$
\begin{aligned}
& {\left[\alpha\left(A_{1} x_{1}^{2}+B_{1} x_{1} x_{2}+F_{1}\right)+\beta\left(A_{2} x_{1}^{2}+C_{2} x_{2}^{2}+F_{2}\right)\right]} \\
& \quad=\left[\eta\left(\alpha x_{1}+\beta x_{2}+\gamma\right)^{2}+\mu\left(\alpha x_{1}+\beta x_{2}+\gamma\right)+\nu\right]
\end{aligned}
$$

We have

$$
\begin{aligned}
& \alpha A_{1}+\beta A_{2}=\eta \alpha^{2}, \\
& \alpha B_{1}=2 \eta \alpha \beta, \\
& \beta C_{2}=\eta \beta^{2} \\
& \alpha F_{1}+\beta F_{2}=\eta \gamma^{2}+\mu \gamma+\nu, \\
& 0=2 \eta \alpha \gamma+\mu \alpha, \\
& 0=2 \eta \beta \gamma+\mu \beta
\end{aligned}
$$

If $\alpha \neq 0$ and $\beta \neq 0$ then $B_{1}=2 \eta \beta$ and $C_{2}=\eta \beta$. Also $B_{1}=2 C_{2}, C_{2} \neq 0$ and $\eta=\frac{C_{2}}{\beta}$. Also, we have $0=\eta \alpha^{2}-A_{1} \alpha-\beta A_{2}$ then by $C_{2}=\eta \beta$ we have $\alpha=\frac{A_{1} \pm \sqrt{A_{1}^{2}+4 A_{2} C_{2}}}{2 C_{2}} \beta$. Also we have

$$
0=2 \eta \alpha \gamma+\mu \alpha
$$

then $0=2 \eta \gamma+\mu$. From

$$
0=2 \eta \beta \gamma+\mu \beta
$$

we have $0=2 \eta \gamma+\mu$. Then $\mu=-2 \eta \gamma$. We have

$$
\alpha F_{1}+\beta F_{2}=\eta \gamma^{2}+\mu \gamma+\nu
$$

Also by $\mu=-2 \eta \gamma$ we have $\alpha F_{1}+\beta F_{2}=-\eta \gamma^{2}+\nu$. From here we have $\nu=\alpha F_{1}+\beta F_{2}+\eta \gamma^{2}$. By $\mu=-2 \eta \gamma$, we have that $\eta \gamma^{2}-\nu=\mu^{2}-4 \eta \nu<0$. Until now we can summarize

$$
\begin{aligned}
\eta & =\frac{C_{2}}{\beta} \\
\mu & =-2 \eta \gamma \\
\nu & =\alpha F_{1}+\beta F_{2}+\eta \gamma^{2}
\end{aligned}
$$

By initial system divF $=2 A_{1} x_{1}+B_{1} x_{2}+2 C_{2} x_{2}$. We can take $c\left(x_{1}, x_{2}\right):=$ $-\operatorname{div}^{2} F+\operatorname{div} F-1<0$, then $c\left(x_{1}, x_{2}\right)-\operatorname{div} F=-\left(4 A_{1}^{2} x_{1}^{2}+4 A_{1}\left(B_{1}+2 C_{2}\right) x_{1} x_{2}+\right.$
$\left.\left(B_{1}+2 C_{2}\right)^{2} x_{2}^{2}+1\right)$. We want

$$
c\left(x_{1}, x_{2}\right)-\operatorname{div} F=\eta_{2} z^{2}+\eta_{1} z+\eta_{0} .
$$

As $z=\alpha x_{1}+\beta x_{2}+\gamma$, then $c\left(x_{1}, x_{2}\right)-\operatorname{div} F=\eta_{2}\left(\alpha x_{1}+\beta x_{2}+\gamma\right)^{2}+\eta_{1}\left(\alpha x_{1}+\right.$ $\left.\beta x_{2}+\gamma\right)+\eta_{0}$. We have to compare

$$
\begin{array}{r}
-\left(4 A_{1}^{2} x_{1}^{2}+4 A_{1}\left(B_{1}+2 C_{2}\right) x_{1} x_{2}+\left(B_{1}+2 C_{2}\right)^{2} x_{2}^{2}+1\right) \\
=\eta_{2}\left(\alpha x_{1}+\beta x_{2}+\gamma\right)^{2}+\eta_{1}\left(\alpha x_{1}+\beta x_{2}+\gamma\right)+\eta_{0}
\end{array}
$$

