
Theoretical Mathematics & Applications, vol.2, no.3, 2012, 101-118

ISSN: 1792-9687 (print), 1792-9709 (online)

Scienpress Ltd, 2012

Quasi 3-Crossed Modules

Ali Mutlu1 and Berrin Mutlu2

Abstract

Using simplicial groups, quasi 3−crossed modules of groups are intro-

duced and some of the examples and results of quasi 3−crossed modules

are given.
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1 Introduction

Crossed modules have used widely so far, and in various context since their

definition by J. H. C. Whitehead in his investigation of the algebraic structure

of second relative homotopy groups. Areas in which crossed modules have

been applied include the theory of group presentation (see the survey [2]),

algebraic K−theory and homological algebra. Crossed modules can be viewed
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as 3−dimensional groups and it is therefore of interest to consider counter for

crossed modules of concepts from group theory.

Given the importance of chain complex in (Abelian) homological algebra

and need in many parts of mathematics to extend this to the non-Abelian case

it is not surprising that various non-Abelian extension of the Dold-Kan equiv-

alence have been studied in [4, 5]. For instance Ashley [1] examined simplicial

T−complexes and group T−complexes and showed that these correspond to

Moore complexes which are crossed complexes. Briefly a (reduced) crossed

complex is crossed module

· · · // Cn
// Cn−1

// · · · // C2
∂2 // C1

∂1 // C0.

Conduché [6] considered a notion of 2−crossed module where the Peiffer

elements ∂(x)x′ · (xx′x−1)−1 are not necessarily trivial but it is covered by ele-

ments in the next level up. These objects form a category equivalent to that

of simplicial groups whose Moore complex has length 2.

· · · // 1 // 1 // · · · // 1 // NG2
∂2 // NG1

∂1 // NG0.

If G is not necessarily Abelian, a semi-direct decomposition can be found

that is made up of images of terms in NG. This semi-direct decomposition

was well known in low dimensions but it first seems to have been exploited in

higher dimensions by Conduché [6] who also gives a derivation of it.

In [4] Carrasco examined a notion of a hypercrossed complex of groups

and proved that the category of such hypercrossed complex is equivalent to

SimpGrp, the category of simplicial groups. For example if one truncated

hypercrossed complex at level n, throwing away terms of n−complex from

a category equivalent to equivalent to the n−hyper groupoids of groups of

Duskin [7] and give algebraic models for n−types. For simplicial group which

is group. T−complex in the sense of Ashley [1], the equivalence gives a hy-

percrossed complex which is actually a crossed complex whilst a subcategory

of the category of 2−crossed complex is equivalent to Conduché’s category of

2−crossed module.(see [14, 15, 16].)

In this paper, we give a definition of quasi 3−crossed module of groups and

some application of Peiffer commutators on Moore complexes of a simplicial

group. In particular for i ≥ k ∈ {0, 1, . . . , n + 2} we investigate to condition

of Moore complex of G. Let NGi = 1, where NGi =
n−1
⋂

i=0

Kerdi is a Moore



Ali Mutlu and Berrin Mutlu 103

complex of G, be a simplicial group. We examine the simplicial long exact

sequence and long exact Moore sequence respectively as follows respectively

· · ·
... //

dn+1,...,d0//

Gnoo
...

sn,...s0
oo

...//

dn,...,d0//

Gn−1 · · ·G2oo
...

sn−1,...s0
oo

////
d0,d1,d2//

G1oo
s0,s1
oo

//
d0,d1 //

G0
s0

oo

and

· · · 1 // NGn
// · · · // NG2

// NG1
// NG0 .

Also we iterate the long exact Moore sequence which is correspond with

crossed complex, 2−crossed module, square complex, 2−crossed complex in

[15], categorical group. We use crossed complex which its tail consists of

quasi 3−crossed module, is called 3−crossed complex. This paper aim to give

between relation algebraic topology constructions and F(α)(β) Peiffer commu-

tators are defined in [11, 13]. Moreover the Peiffer commutators is important

role of these algebraic topology structures with Moore complex. Observe that

the Moore complex is relation between structure of algebraic topology and a

simplicial group.

2 Definitions and Notations

We remind that the following definition from Loday [10].

