Quasi 3-Crossed Modules

Ali Mutlu ${ }^{1}$ and Berrin Mutlu ${ }^{2}$

Abstract

Using simplicial groups, quasi 3 -crossed modules of groups are introduced and some of the examples and results of quasi 3 -crossed modules are given.

Mathematics Subject Classification: 18D35, 18G30,18G50, 18G55, 55Q20, 55Q05

Keywords: crossed module, 2-crossed module, quasi 3-crossed modules

1 Introduction

Crossed modules have used widely so far, and in various context since their definition by J. H. C. Whitehead in his investigation of the algebraic structure of second relative homotopy groups. Areas in which crossed modules have been applied include the theory of group presentation (see the survey [2]), algebraic K-theory and homological algebra. Crossed modules can be viewed

[^0]as 3 -dimensional groups and it is therefore of interest to consider counter for crossed modules of concepts from group theory.

Given the importance of chain complex in (Abelian) homological algebra and need in many parts of mathematics to extend this to the non-Abelian case it is not surprising that various non-Abelian extension of the Dold-Kan equivalence have been studied in $[4,5]$. For instance Ashley [1] examined simplicial T-complexes and group T-complexes and showed that these correspond to Moore complexes which are crossed complexes. Briefly a (reduced) crossed complex is crossed module

$$
\cdots \longrightarrow C_{n} \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} .
$$

Conduché [6] considered a notion of 2 -crossed module where the Peiffer elements ${ }^{\partial(x)} x^{\prime} \cdot\left(x x^{\prime} x^{-1}\right)^{-1}$ are not necessarily trivial but it is covered by elements in the next level up. These objects form a category equivalent to that of simplicial groups whose Moore complex has length 2.

$$
\cdots \longrightarrow 1 \longrightarrow 1 \longrightarrow \cdots \longrightarrow 1 \longrightarrow N G_{2} \xrightarrow{\partial_{2}} N G_{1} \xrightarrow{\partial_{1}} N G_{0} .
$$

If G is not necessarily Abelian, a semi-direct decomposition can be found that is made up of images of terms in $N G$. This semi-direct decomposition was well known in low dimensions but it first seems to have been exploited in higher dimensions by Conduché [6] who also gives a derivation of it.

In [4] Carrasco examined a notion of a hypercrossed complex of groups and proved that the category of such hypercrossed complex is equivalent to $\mathfrak{S i m p G r p}$, the category of simplicial groups. For example if one truncated hypercrossed complex at level n, throwing away terms of n-complex from a category equivalent to equivalent to the n-hyper groupoids of groups of Duskin [7] and give algebraic models for n-types. For simplicial group which is group. T-complex in the sense of Ashley [1], the equivalence gives a hypercrossed complex which is actually a crossed complex whilst a subcategory of the category of 2 -crossed complex is equivalent to Conduché's category of $2-$ crossed module.(see [14, 15, 16].)

In this paper, we give a definition of quasi 3 -crossed module of groups and some application of Peiffer commutators on Moore complexes of a simplicial group. In particular for $i \geq k \in\{0,1, \ldots, n+2\}$ we investigate to condition of Moore complex of G. Let $N G_{i}=1$, where $N G_{i}=\bigcap_{i=0}^{n-1} \operatorname{Ker} d_{i}$ is a Moore
complex of \mathbf{G}, be a simplicial group. We examine the simplicial long exact sequence and long exact Moore sequence respectively as follows respectively
and

$$
\cdots 1 \longrightarrow N G_{n} \longrightarrow \cdots \longrightarrow N G_{2} \longrightarrow N G_{1} \longrightarrow N G_{0}
$$

Also we iterate the long exact Moore sequence which is correspond with crossed complex, $2-$ crossed module, square complex, $2-$ crossed complex in [15], categorical group. We use crossed complex which its tail consists of quasi 3 -crossed module, is called 3 -crossed complex. This paper aim to give between relation algebraic topology constructions and $F_{(\alpha)(\beta)}$ Peiffer commutators are defined in [11, 13]. Moreover the Peiffer commutators is important role of these algebraic topology structures with Moore complex. Observe that the Moore complex is relation between structure of algebraic topology and a simplicial group.

2 Definitions and Notations

We remind that the following definition from Loday [10].

Definition 2.1. A categorical group or cat ${ }^{1}$ - group is a group G together with a subgroup N two homomorphism (called structural homemorphism) s, b : $G \rightarrow N$ satisfying the following conditions
(i) $\left.s\right|_{N}=\left.b\right|_{N}=i d_{N}$
(ii) $[$ Kers, Kerb $]=1$

A cat ${ }^{n}$-group $\left(G, N_{1}, \ldots N_{n}\right.$) is a group G together with n subgroups $N_{1} \ldots, N_{n}$ and $2 n$ homomorphism $s_{i}, b_{i}: G \rightarrow N_{i}$ satisfying the following conditions.
(1) s_{i}, b_{i} restrict to identity on N_{i}
(2) $\left[\operatorname{Kers}_{i}, \operatorname{Ker}_{i}\right]=1$
(3) $s_{i} s_{j}=s_{j} s_{i}, \quad b_{i} b_{j}=b_{j} b_{i}, \quad s_{j} b_{i}=b_{j} s_{i} \quad$ for $i \neq j$.

Further, recall the following original definition, which is given by Glenn in [8].

