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222 On Vector valued Variational Problems

1 Introduction

Second-order duality in mathematical programming has been extensively
studied. This type of duality enjoys computational advantage over the first order
duality because it offers tighter bounds. Following the approach of Mangasarian
[1], Chen [2] formulated a Wolfe type second-order dual associated with a class of
constrained variational problems. Later Husain et al [3] formulated a Mond-Weir
type dual to the variational problem considered in [2] to derive various duality
results under generalized invexity.

In the modeling of real-life problems, there can be more than one objective in
mathematical programming problems representing them. So the subject of
multiobjective programming has an important place in optimization theory.
Motivated with this faint glimpse of vast applications of multicriteria optimization
problems, Husain and Jain [4] have recently presented Wolfe type second-order
duality for multiobjective variational problems with equality and inequality
constraints under second-order pseudoinvexity.

In this research, we present Mond-Weir type duality for the class of
variational problems considered in [4] in order to relax the second-order invexity
requirements on the functions that constitute this pair of second-order dual
multiobjective variational problems. Further, in order to combine the Wolfe type
second-order duality results of [4] and Mond-Weir type second-order duality
results for multiobjective variational problems derived in this research, mixed type
second-order duality is presented and various second-order duality results are
obtained under second-order generalized invexity. Finally, a relationship between
our duality results and those of nonlinear multiobjective programming problems is
briefly outlined through the pair of second-order multiobjective variational

problems with natural boundary values.
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2 Pre-Requisites and statement of the problem
Let | =[a,b]bearealinterval, ¢:1xR"xR"—>R and y:IxR"xR"—>R"

be twice continuously differentiable functions. In order to consider
#(t.x(t),%(t)), where x:1 —R" isdifferentiable with derivative X, denoted by

¢, and ¢,, the firstorder derivatives of ¢ with respectto x(t) and x(t),

respectively, that is,

y _(@ L2 %I y _[% L2 %T
et e T xt) T

oo ax”

Denote by ¢, the Hessian matrix of¢ and y, the mxn Jacobian matrix
. o . o’ -
respectively, that is, with respect to x(t), that is, ¢, = o | I,j=12,..n,
X'OX

v, the mxn Jacobian matrix

1

oy’ oy oy
oxt oxt X"
oy® oy oy’

v, = ox*  ox? PV

m

oy
oxt OX? ox"

mxn .

The symbols ¢,, ¢, , ¢, and w, have analogous representations.
Designate by X, the space of piecewise smooth functionsx:1 — R", with the

norm|x| = x| +|Dx|_ . where the differentiation operator D is given by

u=Dx<:>x(t)=ju(s)ds,

a

Thus %:D except at discontinuities.
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Consider the following constrained multiobjective variational problem:

(VEP): Minimize U fl(t,x,X)dt,...,j f p(t,x,X)dtj

subject to x(a)=a ,x(b)=2
g(t,x,x)<0,tel (1)
h(t,x,x)=0,tel ()
where f':IxR"xR" >R, ieK={12,..p} g:IxR"xR" - R",

h:1xR"xR" — R'are continuously differentiable functions.
The following convention for equality and inequality will be used. If
a,peR", then
a=f<dad =p i=12,.,n
a>pfoa > p i=12,..,n
a;ﬂaagﬂ and a=#pf

a>pf=a >p i=12,..,n

Definition 2.1 A feasible solution X is efficient for (VEP) if there is no feasible
x for (VEP) such that

[fieg0dt<[fi(t,x,%)dt, forsome iefl2,..,p}
| |
[fitadt< [ fixx)dt, forall je{L2..p}
| |

In the case of maximization, the signs of above inequalities are reversed.

The optimality conditions for the problems (VEP), derived by Husain and Jain [4]

are reproduced in the following theorems (Theorem 2.1 and Theorem 2.2).