Definition 2.1. A categorical group or cat1−group is a group G together

with a subgroup N two homomorphism (called structural homemorphism) s, b :

G → N satisfying the following conditions

(i) s|N = b|N = idN

(ii) [Kers,Kerb] = 1

A catn−group (G,N1, . . . Nn) is a group G together with n subgroups

N1 . . . , Nn and 2n homomorphism si, bi : G → Ni satisfying the following

conditions.

(1) si, bi restrict to identity on Ni

(2) [Kersi,Kerbi] = 1

(3) sisj = sjsi, bibj = bjbi, sjbi = bjsi for i 6= j.



104 Quasi 3-Crossed Modules

Further, recall the following original definition, which is given by Glenn in

[8].

Definition 2.2. An n−dimensional hypergroup (groupoid) (n ≥ 1) is a

simplicial object G satisfying axioms.

n−HYPGP : Gm → Λm
i (G) is an isomorphism for i = 0, . . . ,m and all m ≥ n.

So

NGi
�

� inc // Gm
iso // Λm

i (G)

1 �
� inc // Gm

iso // Λm
i (G)

where given a simplicial group G n > 1 and 0 ≤ i ≤ n, denote by Λm
i (G)

the object universal with respect to having projections pj : Λ
m
i (G) → Gn−1 for

0 ≤ i ≤ n, and j 6= 1 satisfying djpk = dk−1pj for j < k, k 6= i.

An element of Λm
i (G) is in effect, a “hollow” n−simplex whose face opposite

νi is missing hence the term “open i−horn” for element of Λm
i (G).

If the map Gn → Λm
i (G) sending to g to (d0g, . . . , di−1,−, di+1, . . . , dng)

is epic for each i = 0, . . . , n then G satisfying Kan extensions condition at

dimension n. If this map is epic for all n, G is called a Kan complex.

Now we recall hypercrossed complex pairings form [11, 13].

2.1 Hypercrossed Complex Pairings

In the following a normal subgroup Nn of Gn is defined. We get the con-

struction of a useful family of pairings. We define a set P (n) consisting of

pairs of elements (α, β) from S(n) with α ∩ β = ∅ and β < α, with respect to

lexicographic ordering in S(n) where α = (il, . . . , i1), β = (jm, . . . , j1) ∈ S(n).

The pairings that we will need,

NGn−#α ×NGn−#β

F(α)(β) //

sα×sβ

��

NGn

Gn ×Gn

µ // Gn

p

OO

{F(α)(β) : NGn−#α ×NGn−#β −→ NGn : (α β) ∈ P (n), n ≥ 0}
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are given as composites by the above diagram where

sα = sil . . . si1 : NGn−#α −→ Gn, sβ = sjm . . . sj1 : NGn−#β −→ Gn,

p : Gn → NGn is defined by the composite projections p(x) = pn−1 . . . p0(x),

where

pj(z) = zsjdj(z)
−1 with j = 0, 1, . . . , n− 1

and µ : Gn×Gn → Gn is given by the commutator map and #α is the number

of the elements in the set of α and similarly for #β. Thus

F(α)(β)(xα, yβ) = pµ(sα × sβ)(xα, yβ),

= p[sα(xα), sβ(yβ)].

We now define the normal subgroup Nn of Gn to be that generated by

elements of the form

F(α)(β)(xα, yβ),

where xα ∈ NGn−#α and yβ ∈ NGn−#β. We illustrate this subgroup for

n = 2 and n = 3 to demonstrate what it looks like.

Example 2.3. For n = 2, suppose α = (1), β = (0) and

x1, y1 ∈ NG1 = Kerd0. It follows that

F
(2)
(0)(1)(x1, y1) = p1p0[s0(x1), s1(y1)],

= p1[s0(x1), s1(y1)],

= [s0(x1), s1(y1)] [s1(y1), s1(x1)],

which is a generating element of the normal subgroup N2.

For n = 3, the possible pairings are the following

F
(3)
(1,0)(2), F

(3)
(2,0)(1), F

(3)
(0)(2,1),

F
(3)
(0)(2), F

(3)
(1)(2), F

(3)
(0)(1).

