
Theoretical Mathematics & Applications, vol. 3, no. 1, 2013, 211-220

ISSN: 1792-9687 (print), 1792-9709 (online)

Scienpress Ltd, 2013

Around Prime Numbers And Twin Primes

Ikorong Anouk Gilbert Nemron1

Abstract

In this paper, we characterize primes; we give two characterizations

of twin primes and we state the general conjecture. We recall (see [1]

or [2] or [3] or [4] or [5] or [6] or [7] or [8]) that an integer t is a twin

prime, if t is a prime ≥ 3 and if t − 2 or t + 2 is also a prime ≥ 3; for

example, it is easy to check that (881, 883) is a couple of twin primes.
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Introduction

This paper is divided into three sections. In section 1, we state and prove a

Theorem which implies characterizations of primes and twin primes. In section

2, we use the Theorems of section 1 to characterize primes and to give two

characterizations of twin primes. In section 3, using the Theorem of section 1,

we state the general conjecture from which all the results mentioned follow.
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1 Statement and proof of Theorem which im-

plies characterizations of primes and twin

primes

We recall that for every integer n ≥ 1, n! is defined as follow:

n! =


1 if n = 1,

2 if n = 2,

1× 2× ....× n if n ≥ 3.

We also recall that if x and z are integers such that x ≥ 1 and z ≥ 1, then x

divides z if there exists an integer y ≥ 1, such that z = xy.

Theorem 1.1. Let n be an integer ≥ 4. Then, n+1 is prime or n+1 divides

n!.

Before proving Theorem 1.1, let us remark the following.

Remark 1.2. Let n be an integer ≥ 4. If n+ 1 = p2 (where p is prime), then

n+ 1 divides n!.

Proof. Otherwise [we reason by reduction to absurd], clearly

p2 does not divide n! (1)

and we observe the following.

Observation 1.2.1. p is a prime ≥ 3.

Otherwise, clearly p = 2, and noticing (via the hypotheses) that n + 1 = p2,

then using the previous two equalities, it becomes trivial to deduce that n = 3;

a contradiction, since n ≥ 4 (via the hypotheses).

Observation 1.2.2. p ≤ n.

Otherwise, p > n and the previous inequality clearly says that

p ≥ n+ 1. (2)

Now noticing (via the hypotheses) that n + 1 = p2, then, using the previous

equality and using (2), we trivially deduce that

p ≥ n+ 1 and n+ 1 = p2.

From these relations we clearly have that p ≥ p2; a contradiction, since p ≥ 3

(by using Observation 1.2.1).
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Observation 1.2.3. 2p ≤ n.

Otherwise, 2p > n and the previous inequality clearly says that

2p ≥ n+ 1. (3)

Now noticing (via the hypotheses) that n + 1 = p2, then, using the previous

equality and using (3), we trivially deduce that

2p ≥ n+ 1 and n+ 1 = p2.

which clearly says that 2p ≥ p2; a contradiction, since p ≥ 3 (by using Obser-

vation 1.2.1). Observation 1.2.3 follows.

Observation 1.2.4. 2p ̸= p.

Indeed, it is immediate that 2p ̸= p , since p ≥ 3 (by using Observation 1.2.1).

Observation 1.2.4 follows.

The previous trivial observations made, look at p (recall that p is prime); ob-

serving (by Observations 1.2.2 and 1.2.3 and 1.2.4) that p ≤ n and 2p ≤ n and

p ̸= 2p, then, it becomes trivial to deduce that

{p, 2p} ⊆ {1, 2, 3, ....., n− 1, n}.

which immediately implies that

p× 2p divides 1× 2× 3× ...× n− 1× n.

This clearly says that 2p2 divides n!; in particular p2 clearly divides n! and

this contradicts (1). Remark 1.2 follows. �
The previous remark made, now we prove Theorem 1.1.

Proof of Theorem 1.1. If n + 1 is prime, then the proof is ended. If n + 1 is

not prime, then n+ 1 divides n!. Otherwise (we reason by reduction absurd)

n+ 1 is not prime and n+ 1 does not divide n!, (4)

and we observe the following.

Observation 1.1.1. Let p be a prime such that n+1 is divisible by p ( such a p

clearly exists). Then n+1
p

is an integer and n+1
p

≤ n and p ≤ n and n+1
p

= p.