Theorem 2.1 (Karush-Kuhn-Tucker type necessary optimality conditions): If

X is an normal and optimal solution of (VEP) and h (., X(.),x(.)) maps onto a
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closed subspace of C(I,R"), then there exist piecewise smooth y:I — R",
7 :1 — R'such that

f (6 X (), X(0) + Y1) g, (6, X (1), X()) + Z(1)" h, (t, X(1), X(1))

= D( f, (t,X(t), X(t) + Y(1)" g, (t, X(1), X(1)) + Z(t)" h, (t, X(t). X(1))) , t |

V() g(t, X(t),X(t) =0, tel
y()>0, tel

Theorem 2.2 (Fritz John type necessary optimality conditions): Let X be an

efficient solution of (VEP).Then there exist A' € R,i e K and piecewise smooth

functions y:1 — R™, 7:1 — R'such that
P _
> ANt =D )+(Y® g, +Z(t) h )~ D(Y(®) g, +Z(t) h,) =0, te|
i=1

y() g(t.%,X)=0, tel
(2.(1))20, tel
(2,7),2(1)) 0, tel

We shall make use of the following definitions in the subsequent analysis:

Definition 2.2 The function I(/ﬁ(t,.,.)dt is second-order pseudoinvex if for all
|

Bt) e R", there existan 7 = n(t, x,u) such that

[ {M (t,u,u'){‘j'j—fj g, (t,U,0) + 77" Aﬂ(t)}dt >0

N Ijgzs(t,x, X)dt > _!.(¢(t,u,U)—%ﬂT (t)Aﬁ(t)jdt

or equivalently,
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[t x0dt < | [¢(t,u, ) Aﬁ(t)]dt
| |

:I{UT% (t,u,u)+(?j—7t7j ¢u(t,u,u)+77TAﬂ(t)}dt <0

where A=f! -2Df, + D*f, —D*f}

Definition 2.3 The function j¢(t,.,.)dt is said to second-order quasi-invex if for
|

all g(t) e R", there exist an 7 = n(t, x,u) such that

[ #(t, x, X)dt < j [¢(t,u,u) —%ﬂT (t)Aﬂ(t)Jdt

= {M (t,u,u'){‘fj—’ﬂ 4,(6,U,0) + 7' Aﬂ(t)}dt <0

The function I¢(t,.,.)dt is said to strictly pseudoinvex if for all
|

Bt) e R"and x(t) = u(t),t e | , there existan 7 =n(t, x,u) such that

J{UT¢U (t,u,U)+(((jj—7t]jT é, (t,u,u)+7" A,B(t)}dt >0

:>I¢(t,x,>‘<)dt > j¢(t,u,u)dt

or equivalently

jqﬁ(t,x, x)dt < j¢(t,u,u)dt

J {M (t,u,u){‘fj—fj % (t,u,u)+nTAﬁ(t)}dt <0

Remark 2.1 If ¢ does not depend explicitly on t then the above definitions

reduced to those given in [5].
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3 Mond-Weir type second-order Duality

In this section, we propose the following Mond-Weir type second-order to
the problem(VEP):

(M-WED): Maximize

U[ fl(t,u,u)—%ﬁ’(t)T Flﬁ’(t)jdt,...,j[f p(t,u,u)—%ﬁ(t)T F pﬂ(t)]dt]

subject to
u(a)=a,u(b)=p (3)
ATE 4y g, +2®)h, —D(AT f +y®) g, +2(0) hy ) +BAM) =0,tel  (4)
| [y(t)T g(t,u,u)—%ﬁ(t)TGﬂ(t)jdt >0 5)
j(z(t)Th(t,u,u)—%ﬂ(t)T Hﬂ(t)jdt >0 (6)
yt) > 0,tel (7)
A>0 8)

where B=A"F+G+H with

Fi=fl, —2Df), +D2fl, —-D3fl, . telieK

G :<y(t)T gu)u —2D(y(t)T gu)u + Dz(y(t)T gu.)u — D3(y(t)T gu)u_ tel

and
H=(z(t)' hu) —2D(z(t)T hu)

are nxn symmetric matrices.