For all x1 ∈ NG1, y2 ∈ NG2, the corresponding generators of N3 are:

F
(3)
(1,0)(2)(x1, y2) = [s1s0(x1), s2(y2)] [s2(y2), s2s0(x1)],

F
(3)
(2,0)(1)(x1, y2) = [s2s0(x1), s1(y2)] [s1(y2), s2s1(x1)]

[s2s1(x1), s2(y2)] [s2(y2), s2s0(x1)],

and all x2 ∈ NG2, y1 ∈ NG1,

F
(3)
(0)(2,1)(x2, y1) = [s0(x2), s2s1(y1)] [s2s1(y1), s1(x2)] [s2(x2), s2s1(y1)],
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whilst for all x2, y2 ∈ NG2,

F
(3)
(0)(1)(x2, y2) = [s0(x2), s1(y2)] [s1(y2), s1(x2)] [s2(x2), s2(y2)],

F
(3)
(0)(2)(x2, y2) = [s0(x2), s2(y2)],

F
(3)
(1)(2)(x2, y2) = [s1(x2), s2(y2)] [s2(y2), s2(x2)].

We have examined the long exact Moore sequence

· · · // NGn
// · · · // NG2

// NG1
// NG0 ∗

for case i ≥ 1 and for 0 ≤ i ≤ n+ 1. That is · · · 1 → NG0 = G0.

3 Illustrative Examples: Pre−2−Crossed

Modules and Quasi 3−Crossed Modules of a

Simplicial Group with Moore Complex

Before giving definition of quasi 3−crossed module it will be helpful to have

notion of a pre−crossed module and introduce description of pre−2−crossed

modules.

A pre−crossed module of groups consists of a group, M, a N -group M ,

and a group homomorphism ∂ : M −→ N, such that for all m ∈ M, n ∈ N

CM1) ∂(nm) = n∂(m)n−1. Now we may describe that definition of a

pre−2−crossed module of group.

A pre−2−crossed modules consists of complex of groups

L
∂2 // M

∂ // N

together with action ofN on L andM so that ∂2, ∂1 are morphism ofN−group

where the group acts an itself by xy, action of M on L written m · l such that

with this action

L
∂2 // M

is a pre−crossed module and there is a second action of M on L via N denoted
ml, so that for all l ∈ L, m ∈ M, and n ∈ N that

nml = nml. Further there is

a N−equivalent function

{, } : M ×M → L
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called Peiffer commutator, which satisfying the following conditions:

2CM1p ∂2{x, y} = ∂1(x)y xy−1x−1

2CM2p (i) {xx′, y} = ∂1(x){x′, y} {x, x′y(x′)−1}

(ii) {x, yy′} = {x, y} xyx−1
{x, y′}

2CM3p
n{x, y} = {nx, ny}

for all x, y ∈ M, n ∈ N, l ∈ L. Let G be a simplicial group with the Moore

complex NG. Then the complex of groups

NG2
∂2 // NG1

∂1 // NG0

is a pre−2−crossed module, where the Peiffer commutator map is defined as

follows:

{ , } : NG1 ×NG1 −→ NG2

(x0, x1) 7−→ s0(x0)s1(x1)s0(x0)
−1s1(x0)s1(x1)

−1s1(x0)
−1.

It is obvious to pre−crossed module condition is satisfied. Indeed it is

sufficient to show that ∂2, ∂1 are pre−crossed modules and pre−2−crossed

module axioms are verified. That is NG0 acts on NG1 via s0 and NG1 acts

on NG2 via s1 and NG0 acts on NG2 via s1s0. Thus

∂1(
x0x1) = ∂1(s0(x0)x1s0(x0)

−1) = x0∂1(x1)x
−1
0

∂2(
x1x2) = ∂2(s1(x1)x2s1(x1)

−1) = x1∂2(x2)x
−1
1

2CM1p:

∂2{x0, x1} = ∂2(s0(x0)s1(x1)s0x0
−1s1(x0)s1(x1)

−1s1(x0)
−1),

= s0d1(x0)x1s0d1(x0)
−1x0(x1)

−1(x0)
−1,

= ∂1(x0)x1 x0(x1)
−1(x0)

−1.

Other two conditions are clear and where ∂1, ∂2 are restrictions of d1 d2

respectively.

Now we can give definition of a quasi 3−crossed modules of groups.