Indeed, it is immediate that n+1
p

is an integer [since p divides n + 1], and

it is also immediate that n+1
p

≤ n [otherwise, n + 1 > np; now, remarking

that p ≥ 2 (since p is prime), then the previous two inequalities imply that
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n + 1 > 2n; so 1 > n and we have a contradiction, since n ≥ 4, by the

hypotheses]. Clearly p ≤ n [otherwise, p > n; now, recalling that n + 1 is

divisible by p, then the previous inequality implies that n + 1 = p. Recalling

that p is prime, then the previous equality clearly says that n + 1 is prime

and this contradicts (4). That being so, to prove Observation 1.1.1, it suffices

to prove that n+1
p

= p. Fact: n+1
p

= p [otherwise, clearly n+1
p

̸= p; now,

remarking (by using the previous) that n+1
p

is an integer and n+1
p

≤ n and

p ≤ n; then it becomes trivial to deduce that n+1
p

and p are two different

integers such that {p, n+1
p
} ⊆ {1, 2, 3, ....., n − 1, n}. The previous inclusion

immediately implies that p× n+1
p

divides 1× 2× 3× ...× n− 1× n; therefore

n + 1 divides n!, and this contradicts (4). So n+1
p

= p]. Observation 1.1.1

follows.

The previous trivial observation made, look at n + 1; observing (by using

Observation 1.1.1) that p is prime such that n+1
p

= p, clearly

n+ 1 = p2, where p is prime.

Using now this and Remark 1.2, then it becomes trivial to deduce that n + 1

divides n!, and this contradicts (4). Theorem 1.1 follows. �
Theorem 1.1 immediately implies the characterizations of primes and twin

primes.

2 Characterizations of primes and twin primes

In this section, using Theorem 1.1, we characterize prime numbers and we also

give two characterizations of twin primes.

Theorem 2.1. (Characterization of primes). Let n be an integer ≥ 4 and look

at n+ 1. Then the following are equivalent.

(1). n+ 1 is prime.

(2). n+ 1 does not divide n!.

To prove Theorem 2.1, we need a Theorem of Euclid.

Theorem 2.2 (Euclid). Let a, b and c, be integers such that a ≥ 1, b ≥ 1

and c ≥ 1. If a divides bc and if the greatest common divisor of a and b is 1,

then a divides c.�
Corollary 2.3. Let n be an integer ≥ 1 and look at n!. Now let p be a prime

≥ n + 1; then the greatest common divisor of n! and p is 1 (in particular, p
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does not divide n!).

Proof. Immediate, and follows immediately by using Theorem 2.2 and the

definition of n!, and by observing that p is a prime ≥ n+ 1.�
Now, we prove Theorem 2.1.

Proof of Theorem 2.1. (1) ⇒ (2)]. Immediate, by remarking that n + 1 is

prime and by using Corollary 2.3.

(2) ⇒ (1)]. Immediate, by remarking that n + 1 does not divide n! and by

using Theorem 1.1. �
Using Theorem 2.1, then the following corollary becomes immediate.

Corollary 2.4.Let n be an integer ≥ 4 and look at n + 3. Then the following

are equivalent.

(i). n+ 3 is prime.

(ii). n+ 3 does not divide (n+ 2)!.

Proof. Immediate, and follows from Theorem 2.1, where we replace n by

n+ 2.�
Using Theorem 2.1 and Corollary 2.4, then we have the following weak

characterization of twin primes.

Theorem 2.5. (A weak characterization of twin primes). Let n be an integer

≥ 4 and look at the couple (n+ 1, n+ 3). Then the following are equivalent

(a). (n+ 1, n+ 3) is a couple of twin primes.

(b). n+ 1 does not divide n! and n+ 3 does not divide (n+ 2)!.

Proof. (a) ⇒ (b)]. Immediate. Indeed, if (n + 1, n + 3) is a couple of twin

primes, then, n+ 1 does not divide n! (by using Theorem 2.1) and n+ 3 does

not divide (n+ 2)! (by using Corollary 2.4).