U +D*(2() h,) -D*(2(t) ) tel

u u

In the following analysis, we shall designate the sets of feasible solutions of the
problems (VEP) and (M-WED) by X and Y respectively.
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Theorem 3.1(Weak duality): Letx(t) e X and(u(t), 4, y(t), z(t), A(t)) €Y such
that with respect to the same 7

(Ap): J /1T )dt Is second-order pseudoinvex
(Ay): J.(y(t)T g(t,.,.))dt is second-order quasi-invex and
|

(As): J'(z(t)T h(t,.,.))dt is second-order quasi-invex,
|

then

'Iff'(t,x,)’()dt<Hfr(t,u,U)—%ﬁ(t)T Frﬂ(t)}dt,for some reK 9)
and
J.fi(t,x,X)dt < I{f‘(t,u,d)—%ﬂ(t)T Fiﬂ(t)}dt ek, (10)
clannot hold. |

Proof: Suppose, to the contrary, that (9) and (10) holds. Since A >0, the above

inequalities give

ATt x%)dt < j(f f(t,u,u) —%,B(t)T AT F,B(t)jdt

which because of second-order pseudoinvexity ofj/IT f(t,.,.)dt, this implies
|

j{ (271, (tu,u))+ (dtj (A7, tu,u))+n" (/ITF),B(t)}dt <0 (11)

Using x(t) e X and (u(t), 4, y(t),z(t),x(t)) €Y , we have

[y® gt x%dt < | (y(t)T g(t,u,u)—%ﬁ(t)TGﬁ’(t)jdt

By the hypothesis (Ay), this implies
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| {yf (v g, )+ [‘Z—ﬂ (Y g,)+ nTGﬂ(t)}dt <0 (12)

Also J.z(t)T h(t, x, X)dt < '[z(t)T h(t,u,u)dt, because (A3) implies

j {UT (z(t) hu)+((;—7t7) (z®)"h,)+n™H ﬂ(t)}dt <0 (13)

Combining (11), (12) and (13), we have

0> j {UT (AT, +y()' g, +2(0) hu)+(i—’t7) (478 +y() g, + 20", )47 (ATF +G+ H)ﬂ(t)}dt
= [ [(A71, + Y@ g, + 2()7h, )~ D(A"f, + Y(O) g, + 2()h, )+ (ATF + G+ H)A(X) et
o (AT YT g, +2(t) hu.):b

which, because of 7 =0,at t=a and t =b, yields

j 7 [(ATf, +y()" g, +2()h,)-D(AT f,+y(®) g, +2(®)"h,)

+(A"F+G+H)A(t)]dt<0

1.e.
[2"[(A7 £, +y®T g, +2)"h, )= D(2f, + y(©)" g, + 2(0)"h, )+ BA(t) [dt <0

This is contrary to the equality constraint of the dual problem (M-WED). Hence
the theorem fully follows.

Theorem 3.2 (Strong duality): Let X(t) be normal and efficient solution of
(VEP). Then there exist A € RP piecewise smooth functions y:1 — R™and
Z:1 - R'suchthat (X(t),2,7(t),Z(t), B(t) = 0)is feasible for (M-WED) and the

two objective functional are equal. Furthermore, if the hypotheses of Theorem 2.1
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hold for all feasible solutions of (VEP) and (M-WED),the(K(t), 1, 5(t),Z(), A(t) = 0)

is an efficient for (M-WED).

Proof: Since X(t)is normal and an efficient solution of the problem (VEP),
therefore, by Theorem 2.1, there exist A € R", piecewise smooth functions
y:1 > R"and Z:| — R'such that

AT+ Y g, (X, X)+Z(t) h, (t,X,X)

-D(2Tf,(t,X, %) + Y1) 9, (. X, X)+Z(®) h, (1, X,X)) =0,t e | (14)
y(t) g(t,x,X)=0,tel (15)

Z>0,Zpﬁ‘=1 (16)

y()'>0,tel (17)

The relation (15) implies

I(V(t)T g(t,X,X) —%B(t)T Gﬁ(t)jdt =0

Since X (t)is feasible for (VEP), we have h(t,x,X)=0tel and
| (T(t)T h(t, X, X) —% Bt H B(t)jdt =0

Consequently, (X,Z,¥(t),Z(t), B(t) = 0)is feasible for (M-WED).

Consider
U fl(t,Y,Y)dt,...,I f p(t,Y,Y)dtJ
_ U( F1(t,X, %) —%E(t)T Flﬁ(t)jdt,...,_[( £ (1%, %) —%ﬁ(t)T F pﬁ(t)jdt}

yielding the equality of the objective functionals.