Definition 3.1. A quasi 3−crossed module of group consists of a complex

N−groups

K
∂3 // L

∂2 // M
∂1 // N
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and ∂3, ∂2, ∂1 morphism of N−groups, where the group N acts on itself by

conjugation, such that

K
∂3 // L

is a crossed module and

L
∂2 // M

∂1 // N

is a pre−2−crossed module. Thus L acts on K and we require that for all

k ∈ K, l ∈ L, m ∈ M and n ∈ N that

(nm)(lk) = n
(

m(lk)
)

.

Furthermore there is a N−equivalent function

{ , } : L× L → K

Mutlu mapping is defined as follows

{l1, l2} = H(l1, l2) = [s0(l1), s1(l2)][s1(l2), s1(l1)][s2(l1), s2(l2)],

if the following conditions are verified.

3CM1q ∂2, ∂1 are pre−crossed module, ∂3 is a crossed module

3CM2q L
∂2 // M

∂1 // N is a pre−2−crossed module

3CM3q ∂3H(l1, l2) =
s0d2(l1)s1d2(l2)

s1d2(l1)s1d2(l)
−1 l1l2l

−1
2

3CM4q (a) H(l, ∂3(k)) = [l, s2(k)]

(b) H(∂3(k)l, ) = [s2(k), l]

3CM5q H(l, ∂3(k))H(∂3(k)l, ) = 1

3CM6q H(∂3(k1), ∂3(k2)) = [k1, k2]

where l1, l2 ∈ L and k1, k2 ∈ K

Theorem 3.2. (a) Let NGi = 1 for ∀i ≥ 1 in the long exact Moore

sequence if and only if the long exact Moore sequence become only group i.e.,

G0 be a group.

(b) Let NGi = 1 for ∀i ≥ 2 in the long exact Moore sequence if and only if

the long exact Moore sequence be crossed module that is · · · 1 → NG1 → NG0

is a crossed module.
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(c) Let NGi = 1 for ∀i ≥ 3 in the long exact Moore sequence if and only if

the long exact Moore sequence become a 2−crossed module i.e, · · · 1 → NG2 →

NG1 → NG0 is a 2−crossed module.

(d) Let NGi = 1 for ∀i ≥ 4 in the long exact Moore sequence if and only

if the long exact Moore sequence be quasi 3−crossed module · · · 1 → NG3 →

NG2 → NG1 → NG0 is a 3−quasi crossed module (3−crossed complex).

(e) Let NGi = 1 for ∀i ≥ n+ 1 in the long exact Moore sequence if and

only if the long exact Moore sequence become an n−crossed complex that is,

· · · 1 → NGn → NGn−1 → · · · → NG3 → NG2 → NG1 → NG0 is an

n−crossed complex.

(f) Let NGi = 1 for ∀i ≥ n+ 2 in the long exact Moore sequence if and only

if the long exact Moore sequence be a T−complex.

(g) Let F(α)(β)(xα, yβ) = 1 hypercrossed complex pairings are described in

[11, 13] if and only if the long exact Moore sequence be a crossed complex.

Proof: (a) Suppose that NGi = 1 for ∀i ≥ 1 and so the long ex-

act Moore sequence obtains as follows: · · · 1 → 1 → 1 → · · · → 1 →

1 → 1 → NG0 = G0. This is because of the long exact simplicial sequence

· · ·
... //

d0,...,d3 //

1oo
...

s0,...,s2
oo

////
d0,d1,d2//

1oo
s0,s1

oo
//

d0,d1 //
G0

s0
oo . Therefore NG0 = Kerd10 is a subgroup of G0.

On the other hand, if a ∈ Kerd10, then NG1 = 1 since d0(a) = 1. Moreover it

is a cat0−group. (see Brown-Loday [3].)

(b) If NGi = 1 for ∀i ≥ 2 (1 ≤ i ≤ n+ 2) in the long exact Moore sequence

then the long exact Moore sequence obtains as follows i.e., · · · 1 → 1 → 1 →

· · · → 1 → 1 → NG1 → NG0 = G0 be a crossed module. (see [12] and [10].)

