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Abstract 

In this article, the residual power series method for solving first-order initial value 

problems is introduced. The new method provides the solution in the form of a 

power series with easily computable components using Maple13 software package. 

The proposed method obtains Maclaurin expansion of the solution and reproduces 

the exact solution when the solution is polynomial. The proposed technique is 

applied to several test examples to illustrate the accuracy, efficiency, and 

applicability of the method. 
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1  Introduction  

Initial value problems (IVPs) of ordinary differential equations arise in a 

number of important applications in many fields. Various applications of IVPs to 

physical, biological, and chemical processes are well documented in the literature, 

for more about this area one can see [1-5] and the references therein. In general, 

IVPs do not always have solutions which we can obtain using analytical methods. 

In fact, many of real physical phenomena encountered, are almost impossible to 

solve by this technique. Due to this, some authors have proposed numerical and 

approximate methods to approximate the solutions of IVPs [7-10]. 

    However, none of previous studies propose a methodical way to solve IVPs. 

Moreover, previous studies require more effort to achieve the results and usually 

they are suited for a linear form. But on the other aspects as well, the applications 

of other versions of series solutions to linear and nonlinear problems can be found 

in [11-16] and for numerical solvability of different categories of differential 

equations one can consult the references [17, 18]. 

    In the present paper, we apply the residual power series (RPS) method [19] to 

find series solutions to strongly linear and nonlinear IVPs. The RPS method is 

effective and easy to use for solving linear and nonlinear IVPs without 

linearization, perturbation, or discretization [19]. This method constructs an 

analytical approximate solution in the form of a polynomial. The RPS method is 

different from the traditional higher order Taylor series method. The Taylor series 

method is computationally expensive for large orders. The RPS method is an 

alternative procedure for obtaining analytic Maclaurin series solution of IVPs. By 

using residual error concept, we get a series solution, in practice a truncated series 

solution.  

    The RPS method has the following characteristics [19]; first, the method 

obtains Maclaurin expansion of the solution; as a result, the exact solution is 

available when the solution is polynomial. Moreover the solutions and all its 

derivatives are applicable for each arbitrary point in the given interval. Second, the 
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RPS method needs small computational requirements with high precision and less 

time. 

    The purpose of this paper is to obtain approximate power series solutions for 

IVPs of the following form: 

   𝑥′(𝑡) = 𝑓�𝑡, 𝑥(𝑡)�, 𝑡 ∈ [0,𝑎],  (1) 

subject to the initial conditions 

                                     𝑥(0) = x0,                                  (2) 

where, 𝑓: [0,𝑎] × ℝ → ℝ are nonlinear continuous function, 𝑥(𝑡) are unknown 

functions of independent variable t to be determined, and 0a > . Throughout this 

paper, we assume that ,f x  are analytic functions on the given interval. Also, we 

assume that f  satisfies all the necessary requirements for the existence of a 

unique solution. 

    The reminder of the paper is as follows: in the next section, we present the 

basic idea of the RPS method. In section 3, numerical examples are given to 

illustrate the capability of proposed method. This article ends in section 4 with 

some concluding remarks. 

 

 

2  Solution of system of IVPs by RPS method 
In this section, we employ our technique of the RPS method to find out series 

solution for IVPs subject to given initial conditions. 

    The RPS method consists in expressing the solutions of IVPs (1) and (2) as a 

power series expansion about the initial point 0t t=  [19]. To achieve our goal, we 

suppose that this solution takes the form 

                           
0

( ) m
m

m
x t c t

∞

=

= ∑ , 

where ( ) m
m mx t c t=  are terms of approximations. 

    Obviously, when 0m = , since 0 ( )x t  satisfy the initial conditions (2), where 
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0 ( )x t  is the initial guess approximation of ( )x t , we have 0 0 (0) (0)c x x= = . 