If (X,4,¥(1).Z(t), B(t) = 0)is not efficient, there exists (0,/{, 7, Z,B) feasible for
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(M-WED) such that

j{fk(t,a,a)—%ﬁ(tf ﬁkﬁ(t)}dt > [ £ x%)dt, for some k e K

and

j{ff(t,a,a)—%ﬁ(tfﬁfﬁ(t)}dt;jff(t,xi)dt,r;tk.
| |
These inequality with 1 > 0 implies

j{ﬂ f(t,d,0) —%,B(t)T (A7 ﬁ)ﬁ(t)}dt > [T (t,x,%)dt

which because of pseudoinvexity of J./{T f (t,.,.)dtyield for n(t,X,0)=n
|

! {UT (/iT f. (t,a,a))+(‘l—’t7j (iT f, (t,a,a))+ n (AT If),é(t)}dt <0 (18)
where  F =F(t,4,4,0,0)
From the feasibility, we have
[y 9t x,x)dt < [| 9t g(t,a,u*)—éﬁ(tféﬁ(t)]dt (19)
j 2(t)" h(t, X, X)dt < [ )" ht, d, l])——ﬂ(t) H ,B(t)j (20)

where G =G(t,0,0,d,0), H = H(t,G,d,0,0)

These, because second-order quasi-invexity of J)”/(t)T g(t,.,.)dt and

Ii(t)T h(t,.,.)dt with respect to the samer respectively, yield

J{ ( ®" 9,4, u)) (th ( t)" g,(t.q, u))+77 Gﬁ(t)}d <0

and

I{UT(z(t)T hu(t,ﬁ,ﬁ))+((jj—tj (20)7h, (t.0,0)) + 7" Hﬂ(t)}d <0
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Combining (18), (19) and (20), we have

0> (" [(iT f,+ 97 g, +2)7h, )-D (A f, + JOT g, + 2 h, )+ (A'F +G +H )/?(t)}dt
|

As earlier, this will yield

[ [(A7 1, + 907 g, + 207 h,) =D (A", + 9T g, + 20" h, )+ BA®) dt <0,

contradicting the feasibility of (a, A,9,3, B) for (M-WED).

We now give a Mangasarian type [5] strict-converse duality theorem for the dual
(M-WED) to (VEP).

Theorem 3.3 (Strict-converse duality): LetX(t)and (T (t), 4,y (t), Z(t), B(t)) € Y

be efficient solutions of (VEP) and (M-WED) respectively, such that

jZT f(t,X,X)dt = j{? f(t,X, i)—%ﬁ(tf (7 F)B(t)}dt (21)
| |

If with respect to the same 7

(By): j(;ﬂ f (t..,.) )t is second-order strictly pseudoinvex
|

(By): J.(y(t)T g(t,.,.))dt is second-order quasi-invex,
|

and
(Bs): j(z(t)T h(t,.,.))dtis second-order quasi-invex,
|
then
X(t)=T(t),tel.
Proof: Suppose X(t)=u(t)tel

By hypothesis (B3), (21) implies for 7 =n(t,X,0)

j{yf (27 fu)+(‘3—’t7j (A7 f)+n" (27 If)ﬁ(t)}dt <0 (22)

From feasibility of (VEP) and (M-WED), we have
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[yo gt xx)dt < | [V(tf 9(t,T,0) —%E(tf Gﬁ(t)jdt

where G =G(t,T,d,u,u,y,y,Vy
This by the hypothesis (B;) gives

f{?f (YO g, (t,T.0)) +(%—’t7j (YO g, (tT.0))+ 7" C_Eﬁ(t)}dt <0 (23)

Also we have

[z h@t.x,x)dt < [7()"h(t, T, T)dt

by the hypothesis (Bs), this implies

f{?f (zZ®h, (T, u*))+(?j—7t7j (z)"h, (t,0.0))+7"H ﬂ(t)}dt <0 (24)