On other word, recall that Fα,β(xα, yβ) = 1 in [11, 13], then for α = (0), β =

(1)

F
(2)
(0)(1)(x1, y1) = NG1 ×NG1 → NG2

F
(2)
(0)(1)(x1, y1) = s0(x1)s1(y1)s0(x1)s1(x1y

−1
1 x−1

1 ) = 1

since NG1 → NG0 be crossed module i.e, NG0 acts on NG1 together with
x1y1 = s0(x1)y1s0(x)

−1 verifies crossed axioms such as,

∂1(
x1y1) = x1∂1(y)x1

−1
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and

∂1(x1)y1 = s0d1(x1)y1s0d1(x1)
−1 = x1y1x

−1
1 (∂1 by restriction d1).

(see [12, 13]) Also the long exact simplicial sequence · · · 1 // //
d0,d1,d2//

1oo
s0,s1
oo

//
d0,d1 //

G0
s0

oo be

correspond to cat1−group which is proved in [10] by Loday. Recall that the

structural morphism s and b are given by d1 = s, b = d0. Axiom (i) of

cat1−group follows that relations between face and degeneracy maps. To prove

axiom (ii) it is sufficient to see for x ∈ Kerd1 and y ∈ Kerd0 the element

[s1(x1)s0(x0)
−1, s1(y1)] of NG2 where s0, s1 are degeneracy maps and in fact

its image by d2 is [1, y]. So [Kerd1, Kerd0] = 1, since ∂2NG2 = 1 and also

1−truncated hypercrossed complex, 1−hypercrossed complex and 1−crossed

complex see Carrosco and Cegarra [5] and [12] respectively.

(c) Let NGi = 1 for ∀i ≥ 3 then the long simplicial sequence

· · ·
... //

d0,...,d4 //

1oo
...

s0,...,s3
oo

////
//

d0,d1,d2,d3//

G2oooo
s0,s1,s2

oo
////

d0,d1,d2//
G1oo

s0,s1
oo

//
d0,d1 //

G0
s0

oo

be and the long exact sequence of Moore complex · · · 1 → NG2 → NG1 →

NG0 is a 2−crossed module with F
(3)
(α)(β)(xα, yβ) = 1 for α, β ∈ P (3). So the

Peiffer lifting is defined as follows:

{, } : NG1 ×NG1 → NG2

{x1, y1} 7→ s0(x1)s1(y1)s0(x1)s1(x1y
−1
1 x−1

1 ) = 1

and thus 2−crossed module conditions are also satisfied in [12, 13]. For suf-

ficient condition, it is obvious from 2CM2, 2CM4(a) and (b) of 2−crossed

modules axioms give us F
(3)
(α)(β)(xα, yβ) = 1 implies NG3 = 1. Moreover El-

lis and Stenier showed crossed square equivalent to cat2−group. Here we say

cat2−group axioms verified i.e., axioms (a) and (b) of cat2−group follows from

relations between face and degeneracy maps. To prove axiom (b) it is sufficient

to see for x ∈ Kerdi and y ∈ Kerdj the element
∏

I,J

[KI , KJ ] of NG3 and its

image by d3 is [x, y] = 1. As NG3 = 1 it follows that [Kerdi, Kerdj] = 1 for

see details in [13, 17].
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(d) Let G be a simplicial group with the Moore complex NG. Then the

Moore complex of groups

NG3/∂4(NG4 ∩D4)
∂3 // NG2

∂2 // NG1
∂1 // NG0

is a quasi 3−crossed module of groups, where also D4 is the normal subgroup

generated by the degenerate elements.

Now we can define Mutlu map is define as follows:

{ , } : NG2 ×NG2 −→ NG3/∂4(NG4 ∩D4)

(x2, y2) 7−→ [s0(x2), s1(y2)][s1(x2), s1(y2)][s2(x2), s2(y2)]

here the right hand side denotes a coset in NG3/∂4(NG4∩D4) represented by

an element in NG3.

(3CM1q) Let ∂2, ∂1 are pre−crossed modules and so NG1 acts on NG2

via s1 and NG0 acts on NG1 via s0. Thus ∂1(
x0y1) = ∂1(s0(x0)y1s0(x0)

−1) =

x0∂1(y1)x
−1
0 = x0∂1(y1) and ∂2(

y1y2) = ∂2(s1(y1)y2s1(y1)
−1) = y1∂2(y2)y

−1
1 =

y1∂2(y2).

