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Abstract

In this paper, we study the eigenvalue problem of elliptic operators in
divergence form, and obtain some universal inequalities for eigenvalues
of elliptic operators in divergence form on domains in complete simple
connected noncompact Riemannian manifolds admitting special func-
tions which include hyperbolic space. Especially, by using our universal
inequalities, we can get the different universal inequalities including
Yang inequality.
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1 Introduction

Let Ω be a bounded domain in an n-dimensional complete Riemannian

manifold M . Let ∆ be the Laplacian operator acting on functions on M and

consider the following eigenvalues problem for the Laplacian operator




∆u = −λu, in Ω,

u = 0, on ∂Ω,
(1.1)

it is known that this eigenvalue problem has a discrete spectrum,

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ,

where each eigenvalue is repeated with its multiplicity. When M = Rn, ∆ =∑n
i=1

∂2

∂x2
i
, Payne-Pólya-Weinberger [11] in 1956 proved

λk+1 − λk ≤ 4

kn

k∑
i=1

λi. (1.2)

In 1980, Hile-Protter [9] strengthened (1.1), and proved

kn

4
≤

k∑
i=1

λi

λk+1 − λi

. (1.3)

In 1991, Yang [13] gave the following much stronger inequality

k∑
i=1

(λk+1 − λi)
2 ≤ 4

n

k∑
i=1

(λk+1 − λi)λi. (1.4)

From inequality (1.3), we can get a weaker but explicit form

λk+1 ≤
(

1 +
4

n

)
1

k

(
k∑

i=1

λi

)
. (1.5)

These inequalities are called universal inequalities because they do not involve

domain dependence.

In the following, we introduce an elliptic operator in divergence form in

Riemannian manifold. Let (M, 〈, 〉) be an n-dimensional compact Riemannian

manifold with boundary ∂M (possibly empty). Let A : M → End(TM) be a
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smooth symmetric and positive definite section of the bundle of all endomor-

phisms of TM . Let V be a nonnegative continuous function on M . Denote by

∆ and ∇ the Laplacian and the gradient operator of M respectively. Define

Lu = −div(A∇u) + V u, (1.6)

where for a vector field X on M , divX denotes the divergence of X. The

operator L defined in (1.5) is an elliptic operator in divergence form. It is easy

to see that the Laplacian operator and Schrödinger operator are it’s special

cases. In 2010, do Carmo-Wang-Xia [6] considered the eigenvalue problem of

the elliptic operator in divergence form with weight such that





Lu = λρu, in Ω,

u = 0, on ∂Ω,
(1.7)

where ρ is a weight function which is positive and continuous on M . They got

a Yang type inequality

k∑
i=1

(λk+1 − λi)
2 ≤ 4ξ2

2ρ
2
2

nρ2
1

k∑
i=1

(λk+1 − λi)

(
1

ξ1

(
λi − V0

ρ2

)
+

n2H2
0

4ρ1

)
, (1.8)

where ξ1I ≤ A and tr(A) ≤ nξ2 throughout M , ρ1 ≤ ρ(x) ≤ ρ2, ∀x ∈ M ,

I is the identity map, ξ1, ξ2, ρ1, ρ2 are positive constants, H0 = maxM(|H|),
V0 = minM(V ), and |H| is the mean curvature of M immersed into some

Euclidean space RN . Recently, Du-Wu-Li[7] considered the problem (1.7) on

complete Riemannian manifolds, they proved the inequality

k∑
i=1

f(λi) ≤ 2ρ2

nρ1

(
nξ2

ξ1

k∑
i=1

g(λi)

) 1
2

×
(

k∑
i=1

(f(λi))
2

(λk+1 − λi)g(λi)

(
λi +

S

ρ1

)) 1
2

, (1.9)

where (f, g) ∈ =λk+1
,S = supM

(
n2ξ1

4
|H|2 − V

)
, and H is the mean curvature

vector field.

In this paper, we will consider the eigenvalue problem (1.7) on bounded do-

mains in the complete simply connected noncompact Riemannian manifolds.

Then we obtain.
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Theorem 1.1. Let (M, 〈, 〉) be an n(n ≥ 3)-dimensional complete noncompact

simply connected Riemannian manifold with Sectional curvature Sec satisfying

−K2 ≤ Sec ≤ −k2. For a bounded domain Ω, Let A : Ω → End(TΩ) be a

smooth symmetric and positive definite section of the bundle of all endomor-

phisms of TΩ, and assume that ξ1I ≤ A ≤ ξ2I throughout Ω, ∀x ∈ Ω, ρ1 ≤
ρ(x) ≤ ρ2, here ξ1, ξ2, ρ1, ρ2 are positive constants. Let λi be the ith eigenvalue

of the eigenvalue problem (1.7), then for any (f, g) ∈ =λk+1
, we have

k∑
i=1

f(λi) ≤
{ 1

ρ2ξ2

k∑
i=1

g(λi)
} 1

2 ×
{ k∑

i=1

(f(λi))
2

(λk+1 − λi)g(λi)(
1

ξ1

(ρ2λi − V0)− (n2 − 1)k2 + 2(n− 1)K2

) } 1
2

(1.10)

where V0 = minx∈ΩV (x).