Combining (22), (23) and (24), we have

[ (27 £, 0.5 + YO 9,6, T.T) +Z(t)h, (,T,0))

i
+(‘3—’t7] (27, T,0) + (O 9,(t,T,T) +Z(t)" h, (t,T,0))+7" (AT F +G+ H)B(t)}dt <0
This, as earlier analysis, implies

[ (A7 1,00+ O 9, (T, 0) +Z() h, (.7, 0))

|

—D(/TT f, (T,0) + Y1) g, (4T, 0) +Z(0) h, (t.T,0))+ BAM}t <0
This contradicts the feasibility of(U, A,Y,Z, E) for (M-WED). Hence

X(t)=0U(t),tel.
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4 Mixed type second-order duality

Let M ={L.2,...m},L={1,2,..,1),1, €M, =0,12,...,rwith 1, "I, =g,

azp (Jl,=Mand J, cLa=012..rwith J,nJ,=¢,a= 4 ]I, =L

a=1 a=1

In relation to the problem (VEP), consider the following multiobjective variational

problem:

(MVED): Maximize

((FEun+ 3y 08 €un+ 3 2 O @uo -2 A0" Ao,

...,j(f P(t,u,u)+ Z y (t)g’ (t,u,u)+ Dz ()h* (t,u,u) —%ﬂ(t)T AP S(t))dt)
subject to
u@) =a, ub) = (25)
ATf,(tu,u) + y(t)" g, (t,u,u) +z(t)" h, (t,u,u)
—D(A" f,(t,u,u)+ y(t) g, (t,u,u)+z()"h,(t,u,u))+ BAAM) =0, tel  (26)

Zj(yj(t)gj(t,u,u)—%ﬂ(t)TGjﬂ(t)jdt >0,0=12,..,r (27)
> j(zk(t)hk(t,u,U) —%,B(t)T H kﬂ(t)jdt >0,,a=12..r (28)
yt) >0, tel (29)

/1>o,zp‘/1i =1,,a=12,..,r (30)

i=1

where
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Al = fuiu—ZDfUU+D2fuu—D3fuu+Z( I(t)g/ (t,u, u)) —ZDZ( J(t)g] (tu,u))

+D? Z(y 9! .y, u)) D° > (v (t)gu-(t,u,u)) +Z( (O (t,u,u))
—ZDZ( (t)h! (t,u,u)) +D* Y (M} (t,u,0)) —D° Y (2 (Ohi (tu,u)) ,

the matrix B is the same as defined in the previous section.
G =(y!(t)gl(tuu)) —2D(yI(t)gd(tuu))
+D*(yI(Dgl(tu,w) -D¥(yi(D)gl(tuw)) |
H :(zk(t)huk(t,u,u))u —2D(zk(t)huk(t,u,u))u
+D2(zk(t)h§(t,u,u))u —D3(zk(t)h§(t,u,U))U,

We denote by Q the set of feasible solutions of (MVED).

Theorem 4.1(Weak duality): Let X € X and (u,4,y,z,B(t)) e Q be efficient

solutions of (VEP) and (MVED) respectively, such that with respect to the same

(Cy): _[(/IT )+ D Y9l (L) + D mh(t ,,)]dt is  second-order

| jely kelg
pseudoinvex

(Cy): j(y(t)T g(t,.,.))dt is second-order quasi-invex, and
|

(Cy): _[(z(t)T h(t,., .))dt is second-order quasi-invex.
|

Then

jff(t,x, X)dt

<J‘{f (tuu)+ Dy g’ uu)+ Y z®h“(tu, u)——,B(t) A[a’(t)}

Jjely kedy

forsome re K, and
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ij(t,x, X)dt

< j{fq(t u i)+ Yy gl uu)+ Y, zk(t)hk(t,u,u)—%ﬂ(t)T Aqﬁ(t)}dt

jelg ked,

cannot hold.