    If we choose 0 ( ) (0)x t x=  as initial guess approximation of ( )x t , then we 

can calculate ( )mx t  for 1, 2,m =   and approximate the solution ( )x t  of IVP (1) 

and (2) by the k th-truncated series 

                                  
0

( )
k

k m
m

m
x t c t

=

= ∑                               (3) 

Prior to applying the RPS method, we rewrite IVP (1) and (2) in the form of the 

following: 

                       ( ) ( , ( )) 0x t f t x t′ − =                     (4)    

The subsisting of k th-truncated series ( )kx t  into Eq. (4) leads to the following 

definition for the k th residual function: 

             1

1 0
Res ( ) ( , )

k k
k m m

m m
m m

t mc t f t c t−

= =

= −∑ ∑                 (5) 

and the following ∞ th residual function: 

Res ( ) lim Res ( )k

k
t t∞

→∞
= . 

    It easy to see that,  Res ( ) 0t∞ =  for each [0, ]t a∈ . This show that 

Res ( )t∞  is infinitely many times differentiable at 0t = . On the other hand,  

Res (0) Res (0) 0
s s

k
s s

d d
dt dt

∞ = = , for each 1,2, ,s k=  . In fact, this relation is a 

fundamental rule in RPS method and its applications [19]. 

    Now, in order to obtain the 1st-approximate solutions, we put 1k = , 

substitute 0t =  into Eq. (5), and using the fact that 1Res (0) Res (0) 0∞ = = , to 

conclude 1 0(0, ) (0, (0))c f c f x= = . 

Thus, using 1st-truncated series the first approximation for IVP (1) and (2) can be 

written as 
1( ) (0) (0, (0))x t x f x t= + . 
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Similarly, to find the 2nd approximation, we put 2k =  and 
2

2

0
( ) m

m
m

x t c t
=

= ∑ . On 

the other hand, we differentiate both sides of Eq. (5) with respect to t  and 

substitute 0t = , to get 

2
2 0 1 02Res (0) 2 (0, ) (0, )d c f c c f c

dt t x
∂ ∂

= − −
∂ ∂

. 

In fact 2Res (0) Res (0) 0d d
dt dt

∞= = . Thus, we can write 

2 1 2

1 (0, (0)) (0, (0))
2

c f x c f x
t x
∂ ∂ = + ∂ ∂ 

. 

Hence, using 2nd-truncated series the second approximation for IVP (1) and (2) 

can be written as 

2 2
1 2

1( ) (0) (0, (0)) (0, (0)) (0, (0)) (0, (0))
2

x t x f x t f x f x f x t
t x
∂ ∂ = + + + ∂ ∂ 

. 

    This procedure can be repeated till the arbitrary order coefficients of RPS 

solution for IVP (1) and (2) are obtained. Moreover, higher accuracy can be 

achieved by evaluating more components of the solution. In other words, choose 

large k  in the truncation series (3). The next theorem shows convergence of the 

RPS method. 

 

Theorem 2.1 [19] Suppose that ( )x t  is the exact solution for IVP (1) and (2). 

Then, the approximate solution obtained by the RPS method is just the Maclaurin 

expansion of ( )x t . 

 

Corollary 2.1 [19] If ( )x t  or some components of ( )x t  is a polynomial, then 

the RPS method will be obtained the exact solution. 

 

    It will be convenient to have a notation for the error in the approximation 

( ) ( )kx t x t≈ . Accordingly, we will let Re ( )km t  denote the difference between 
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( )x t  and its k th Maclaurin polynomial; that is, 

( )

1
Re ( ) ( ) ( ) (0)k k m m

m k
m t x t x t x t

∞

= +

= − = ∑  

    The functions Re ( )km t  are called the k th remainder for the Maclaurin 

series of ( )x t . In fact, it often happens that the remainders Re ( )km t  become 

smaller and smaller, approaching zero, as k gets large. 

 

 

3  Numerical results and discussion  

In this section, the validity and efficiency of the proposed method is 

illustrated by three examples. The examples reflect the behavior of the solution 

with different nonhomogeneous terms and type of nonlinearity. Throughout this 

paper, all the symbolic and numerical computations performed by using Maple 13 

software package. 