It is readily checked that the morphism ∂3 : NG3/∂4(NG4 ∩ D4) → NG2 is

a crossed module i.e., NG2 acts on NG3/∂4(NG4 ∩ D4) via s2 and we have

∂4F(2)(3)(x3, y3) = s2∂3(x3)y3s2∂3(y3)x3y
−1
3 x−1

3 = 1 via mod ∂4(NG4 ∩ D4).

Thus ∂4F(2)(3)(x3, y3) = s2∂3(x3)y3s2∂3(y3)

x3y
−1
3 x−1

3 mod ∂4(NG4 ∩D4) so ∂3(
x3y3) = ∂3(s3(x3)y3s3(x3)

−1) = x3∂3(y3)x
−1
3

and ∂3x3y3 = s2∂3(x3)y3s2∂3(x3)
−1 = x3y3x

−1
3 is obtained.

(3CM2q) NG2 → NG1 → NG0 is a pre−2−crossed module, where Peiffer

map is defined as above.

((x0, x1) 7−→ s0(x0)s1(x1)s0(x0)
−1s1(x0)s1(x1)

−1s1(x0)
−1)

(3CM3q)

∂3H(x2, y2) = s0d2(x2)s1d2(y2)
s1d2(x2)s1d2(y2)

−1 x2y2y
−1
2 .

(3CM4q) (a) Using the hypercrossed complex parings are defined in [11, 13]
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and then

1 ≡ ∂4F
(4)
(0)(3,1)(x3, y2) = [s0d3(x3), s1(y2)][s1(y2), s1d3(x3)]

[s2d3(x3), s2(y2)][s2(y2), x3]

mod ∂4(NG4 ∩D4)

is calculated. Thus we have

H(∂3(x3), y2) = [s0d3(x3), s1(y2)][s1(y2), s1d3(x3)]

[s2d3(x3), s2(y2)] mod ∂4(NG4 ∩D4)

and therefore we obtain

H(∂3(x3), y2) = [x3, s2(y2)] mod ∂4(NG4 ∩D4)

= x3y2 y−1
2 . (definition of the action)

(b) Again using the hypercrossed complex parings in [11, 13] then

1 ≡ ∂4F
(4)
(0,3)(1)(y2, x3) = [s0(y2), s1d3(x3)][s1d3(x3), s1(y2)]

[s2(y2), s2d3(x3)][x3, s2(y2)]

mod ∂4(NG4 ∩D4)

is found. This equality also holds

H(y2, ∂3(x3)) = [s0(y2), s1d3(x3)][s1d3(x3), s1(y2)]

[s2(y2), s2d3(x3)]mod ∂4(NG4 ∩D4)

and so this implies that

H(y2, ∂3(x3)) = [s2(y2), x3] mod ∂4(NG4 ∩D4)

which is commutated. Thus the results of (a) and (b) of 3CM4q is given

as above.

3CM5q

H(∂3(x3), y2)H(y2, ∂3(x3)) = [x3, s2(y2)][s2(y2), x3] = 1

3CM6q Using by [11, 13] we may also be written this equation as

1 ≡ ∂4F
(4)
(0)(1)(x3, y3) = [s0d3(x3), s1d3(y3)][s1d3(x3), s1d3(y3)]

[s2d3(x3), s2d3(y3)][y3, x3]

mod ∂4(NG4 ∩D4).

Using the equation is obtained as

H(∂3(x3), ∂3(y3)) = [s0d3(x3), s1d3(y3)][s1d3(y3), s1d3(x3)]

[s2d3(x3), s2d3(y3)]

mod ∂4(NG4 ∩D4).

Here we yield

H(∂3(x3), ∂3(y3)) ≡ [x3, y3] mod ∂4(NG4 ∩D4).
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(e) If NGi = 1 for ∀i ≥ n + 1 in the long exact Moore sequence, then the

long exact Moore sequence be an n−crossed complex with F
(n+1)
(α)(β)(x, y) = 1.

Recalling by [11, 14] we have the trivial map as follows:

F
(n+1)
(α)(β)(x, y) = NG(n+1))−#α ×NG(n+1))−#β → NGn+1.