(b) ⇒ (a)]. Immediate. Indeed, if n + 1 does not divide n! and if n + 3 does

not divide (n + 2)!, then n + 1 is prime (by using Theorem 2.1) and n + 3 is

also prime (by using Corollary 2.4); consequently (n+ 1, n+ 3) is a couple of

twin primes. �
Theorem 2.6. (A non-weak characterization of twin primes). Let n be an

integer ≥ 4 and look at the couple (n + 1, n + 3). Then the following are

equivalent

(c). (n+ 1, n+ 3) is a couple of twin primes.

(d). n+ 1 does not divide n! and n+ 3 does not divide n!.

To prove simply Theorem 2.6, we need the following two lemmas.

Lemma 2.7. Let n be an integer ≥ 4. If n+ 1 is prime and if n+ 3 does not
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divide n!, then n+ 3 is prime.

Proof. Otherwise [we reason by reduction to absurd], clearly

n+ 1 is prime and n+ 3 does not divide n! andn+ 3 is not prime, (5)

and we observe the following.

Observation 2.7.1. Let p be a prime such that n + 3 is divisible by p ( such a

p clearly exists). Then p ̸= n + 3 and p ̸= n + 2 and p ̸= n + 1 and p ≤ n.

Indeed, it is immediate that p ̸= n + 3 [since n + 3 is not prime (use (5), and

since p is prime]. It is also immediate that p ̸= n+2 and p ̸= n+1 [[otherwise

p = n+ 2 or p = n+ 1.

From this and recalling that p divides n+ 3, it becomes trivial to deduce that

n+2 divides n+3 or n+1 divides n+3. We have a contradiction [since n ≥ 4

(use the hypotheses), therefore n+2 does not divide n+3 and n+1 does not

divide n+3]. So p ̸= n+2 and p ̸= n+1]]. That being so, to prove Observation

2.7.1, it suffices to prove that p ≤ n. Fact: p ≤ n [indeed, recalling that p

divides n + 3, and since we have proved that p ̸= n + 3 and p ̸= n + 2 and

p ̸= n + 1, then it becomes trivial to deduce that p ≤ n]. Observation 2.7.1

follows.

Observation 2.7.2. Let p be a prime such that n + 3 is divisible by p ( such a

p clearly exists). Then n+3
p

is an integer and n+3
p

≤ n and n+3
p

= p.

Indeed, it is immediate that n+3
p

is an integer [since p divides n+ 3], and it is

also immediate that n+3
p

≤ n [otherwise, n+3 > np; now, remarking that p ≥ 2

(since p is prime), then the previous two inequalities imply that n + 3 > 2n;

so 3 > n and we have a contradiction, since n ≥ 4, by the hypotheses]. That

being so, to prove Observation 2.7.2, it suffices to prove that n+3
p

= p. Fact:
n+3
p

= p [otherwise, clearly n+3
p

̸= p; now, remarking (by using the previous)

that n+3
p

is an integer and n+3
p

≤ n, and observing (by using Observation

2.7.1) that p ≤ n; then it becomes trivial to deduce that n+3
p

and p are two

different integers such that {p, n+3
p
} ⊆ {1, 2, 3, ....., n − 1, n}. The previous

inclusion immediately implies that p× n+3
p

divides 1× 2× 3× ...× n− 1× n;

therefore n+ 3 divides n!, and this contradicts (5). So n+3
p

= p]. Observation

2.7.2 follows.

Observation 2.7.3. Let p be a prime such that n + 3 is divisible by p ( such a

p clearly exists). Then p ̸= 2. Otherwise, p = 2; now, observing ( by using
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Observation 2.7.2) that n+3
p

= p, then the previous two equalities immediately

imply that n+3
2

= 2; clearly n+ 3 = 4 and so n = 1. We have a contradiction,

since n ≥ 4, by the hypotheses. Observation 2.7.3 follows.

Observation 2.7.4. Let p be a prime such that n + 3 is divisible by p ( such a

p clearly exists). Then p ̸= 3. Otherwise, p = 3; now, observing ( by using

Observation 2.7.2) that n+3
p

= p, then the previous two equalities immediately

imply that n+3
3

= 3; clearly n+ 3 = 9 and so n = 6. Clearly n+ 3 divides n!,

and this contradicts (5) (note that n+3 divides n!, since n+3 = 9, n = 6 and

9 divides 6!). Observation 2.7.4 follows.