Proof: Suppose to the contrary that there is x feasible for (VEP) and
(u,4,y,z, B(t)) feasible for (MVED) such that

jff(t,x, X)dt

jely kedg

<j{f tuu)+ >y ®g’tuu)+ > zk(t)hk(t,u,u)—%ﬁ(t)T A’ﬂ(t)}dt
forsome re{l,2,...,, p}

J'fq(t,x,X)dt

<I{fq(t u, u)+Zy g’ tu,u)+ > z®h“(t,u, u)——,B(t) Aqﬂ(t)}
g ET

Multiplying these by 2 > 0 we have

j AT (X, X)dt

j{ﬂf(t,u,u)+2y (g’ (t,u,u)+ Y- 2 (H)h" (t,u,u)——ﬂ(t) (ﬁTA)ﬂ(t)}d

Jjelg kedy

which by the hypothesis (C;) yields
j{n (AT, + 2y ed + X 2 Oh)

i€lp kedg

( j AT+ >y gl + > 2 0hf) +7T (AT ABMIt <0 (31)

jelp kedg
for a=12,...,r

(YO gt < > [yi(t)T gj(t,u,u)—%ﬁ(t)TG"ﬂ(t)jdt,

jelg 1 jely 1
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which by the hypothesis (C,) gives
z | [ y ()" gJ(t,u,u))+ (‘Z’Z] (v'®" o (t,u,u))+f7TG’ﬂ(t)}dt <0,

a=12,..r

and so

2. j{ y (t)TgJ(t,u,u))+[Z—’t7j (y"(t)TgJ(t,u,u))mTG"ﬂ(t)}dt;0
je UI

implies

I {yf (v 0, (t,u,w) +(‘;—’t7] (Y g, (t,u,0)) + nTGﬁ(t)}dt <0 @

Also for ¢ =1,2,....r,

Zj 24(t)" h* (t, %, X) Jdt < ZI( k(t)Thk(t,u,u)—%ﬂ(t)THkﬂ(t)jdt,

ked, 1

By the hypothesis (Cj), this yields

> j{ff (2@ h (t,u,u))+((3—17j (@) hlf(t,u,u))JrnTHkﬂ(t)}dt <0,

a=12,..r

and so

> I{UT(zk(t)Thuk(t,u,u)){C;—'g] (@) h;(t,u,u))+nTHkﬂ(t)}dtéo

o
keU J,

implies

j{yf (2" h, (t,u,u))+ (Z—?J (z®hy (tu,u))+ 7" Hﬂ(t)}dt <0 (33)

Combining (31), (32) and (33), we have
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j [7" (471, +y(®) g, +2()"h, )+(Z—’t7j (A" f,+y®) g, +2(0)"h,)

+7" (ATA+G+H)A(t)dt < 0

0> [ [(ATf, +y(®) g, + 2()"h, ) = D(A" f, + y()" g, +2())" h, ) + BA() fit

t:
+n (A7 +y© g, + 20" hy ) _

t=b
which, by using 7 = 7(t, x,u)|t . 0 implies

[ [(A7 1, +y@®" g, +2®)"h,)-D(A" f, + y(®) g, +2(O)"h, )+ BA() jdt <0,

contradicting to the feasibility of (u, 4,y,z, A(t))for (MVED).

Hence the conclusion of the theorem is true under stated hypotheses.

Theorem 4.2 (Strong Duality): Let X be normal and efficient. Then there exist

A €R” and piecewise smooth functions ¥:1 — R™and Z:1 — R'such that
(Y(t),/T, y(t),Z(t), B(t) =O)is feasible for (MVED) and the objective values of
(VEP) and (MVED) are equal. If also hypothesis of Theorem 4.1 hold, then
(X, 2, ¥(),Z(t), B(t) = 0)is efficient for (MVED).
Proof: By Theorem 2.1, there exist A e Rp, piecewise smooth functions
y:1 > R"and Z:| — R'such that
AT E Y 9, +ZM)"h —D(ATf, +¥() g, +Z(t) h)=0tel
Yy 9(t,x,x)=0
Z(t)"h(t,X,X) =0

A> O,Zp:/? =1
i=1

y(t)'>0,tel
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From the above relation, we have
J(707 %0 -2 BT 6B ot -
|
and
|

consequently  (X,4,Y,Z,5 =0) for (MVED).

VR

Z(t)" h(t, X, X) —%B(I)T Gﬁ(t)jdt =

Consider

Ifi(t,Y,Y)dt

=j{f XX+ Dy gl (%, %)+ > 2 (h“(, YY)——,B('[) Aﬂ(t)}

| jelg kedg
for ieK.