    To show the accuracy of the present method for our problems, we report 

three types of error. The first one is the exact error, , and defined as 

Ext ( ) : ( ) ( )k kt x t x t= − , while the residual, Res , and relative, Rel , errors are 

defined, respectively, by Res ( ) : ( ) ( , ( ))k k kdt x t f t x t
dt

= −  and 

| ( ) ( ) |Rel ( ) :
| ( ) |

k
k x t x tt

x t
−

= , where [0, ]t a∈ , kx  is the k th-order approximation of 

( )x t  obtained by the RPS method, and ( )x t  is the exact solution. 

 

Example 3.1 Consider the following linear stiff IVP: 

  
10 3

20 2 10 10 2 3 3 10 10 3 10

10 [( ( ) ( ( ) 2) )] ( ), 0,
   

( ) (10 3) 10 (10 2 1) 4(10
(

) 10 (10 2),
)x x t x t f tt t

f t t t t t t t
′ = − − + ≥

= + − − − + − − − −
 (6) 

subject to the initial conditions 
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                                (0) 1x =                          (7) 

       As we mentioned earlier, if we select the initial guess approximation as 

𝑥0(𝑡) = 1,  then the power series expansion of the solution takes the form 

                                                2 3
1 2 3( ) 1x t c t c t c t= + + + +                                   (8) 

       Consequently, the 3ed-order approximations of the RPS solution for Eqs. (6) 

and (7) according to this initial guess is as follows:  
3 10 2 3( ) 1 2 10x t t t t= + − + , 

with full agreement with Corollary 2.1. It easy to discover that the each of the 

coefficients mc  for 4m >  in the expansion (8) is vanished. In other words, we 

have 
3

0 0

m m
m m

m m
c t c t

∞

= =

=∑ ∑ . 

Thus, the analytic approximate solution of Eqs. (6) and (7) agree well with the 

exact solution 2 3( ) 8 12x t t t t= − + − +  . 

 

Example 3.2 Consider the following nonlinear IVP: 

      

2
2 1

2 2 2

2 2 2 2

sin( )( ) cos ( ( )) ( ), 0,
   ( ) sin ( )

( ) sin( )(1 2 ) cos( ) ,

( ) tx t x t x t f t t
x t t

f t t t t

t

t t

−′ = + − + ≥
+

= − − −

         (9) 

subject to the initial conditions 

                            (0) 1x =                             (10) 

     As in the previous example, if we select the initial guess approximation as 

𝑥0(𝑡) = 1, then the first few terms approximations of the RPS solution for Eqs. 

(9) and (10) are 

1( ) 0x t = ,  2 ( ) 0x t = , 3 ( ) 0x t = , 4
4

1( )
2

x t t= − ,…, 

    If we collect the above results, then the 20th-truncated series of the RPS 

solution for ( )x t  is as follows: 
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𝑥𝑘(𝑡) 

2 25
20 4 8 12 16 20

0

1 1 1 1 1 ( )( ) 1 ( 1)
2 24 720 40320 3628800 (2 )!

j
j

j

tx t t t t t t
j=

= − + − + − = −∑  

Thus, the exact solution of Eqs. (9) and (10) has the general form which are 

coinciding with the exact solution 
2 2

2

0

( )( ) ( 1) cos
(2 )!

j
j

j

tx t t
j

∞

=

= − =∑  . 

    Let us now carry out the error analysis of the RPS method for this example. 

Figure 1 shows the exact solution 𝑥(𝑡) and the four iterates approximations 

𝑥𝑘(𝑡)  for 𝑘 = 5,10,15,20 . These graphs exhibit the convergence of the 

approximate solutions to the exact solution with respect to the order of the 

solution. 