Observation 2.7.5. Let p be a prime such that n + 3 is divisible by p ( such a

p clearly exists). Then p ≥ 5 and 2(n+3)
p

is an integer and 2(n+3)
p

≤ n and
2(n+3)

p
̸= p.

Clearly p ≥ 5 [indeed, observe that p ̸= 2 (by Observation 2.7.3) and p ̸= 3 (by

Observation 2.7.4); now using the previous and the fact that p is prime, then

it becomes trivial to deduce that p ≥ 5]. Indeed, it is immediate that 2(n+3)
p

is an integer [since p divides n + 3], and it is also immediate that 2(n+3)
p

≤ n

[otherwise, 2(n+3) > np; now, remarking ( by using the previous) that p ≥ 5,

then the previous two inequalities imply that 2(n + 3) > 5n; so 6 > 3n and

therefore 2 > n. We have a contradiction, since n ≥ 4, by the hypotheses].

That being so, to prove Observation 2.7.5, it suffices to prove that 2(n+3)
p

̸= p.

Fact: 2(n+3)
p

̸= p [otherwise, clearly 2(n+3)
p

= p; now, remarking (by using

Observation 2.7.2) that n+3
p

= p, then the previous two equalities immediacy

imply that 2(n+3)
p

= n+3
p
; so 2(n + 3) = n + 3 and this last equality is clearly

impossible. So 2(n+3)
p

̸= p]. Observation 2.7.5 follows.

The previous trivial observations made, look at n+ 3; observing (by using

Observation 2.7.5) that 2(n+3)
p

is an integer and 2(n+3)
p

≤ n and 2(n+3)
p

̸= p,

and remarking (by using Observation 2.7.1) that p ≤ n, then it becomes trivial

to deduce that 2(n+3)
p

and p are two different integers such that {p, 2(n+3)
p

} ⊆
{1, 2, 3, ....., n − 1, n}. The previous inclusion immediately implies that p ×
2(n+3)

p
divides 1× 2× 3× ...× n− 1× n; therefore 2(n+ 3) divides n!; clearly

n+ 3 divides n! and this contradicts (5). Lemma 2.7 follows. �
Lemma 2.8. Let n be an integer ≥ 4. If n+ 1 is prime and if n+ 3 does not

divide n!, then (n+ 1, n+ 3) is a couple of twin primes.

Proof.Indeed, since n + 1 is prime and n + 3 does not divide n!, then Lemma

2.7 implies that n + 3 is prime; therefore (n + 1, n + 3) is a couple of twin
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primes. �
The previous simple two lemmas made, we now prove Theorem 2.6.

Proof of Theorem 2.6. (c) ⇒ (d)]. Immediate. Indeed, since (n + 1, n + 3) is

a couple of twin primes, clearly n + 1 does not divide n! (by observing that

n+1 is prime and by using Theorem 2.1) and clearly n+3 does not divide n!

[ otherwise n+ 3 divides n! and we trivially deduce that

n+ 3 divides (n+ 2)!.

Using this and Corollary 2.4, then it becomes immediate to deduce that n+3

is not prime. A contradiction, since (n + 1, n + 3) is a couple of twin primes,

and in particular n+ 3 is prime].

(d) ⇒ (c)]. Immediate. Indeed, if n + 1 does not divide n! and if n + 3 does

not divide n!, clearly n + 1 is prime (by observing that n + 1 does not divide

n! and by using Theorem 2.1) and clearly (n + 1, n + 3) is a couple of twin

primes [ by remarking that n+1 is prime (use the previous) and by observing

that n+ 3 does not divide n! and by using Lemma 2, 8]. �

3 Statement of the general conjecture from

which stated results follow

Indeed, using Theorem 1.1, then it becomes a little natural to us to conjecture

the following:

Conjecture 3.1. For every integer j ≥ 0 and for every integer n ≥ 4 + j;

then, n+ 1 + j is prime or n+ 1 + j divides n!.

It is immediate that the previous conjecture implies Theorem 1.1, and there-

fore, all the results proved in section 1 and section 2, are only an immedi-

ate consequence of Conjecture 3.1. Moreover, if Conjecture 3.1 is true, then,

putting j = n− 4 (n can be very large), it immediately follows that 2n− 3 is

prime or 2n− 3 divides n!.�.
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