We have

$$
\begin{aligned}
& \eta_{2} \alpha^{2}=-4 A_{1}^{2} \\
& 2 \eta_{2} \alpha \beta=-4 A_{1}\left(B_{1}+2 C_{2}\right), \\
& \eta_{2} \beta^{2}=-\left(B_{1}+2 C_{2}\right)^{2} \\
& 2 \eta_{2} \alpha \gamma+\eta_{1} \alpha=0 \\
& 2 \eta_{2} \beta \gamma+\eta_{1} \beta=0 \\
& \eta_{2} \gamma^{2}+\eta_{1} \gamma+\eta_{0}=-1
\end{aligned}
$$

Now, we can summarize

$$
\begin{aligned}
& \eta_{2}=\frac{-4 A_{1}^{2}}{\alpha^{2}} \\
& \eta_{1}=-2 \eta_{2} \gamma \\
& \eta_{0}=-1-\eta_{2} \gamma^{2}-\eta_{1} \gamma .
\end{aligned}
$$

Then

$$
\frac{d \tilde{h}}{\tilde{h}}=\frac{\eta_{2} z^{2}+\eta_{1} z+\eta_{0}}{\eta z^{2}+\mu z+\nu} d z .
$$

Then integrating on both sides

$$
\tilde{h}=e^{\int \frac{\eta_{2} z^{2}+\eta_{1} z+\eta_{0}}{\eta^{2}+\mu z+\nu} d z} .
$$

Then system does not contain periodic orbits in \mathbb{R}^{2}.

Example 3.2. Consider system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=2 x_{1}^{2}+2 x_{1} x_{2}, \\
\dot{x}_{2}=-x_{1}^{2}+x_{2}^{2},
\end{array}\right.
$$

then the solution of the partial differential equation (2) is $\tilde{h}=e^{-16 z+1 / z}$, with $z=x_{1}+x_{2}$ and $x_{1}+x_{2} \neq 0$. This example provides a Dulac function \tilde{h}, and the system does not contain periodic orbits in $\mathbb{R}^{2} \backslash\left\{x_{1}+x_{2}=0\right\}$.

ACKNOWLEDGEMENTS. The authors express their deep gratitude to CONACYT-México, Programa de Mejoramiento del Profesorado (PROMEP)México and Universidad de Cartagena for financial support.

References

[1] I. Bendixson, Sur les curbes definies par des equations differentielles, Acta Math., 24, (1901), 1-88.
[2] L.A. Cherkas and A.A. Grin, A Dulac function in a half-plane in the form of a polynomial of the second degree for a quadratic system, Differ. Uraun., 34(10), (1998), 1346-1348.
[3] L.A. Cherkas and I.S. Shchukina, A Dulac function of special form for a quadratic system in the plane, Differ. Uravn., 37(4), (2001), 481-487.
[4] O. Osuna, J. Rodriguez, C. Vargas-De-Leon and G. Villaseñor, Dulac functions for transformed vector fields, Int. J. Contemp. Math. Sciences, 8(6), (2013), 291-297.
[5] L. Perko, Differential equations and dynamical systems, Springer, Berlin, 2006.
[6] E. Saéz and I. Szánto, On the construction of certain Dulac function, IEEE Trans. Automat. Control, 33(9), (1988), 856.
[7] O. Osuna and G. Villaseñor, On the Dulac functions, Qual. Theory Dyn. Syst., 10(1), (2011), 43-49.

[^0]: ${ }^{1}$ Grupo de Ondas, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Matemáticas, Sede Piedra de Bolivar, Cartagena de Indias, Bolivar, Colombia.
 ${ }^{2}$ Grupo de Ondas, Universidad de Cartagena, Facultad de Ciencias Exactas y Naturales, Programa de Matemáticas, Sede Piedra de Bolivar, Cartagena de Indias, Bolivar, Colombia.
 ${ }^{3}$ Instituto Tecnológico de Morelia, Departamento de Ciencias Básicas. Edif. AD Morelia Michoacán, México.