So NGn also be an abelian group for n ≥ 2 since

1 = ∂n+1F
(n+1)
(n−1)(n)(x, y)

= sn−1dn(x)ysn−1d(x)
−1xy−1x−1

= φ
(n+1)
n−1 dn(x)y xy−1x−1

= [y, x].

Here NG is a simplicial chain complex where NGn is abelian for n ≥ 2, φ
(n+1)
n−1

is action of NG0 on NGn for each n ≥ 1 and ∂n is NG0−group homomorphism

defined as

· · · // NGn/∂n+1Kn+1
// NGn−1/∂nKn

// · · · // NG3/∂4K4
//

NG2/∂3K3
// NG1/∂2K2

// NG0

is obviously a crossed complex, Ki = NGi ∩Di.

To prove the opposite of it NGn/∂n+1Kn+1 be abelian group for n ≥

2, then

∂n+1F
(n+1)
(n−1)(n)(x, y) = sn−1dn(x)ysn−1dn(x)

−1xy−1x−1

= [y, x] = 1.

Thus F
(n−1)
(α)(β)(x, y) = 1 implies that NGn+1 = 1. This is also an n−truncated

complex. (see Carrasco and Cegarra[5].)

(f) Let NGi = 1 for ∀i ≥ n + 2 in the long exact Moore sequence if and

only if the long Moore sequence be a T−complex. To proof see Ashley [1] and

Carrasco and Cegarra [5].

(g) Let F
(n−1)
(α)(β)(xα, yβ) = 1 in the long Moore sequence if and only if the long

exact Moore sequence become a crossed complex. �

Example 3.3. 3−truncated complex is a quasi 3−crossed module.

Therefore we have following results.



114 Quasi 3-Crossed Modules

Corollary 3.4. If NG3/∂4(NG4 ∩ D4) = 1, then NG2 → NG1 → NG0

corresponds a 2−crossed module. (see [12, 13])

Corollary 3.5. If NG0 = 1, then

NG3/∂4(NG4 ∩D4)
∂3 // NG2

∂2 // NG1

is a 2−crossed module with defined Peiffer map as

{ , } : NG2 ×NG2 −→ NG3/∂4(NG4 ∩D4)

(x2, y2) 7−→ s1(x2)s2(y2)s1(x2)
−1s2(y2)s2(x2)

−1s2(y2)
−1.

Proof: Indeed the function is satisfied 2−crossed module axioms.

2CM1: To prove easier since ∂3{x2, y2} = ∂2(x2)y2 x2y
−1
2 x−1

2 .

2CM2: Let ∂4F
(4)
(1)(2)(x2, y2) = d4(F(1)(2)(x2, y2)) = [s1d3x2, s2d3y2]

[s2d3y2, s2d3x2][x2, y2]. So ∂4F
(4)
(1)(2)(x2, y2) = 1 mod∂4(NG4 ∩D4).

Then {∂3(x2), ∂3(y2)} = [y2, x2] is obtained. (see [11, 13])

2CM3: (i) {x2x
′
2, y2} = ∂2x{x′

2, y2} {x2, x2y2x
−1
2 }

(ii) {x2, y2y
′
2} = {x2, y2}

x2y2x
−1
2 {x2, y

′
2}

2CM4: (a) Let ∂4F
(4)
(1)(3,2)(y3, x2) = d4(F(1)(3,2)(y3, x2)) = [s1d3y3, s2x2]

[s2x2, s2d3y3][y3, s2x2] = 1 mod ∂4(NG4 ∩D4). Then

{∂3(y3), x2} = [s2(x2), y2] =
x2y3 y−1

3 is obtained by the definition of action.

(b) Let F
(4)
(3,1)(2)(x2, y3) = d4(F(3,1)(2)(x2, y3)) = [s1x2, s2d3y3][s2d3y3, s2x2]

[s2x2, y3][y3, s1x2]. So F
(4)
(3,1)(2)(x2, y3) = 1 mod∂4(NG4 ∩D4). Then

{x2, ∂3(y3)} = [s1(x2), y3][y3s2(x2)] = x · y x2y3 y−1
3

is found.