From Theorem 1.1, we can get the following.

Corollary 1.2. Under the assumption of Theorem 1.1, if M is a hyperbolic

space Hn(−1), we have

k∑
i=1

f(λi) ≤
{

1

ρ2ξ2

k∑
i=1

g(λi)

} 1
2

×
{

k∑
i=1

(f(λi))
2

(λk+1 − λi)g(λi)

(
1

ξ1

(ρ2λi − V0)− (n− 1)2

)} 1
2

,(1.11)

where V0 = minx∈ΩV (x).

Remark. Taking (f(λi), g(λi)) = ((λk+1−λi)
2, (λk+1−λi)

2) in (1.11), we can

get a Yang inequality that

k∑
i=1

(λk+1 − λi)
2 ≤ 1

ρ2ξ2

k∑
i=1

(λk+1 − λi)

(
1

ξ1

(ρ2λi − V0)− (n− 1)2

)

So, by choosing different (f(λi), g(λi)), we can get different universal inequal-

ities.
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2 Preliminaries

In this section, firstly, we shall introduce a family of couples of functions

[8].

Definition 2.1. Let λ > 0, a couple (f, g) of functions defined on [0, λ] belongs

to =λ as that

(i) f and g are positive,

(ii) f and g satisfy the following condition, for any x, y ∈ [0, λ], such that

x 6= y,

(
f(x)− f(y)

x− y

)2

+

(
(f(x))2

g(x)(λ− x)
+

(f(y))2

g(y)(λ− y)

)(
g(x)− g(y)

x− y

)
≤ 0.

(2.1)

We can easily find that g(x) is a nonincreasing function.

In the following, we will introduce a lemma which is obtained by Du-Wu-

Li[7].

Lemma 2.1. Let (M, 〈, 〉) be an n-dimensional compact Riemannian mani-

fold with boundary ∂M (possibly empty). Let λi be the ith eigenvalue of the

eigenvalue problem of elliptic operators in divergence form with weight ρ such

that

Lu = λρu in M, u = 0 on ∂M,

and ui be the orthonormal eigenfunction corresponding to λi, that is,

Lui = λiρui in M, and ui = 0 on ∂M,
∫

M

ρuiuj = δij, ∀ i, j = 1, 2, · · ·

Then for any h ∈ C2(M) and (f, g) ∈ =λk+1
, we have

k∑
i=1

f(λi)‖ui∇h‖2 ≤ δ

k∑
i=1

g(λi)

∫

M

u2
i 〈∇h,A∇h〉+

k∑
i=1

(f(λi))
2

δ(λk+1 − λi)g(λi)
∥∥∥∥

1√
ρ

(
〈∇ui,∇h〉+

1

2
ui∆h

)∥∥∥∥
2

, (2.2)
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where δ is any positive constant and ‖f‖2 =
∫

M
f 2.

From this Lemma, if we can find a “nice” function on bounded domains

in complete Riemannian manifolds and take it in (2.2) and (2.3), we can get

universal inequalities in complete Riemannian manifolds. In the following, we

will introduce a function on a bounded domain in complete noncompact simple

connected Riemannian manifolds(for the more details about this function, we

refer [5] ).

Let (M, 〈, 〉) be an n-dimensional complete noncompact Riemannian man-

ifold, and Ω be a bounded connected domain in M . Sec(M) is the section

curvature satisfying −K2 ≤ Sec(M) ≤ −k2, where k, K is constants and

0 ≤ k ≤ K. When p is not in Ω, define the distance function r(x) = d(x, p),

then

(n− 1)k
coshkr

sinhkr
≤ ∆r ≤ (n− 1)K

coshKr

sinhKr
, (2.3)

because of ∂r∆r = −|Hess r|2 − Ric(∂r, ∂r), so

−∂r∆r ≤ (n− 1)K2 coshKr

sinhKr
− (n− 1)k2, (2.4)

where Hess, Ric are the Hessian operator and Ricci curvature operator, respec-

tively.