This implies the objective values of (VEP) and (MVED) are equal.
If (X(t), 2, ¥(t). Z(t), B(t) = 0)is not efficient solution for (MVED), then there

exist feasible (T, 1,,7, B for (MVED) such that

I{f‘(t,ﬁ,ﬁ)+z Itg! o, m)+ D 7 (h“(t, UU)——,B(‘[) Arﬁ(t)}dt

>_[{f 77+Zy(t)g (t77)+sz(t)h (t,X Y)}dt

forsome reK

j{f‘*(t U,0)+ ) Y (g’ (t,T,0)+ > Z(Mh“(, UU)——,B(t) A B(t) vt

1 jely kely

>I{f‘*(t XX)+ ) Y (g (6 X,X)+ > 7", X )}dt q#T.

jelo keJy

Multiplying by A(> 0), these imply
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j{ﬂf(t U,0)+ > ¥ (g t,T,u)+ ) 7Mh"(t,T, U)——[)’(t) (A7 A)ﬁ(t)}d

ielo kedy

>I{/ﬂf(t XX)+ > Y g (X, X)+ D 7 ¢, X, x)}dt

jelg kedg

which because of pseudoinvexity of

I( Zy g’ ( ka(t)h }dt implies
J' (2, + 29 Yo+ LT OR) + [ jﬂfu+27j<t)gd+sz(t)h:)
-2 B (7 Bl <O

As earlier, it implies

J’q A f, +Zy ), +Zz ] D[Tfu+27j(t)guj+27k(t)h§]

+HATAA(M)1dt <0

Also for ¢ =1,2,...,r, we have

(34)

> [(v'o e’ x i < 3 [[ 707 006 -3 5oy A f

ISP jel,

Zf(fk(t)Thk(t,Y,x) dt < J.(_k(t) h¥ (tUU)——ﬂ(t) H ﬁ(t)j

ked, | ked,
This, because of the second-order quasi-invexity of Z I ()" g
jel, 1

and ZI _k(t) h (t )dt for a=12,..,r gives

ked, |

Sl (v ol (t,U,U‘))+(?j—’t7j (Y0 gl ﬁ))+Gj[7(t)]dt§0,

iel,

a=12,...r and
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ked, |
a=12,..r
These imply

[7| X (v'09!)-D X (v'0gl)+| X 6" |B) dt<0
| jeLr:Jlla jeL;Jlla JE(IL:Jll

and

[77] > (Z*On)-D X (Z“mhf)+| X H* B [dt<0
I kELrJJa kEU‘]a keo 3,

a=1

Combining (34), (35) and (36), we have

pIEd (fk(t)Thuk(t,U,u*))+(i_7t7) (7' O™ (0. 0)+ HB(Y) <0,
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(35)

(36)

[ [(AT,+ YO 9, +Z(®7h,)-D(Z" f, + YO g, +Z(®)"h, )+ BA(®) [dt < 0

contradicting the feasibility of (U,/’L,V, Z, E) for (MVED).Hence the efficiency of

(X,2,¥.Z, 8 = 0) for (MVED) follows.

The following theorem gives Mangasarian type [5] strict-converse duality for

(VEP) and (MVED):

Theorem 4.3(Strict converse duality): Let X and (T,1,7,Z,B(t))eQ be

efficient solutions of (VEP) and (MVED) respectively, such that
j AT (X, X)dt

j{/l f(t,o,0)+ > v 09’ t,uT,m)+)> 7 t,u,u)—% )" (A7 A)ﬂ()}t 37)

jely ked,

If with respect to the same 7
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(Dy): J(/IT )+ Y9l (L) + D mh(t ,,)jdt is  second-order

| jely kelg
strictly pseudoinvex

(D2): Zj M g (t,... )dt a =1,2,...,ris second-order quasi-invex, and

jelg 1

D3): > j(zk(t)T h (t,.,.))dt, a =1,2,...,ris second-order quasi-invex,

ked, |

then

X(t)=u(t), tel
Proof: Suppose X(t)=Uu(t), tel. By the hypothesis (Di), (37) implies for
n=n(tX,0)