2CM5 {x2, ∂3(y3}{∂3(y3), x2} = (x · y) xy y−1 = ∂2(x2)y2 · y
−1
2

is calculated by the definition of the action.

2CM6 n{x, y} = {nx ny}.

Now we consider the following diagram of morphisms

NG2 ×NG2

{ , }

uukkkk
kk
kk
kk
kk
kk
k

ρ

��
NG3/∂4(NG4 ∩D4)

∂3

// NG2
∂2

// NG1.

�
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The group NG2 acts, in two way on the group NG3/∂4(NG4 ∩ D4) by

conjugation via s1 and via s2 both within G3. The action via s1 will be de-

noted by x · y = s1(x)ys1(x)
−1 and the action via s2 will be denoted by

xy = s2(x)ys2(x)
−1. The action of NG1 on NG3 is given as follows: from

equality [s1(x)
−1s2s1d2(x), y] ≡ 1 mod NG3/∂4(NG4 ∩D4), there is a com-

mutative diagram

NG3/∂4(NG4 ∩D4)×NG2
//

��

NG3/∂4(NG4 ∩D4)

��
NG3/∂4(NG4 ∩D4)×NG1

// NG3/∂4(NG4 ∩D4)

given by

(y × x) � //
_

��

x · y = s1(x)ys1(x)
−1

_

��
(x× ∂2(y))

� // ∂2xy = s2s1d2(x)ys2s1d2(x)
−1

which gives an equality

∂2xy = s2s1d2(x)ys2s1d2(x)
−1 = s1(x)ys1(x)

−1.

Let us define the map ρ by ρ(x, x′) = ∂2(x)x′ x(x′)x−1 for x, x′ ∈ NG2, that

is the Peiffer commutator in NG2 corresponding {x, x′}. Thus if the map ρ is

a trivial map then ∂2 : NG2 → NG1 is a crossed module.

Now if the long Moore sequence is iterated as follows, then two results are

obtained where Ki = NGi ∩Di.

· · · 1 // NGn/∂n+1Kn+1
// NGn−1/∂nKn · · ·NG1/∂2K2

// NG0

Corollary 3.6.

· · · 1 // NGk/∂k+1Kk+1
∂k // NGk−1

∂k−1 // NGk−2
// 1 // · · · // 1

is a 2−crossed module with defined Peiffer commutator

{xk−1, yk−1} = sk−1(xk−1)sk(yk−1)sk−1(xk−1)
−1sk(xk−1y

−1
k−1x

−1
k−1)

the 2−crossed module conditions are clearly verified.



116 Quasi 3-Crossed Modules

Corollary 3.7.

· · · 1 // NGk/∂k+1Kk+1
∂k // NGk−1

∂k−1 //

NGk−2

∂k−2 // NGk−3

∂k−3 // 1 // · · · // 1

is a quasi 3−crossed modules, where the Mutlu map is defined as follows:

{xk−1, yk−1} = F
(k)
(0)(1)(xk−1, yk−1)

It is obvious that quasi 3−crossed modules conditions are satisfied.

We can follow the same procure as we make in Corollary 3.7 in order to

get to result.

Corollary 3.8. The category of quasi 3−crossed modules is equivalent to

the category of simplicial groups with Moore complex of length 3.

References

[1] N. Ashley, Simplicial T-Complexes: a non abelian version of a theorem

of Dold-Kan, Dissertationes Math., 165, (1988), 11-58, Ph.D. Thesis,

University of Wales, Bangor, 1978.

[2] R. Brown and J. Huesbschmann, Identities among relations, Low dimen-

sion topology, London Math. Soc. Lecture Note Series, (ed. R. Brown and

T. L. Thickstun, Cambridge University Press), 48, (1982), 153-202.

[3] R. Brown and J.-L. Loday, Van Kampen Theorems for Diagram of Spaces,

Topology, 26, (1987), 311-335.

[4] P. Carrasco, Complejos Hipercruzados, Cohomologia y Extensiones, Ph.D.

Thesis, Universidad de Granada, 1987.

[5] P. Carrasco and A.M. Cegarra, Group-theoretic Algebraic Models for Ho-

motopy Types, Jour. Pure Appl. Algebra, 75, (1991), 195-235.



Ali Mutlu and Berrin Mutlu 117
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