3 Proofs of the main results

In this section, we will give the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Taking h = r in the (2.2), we can get

k∑
i=1

f(λi)‖ui‖2 ≤ δ

k∑
i=1

g(λi)

∫

M

u2
i 〈∇r, A∇r〉+

k∑
i=1

(f(λi))
2

δ(λk+1 − λi)g(λi)
∥∥∥∥

1√
ρ

(
〈∇ui,∇r〉+

1

2
ui∆r

)∥∥∥∥
2

, (3.1)
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Because of ρ1 ≤ ρ(x) ≤ ρ2, ξ1I ≤ A ≤ ξ2I, and (2.1), we have
∥∥∥∥

1√
ρ
ui

∥∥∥∥
2

≥ 1

ρ2

(3.2)

ξ1 ≤ 〈∇r, A∇r〉 ≤ ξ2. (3.3)

Take (3.2) and (3.3) into (3.1), we have

1

ρ2

k∑
i=1

f(λi) ≤ ξ2

ρ1

δ

k∑
i=1

g(λi) +
k∑

i=1

(f(λi))
2

4δ(λk+1 − λi)g(λi)
∥∥∥∥

1√
ρ

(2〈∇ui,∇r〉+ ui∆r)

∥∥∥∥
2

(3.4)

It is known that

λi =

∫

M

uiL(ui) =

∫

M

ui (−div(A∇ui) + V ui)

=

∫

M

(〈Aui, ui〉+ V u2
i

)

≥
∫

M

(
ξ1|∇ui|2 + V u2

i

)
,

which yields ∫

M

|∇ui|2 ≤ 1

ξ1

(
λi − V0

ρ2

)
. (3.5)

From (2.4) and (2.5), we can get
∥∥∥∥

1√
ρ

(2〈∇ui,∇r〉+ ui∆r)

∥∥∥∥
2

=

∫

Ω

1

ρ
(2〈∇r,∇ui〉+ ui∆r)2

≤ 1

ρ1

(
4

∫

Ω

〈∇r,∇ui〉2 −
∫

Ω

u2
i (∆r)2 − 2

∫

Ω

u2
i 〈∇r,∇∆r〉

)

≤ 1

ρ1

(∫

Ω

|∇ui|2 −
∫

Ω

u2
i (∆r)2 − 2

∫

Ω

u2
i ∂r(∆r)

)

≤ 1

ρ1ξ1

(
λi − V0

ρ2

)
− (n− 1)2k2

ρ1

∫

Ω

u2
i

cosh2 kr

sinh2 kr

+
2(n− 1)K2

ρ1

∫

Ω

u2
i

cosh2 Kr

sinh2 Kr
− 2(n− 1)k2

ρ1ρ2

≤ 1

ρ1ξ1

(
λi − V0

ρ2

)
− (n2 − 1)k2

ρ1ρ2

+
2(n− 1)K2

ρ1ρ2

−(n− 1)2

ρ1

∫

Ω

u2
i

k2

sinh2 kr
+

2(n− 1)

ρ1

∫

Ω

u2
i

K2

sinh2 Kr
(3.6)
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Since K ≥ k ≥ 0, r > 0, we obtain

K

sinhKr
≤ k

sinhkr
, (3.7)

Since n ≥ 3, we get

(n− 1)2 k2

sinh2kr
− 2(n− 1)

K2

sinh2Kr
≥ (n− 1)(n− 3)

k2

sinh2kr
≥ 0, (3.8)

so, by (3.7)-(3.9), we can get

∥∥∥∥
1

ρ
(ui∆r + 2〈∇r,∇ui〉)

∥∥∥∥
2

≤ 1

ρ1ξ1

(
λi − V0

ρ2

)
− (n2 − 1)k2

ρ1ρ2

+
2(n− 1)K2

ρ1ρ2

(3.9)

Taking (3.10) into (3.4), we obtain

1

ρ2

k∑
i=1

f(λi) ≤ ξ2

ρ1

δ

k∑
i=1

g(λi) +
k∑

i=1

(f(λi))
2

4δ(λk+1 − λi)g(λi)

×
(

1

ρ1ξ1

(
λi − V0

ρ2

)
− (n2 − 1)k2

ρ1ρ2

+
2(n− 1)K2

ρ1ρ2

)
,(3.10)

above inequality implies that

k∑
i=1

f(λi) ≤ ρ2ξ2

ρ1

δ

k∑
i=1

g(λi) +
k∑

i=1

(f(λi))
2

4δ(λk+1 − λi)g(λi)

× 1

ρ1

(
1

ξ1

(ρ2λi − V0)− (n2 − 1)k2 + 2(n− 1)K2

)
(3.11)

δ =





1

4ρ2ξ2

∑k
i=1

(f(λi))
2

(λk+1−λi)g(λi)∑k
i=1 g(λi)

(
1

ξ1

(ρ2λi − V0)− (n2 − 1)k2 + 2(n− 1)K2

)



1
2

(3.11) becomes

k∑
i=1

f(λi) ≤
{ 1

ρ2ξ2

k∑
i=1

g(λi)
} 1

2 ×
{ k∑

i=1

(f(λi))
2

(λk+1 − λi)g(λi)(
1

ξ1

(ρ2λi − V0)− (n2 − 1)k2 + 2(n− 1)K2

) } 1
2

(3.12)

This completes the proof of Theorem 1.1.
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Proof of Corollary 1.2. Taking K = k = 1 in (3.12), we immediately obtain

(1.11).
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