Jor (771, T 700+ 7 o)+ 5 j(ﬂf+zy(t)gu+2z OR)

jely kedy jely kedy

+7 (/1 A) ﬂ(t)]dt <0 (38)
As earlier, we have

j[ U o' (v'0el)+ (d ] (Y’ (09! )+n'G' A1)
JELJI

+U o' (7 on)+ [Z’Zj (z“(Mh ) +n H*B()ldt < 0 (39)
keLJJa

implying

[l7" (YO g, +z) hu)+[‘3—’t7j (YO g, +Z®"h,)+7" (G+H)BE) [t <0

i
Combining (38) and (39) and then integrating by parts with n=0,at t=a and
t=b, we have

jyf [(,Tf f, +y(1)" 9, +Z(t)"h,)-D(1" f,+Y(®) g, +Z()"h, )+ BB(t)]dt <0,
conltradicting the feasibility of(U, 1,9, f,ﬁ)for (MVED). Hence

X(t) =T(t), tel.
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5 Natural boundary values

It is possible to extend the duality theorems validated in the previous two
sections to the corresponding multiobjective variational problem with natural
boundary values rather than fixed end points. The proofs of the duality theorems
for these pairs of dual problems can be proved analogously to the proofs of the
theorems of the preceding sections except that some slight modifications are

needed.
(VEP)N: Minimize (j F1(E X, 0t | f p(t,x,X)dt]
| |

subject to

g( )éO tel
h(t,x,x)=0,tel
(M-WED)N: Maximize U (f*(t,u,u))d j(fp(t,u,u))dt]

subject to

ATE, Y g, + 2O h, ~D(AT f, +y(®) g, +2() h, ) +BA1) =0
j(y(t)T g (t,u,u)—%ﬁ(t)TGﬁ(t)jdt >0

j(z(t)T h(t,u,u)—%ﬁ'(t)T Hﬂ(t)jdt >0

A>0,
y(t) > 0,tel

ATf,+yt) g, +z(t)'h,=0,at t=a and t=b.
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(MVED)N: Maximize

v+ Xy O’ Guo)+ Y 2 O u.u)-= A0 A SO

ielg kedg

...,j(f P(tuu)+ ]y (g’ (tu,u)+ )z ()h* (tu,u) —%ﬂ(t)T AP B(t))dt)

jelg kedy

subject to

(A" f,+y(@®" g, +2(®)"h,)-D (AT, +y(t) g, +z(t)"h,)+BA1) =0, tel

Zj(yj(t)gj(t,u,u)—%ﬁ(t)TGj,B(t)jdt >0, a=12,..r

> j(zk(t)hk(t,u,u)—%ﬂ(tf H ",B(t)jdt >0,a=12,.,r

ked, 1

25032 =1
i=1

y(t) >0, tel

AT, +y(t) g, +z(t)"h, =0, at t=a and t=b.

6 Multiobjective non-linear programming problems

If all the function in the problems are independent of t, then we have
(VEP)o: Minimize ( f*(x),..., f*(x))

subject to
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subject to
ATf,+yTg,+2'h, =0

yTg(U)—%ﬂTVZyTg(U)ﬂ; 0

ZTh(U)—%ﬂTVZZTh(U)ﬂ >0

A>0, y>0.

(MVED)o: Maximize

(ﬂw+2wwm+2ﬂwwr%ENﬂm

jelg kedg

FP)+2 y'g’ )+ ), zn"(u)-

jely kedy

subject to
ATf,+yTg,+2'h, =0

2 (ngj(u)—%ﬂTvzngj(U)ﬂj 20, a=12.r

i<,

> (zkhk(u)—%ﬁTvzzkhk(u)ﬂj >0,a=12,.,r

keld,

P
2>0) 2" =1
i=1

y(t) > 0.

where

Ai = fuiu + z nguju (U)+ Z Zkh:u (U), ieK

jel, ked,

1 1.0
SFP)
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These problems (M-WED), and (MVED), are not explicitly reported in the

literature. However, if # = 0, these reduce to the problems treated by Weir [6].
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