 

 

  

 

 

 

 

 
 

Figure 1: Plots of RPS solution for Eqs. (9) and (10) blue, brown, green, and red  

        solid lines, denote four iterates approximations when 𝑘 = 5,10,15,20,  

        respectively, and black dashed-dot-dotted line, denote exact solution. 

 

In Figure 2, we plot the residual error function Res𝑘(𝑡) for  𝑘 = 5,10,15,20 

which are approaching the axis 𝑦 = 0 as the number of iterations increase. These 

graphs show that the exact error is getting smaller as the order of the solution is 

increasing. 

𝑡 
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Res5(𝑡)  

 
       Figure 2: Plots of residual error function for Eqs. (9) and (10), 
               when 𝑘 = 5,10,15,20. 

 
 

Example 3.3 Consider the following nonlinear IVP: 

   𝑥
′(𝑡) = sin 𝑥(𝑡) + cos 𝑥(𝑡) + 𝑓(𝑡), 𝑡 ≥ 0,
𝑓(𝑡) = − sin 𝑡 − cos(cos 𝑡) − sin(cos 𝑡) ,

 (11) 

subject to the initial conditions 

   𝑥(0) = 1.  (12) 

    Assuming that the initial guess approximation has the form 𝑥0(𝑡) = 1 + 𝑡. 

Then, the 10th-truncated series of the RPS solution of 𝑥(𝑡) for Eqs. (11) and (12) 

is as follows: 

      𝑥10(𝑡) = 1 −
𝑡2

2
+
𝑡4

24
−

𝑡6

720
+

𝑡8

40320
−

𝑡10

3628800
= �(−1)𝑗

(𝑡2)2𝑗

(2𝑗)!

5

𝑗=0

. 

    It easy to see that, the 10th-truncated series of the RPS solution for 𝑥(𝑡) 

above agree well with the general form 

      𝑥(𝑡) = �(−1)𝑗
(t)2𝑗

(2𝑗)!

∞

𝑗=0

= cos(𝑡). 

So, the exact solution of Eqs. (11) and (12) will be 𝑥(𝑡) = cos(𝑡). 

    Our next goal is to show how the value of  k  in the truncation series (3) 

0E+0 

1E-3 

2E-3 

3E-3 

4E-3 

5E-3 

6E-3 

7E-3 

8E-3 

9E-3 

1E-2 
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Res20(𝑡) 

Res15(𝑡) Res10(𝑡) 
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affects the RPS approximate solutions. To determine this effect an error analysis is 

performed. We calculate the approximations 𝑥𝑘(𝑡) for various 𝑘 and obtain the 

error functions. The maximum and average errors when 𝑘 = 5,10,20 for Eqs. (11) 

and (12) have been listed in Table 1 for 𝑡𝑖 = 1
10
𝑖, 𝑖 = 0,1,2, … ,10, 𝑡 ∈ [0,1].  

 

       Table 1: The maximum error functions of x(𝑡) when 𝑘 = 5,10,15,20. 

Description 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 

max{Ext𝑘(𝑡𝑖)} 1.36436 × 10−3 2.07625 × 10−9 4.77396 × 10−14 1.11022 × 10−16 

max{Res𝑘(𝑡𝑖)} 4.03023 × 10−2 2.73497 × 10−7 1.12955 × 10−11 7.99893 × 10−12 

max{Rel𝑘(𝑡𝑖)} 2.52518 × 10−3 3.84276 × 10−9 8.83572 × 10−14 2.05483 × 10−16 

 

 

4  Conclusion 

The fundamental objective of this work is to introduce in an algorithmic form 

and implement a new symbolic treatment for the linear and nonlinear IVPs. Our 

treatment in principal is the use of the new analytic method for IVPs introduced by 

the author in [19] with some slight modifications considered by the nature of the 

initial condition. There is an important point to make here, the results obtained by 

the RPS method are very effective and convenient in linear and nonlinear cases 

with less computational work and time. This confirms our belief that the 

efficiency of our technique gives it much wider applicability for general classes of 

linear and nonlinear problems. 
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