Definition 2.2. An n-dimensional hypergroup (groupoid) ($n \geq 1$) is a simplicial object G satisfying axioms.
$n-H Y P G P: G_{m} \rightarrow \Lambda_{i}^{m}(G)$ is an isomorphism for $i=0, \ldots, m$ and all $m \geq n$. So

where given a simplicial group $G n>1$ and $0 \leq i \leq n$, denote by $\Lambda_{i}^{m}(G)$ the object universal with respect to having projections $p_{j}: \Lambda_{i}^{m}(G) \rightarrow G_{n-1}$ for $0 \leq i \leq n$, and $j \neq 1$ satisfying $d_{j} p_{k}=d_{k-1} p_{j}$ for $j<k, \quad k \neq i$.

An element of $\Lambda_{i}^{m}(G)$ is in effect, a "hollow" n-simplex whose face opposite ν_{i} is missing hence the term "open i-horn" for element of $\Lambda_{i}^{m}(G)$.

If the map $G_{n} \rightarrow \Lambda_{i}^{m}(G)$ sending to g to $\left(d_{0} g, \ldots, d_{i-1},-, d_{i+1}, \ldots, d_{n} g\right)$ is epic for each $i=0, \ldots, n$ then G satisfying Kan extensions condition at dimension n. If this map is epic for all n, G is called a Kan complex.

Now we recall hypercrossed complex pairings form [11, 13].

2.1 Hypercrossed Complex Pairings

In the following a normal subgroup N_{n} of G_{n} is defined. We get the construction of a useful family of pairings. We define a set $P(n)$ consisting of pairs of elements (α, β) from $S(n)$ with $\alpha \cap \beta=\emptyset$ and $\beta<\alpha$, with respect to lexicographic ordering in $S(n)$ where $\alpha=\left(i_{l}, \ldots, i_{1}\right), \beta=\left(j_{m}, \ldots, j_{1}\right) \in S(n)$. The pairings that we will need,

$$
\left\{F_{(\alpha)(\beta)}: N G_{n-\# \alpha} \times N G_{n-\# \beta} \longrightarrow N G_{n}:(\alpha \beta) \in P(n), \quad n \geq 0\right\}
$$

are given as composites by the above diagram where

$$
s_{\alpha}=s_{i_{l}} \ldots s_{i_{1}}: N G_{n-\# \alpha} \longrightarrow G_{n}, \quad s_{\beta}=s_{j_{m}} \ldots s_{j_{1}}: N G_{n-\# \beta} \longrightarrow G_{n}
$$

$p: G_{n} \rightarrow N G_{n}$ is defined by the composite projections $p(x)=p_{n-1} \ldots p_{0}(x)$, where

$$
p_{j}(z)=z s_{j} d_{j}(z)^{-1} \quad \text { with } \quad j=0,1, \ldots, n-1
$$

and $\mu: G_{n} \times G_{n} \rightarrow G_{n}$ is given by the commutator map and $\# \alpha$ is the number of the elements in the set of α and similarly for $\# \beta$. Thus

$$
\begin{aligned}
F_{(\alpha)(\beta)}\left(x_{\alpha}, y_{\beta}\right) & =p \mu\left(s_{\alpha} \times s_{\beta}\right)\left(x_{\alpha}, y_{\beta}\right), \\
& =p\left[s_{\alpha}\left(x_{\alpha}\right), s_{\beta}\left(y_{\beta}\right)\right] .
\end{aligned}
$$

We now define the normal subgroup N_{n} of G_{n} to be that generated by elements of the form

$$
F_{(\alpha)(\beta)}\left(x_{\alpha}, y_{\beta}\right),
$$

where $x_{\alpha} \in N G_{n-\# \alpha}$ and $y_{\beta} \in N G_{n-\# \beta}$. We illustrate this subgroup for $n=2$ and $n=3$ to demonstrate what it looks like.

Example 2.3. For $n=2$, suppose $\alpha=(1), \beta=(0)$ and $x_{1}, y_{1} \in N G_{1}=\operatorname{Ker}_{0}$. It follows that

$$
\begin{aligned}
F_{(0)(1)}^{(2)}\left(x_{1}, y_{1}\right) & =p_{1} p_{0}\left[s_{0}\left(x_{1}\right), s_{1}\left(y_{1}\right)\right] \\
& =p_{1}\left[s_{0}\left(x_{1}\right), s_{1}\left(y_{1}\right)\right] \\
& =\left[s_{0}\left(x_{1}\right), s_{1}\left(y_{1}\right)\right]\left[s_{1}\left(y_{1}\right), s_{1}\left(x_{1}\right)\right]
\end{aligned}
$$

which is a generating element of the normal subgroup N_{2}.
For $n=3$, the possible pairings are the following

$$
\begin{array}{lll}
F_{(1,0)(2)}^{(3)}, & F_{(2,0)(1)}^{(3)}, & F_{(0)(2,1)}^{(3)} \\
F_{(0)(2)}^{(3)}, & F_{(1)(2)}^{(3)}, & F_{(0)(1)}^{(3)}
\end{array}
$$

For all $x_{1} \in N G_{1}, y_{2} \in N G_{2}$, the corresponding generators of N_{3} are:

$$
\begin{aligned}
F_{(1,0)(2)}^{(3)}\left(x_{1}, y_{2}\right)= & {\left[s_{1} s_{0}\left(x_{1}\right), s_{2}\left(y_{2}\right)\right]\left[s_{2}\left(y_{2}\right), s_{2} s_{0}\left(x_{1}\right)\right], } \\
F_{(2,0)(1)}^{(3)}\left(x_{1}, y_{2}\right)= & {\left[s_{2} s_{0}\left(x_{1}\right), s_{1}\left(y_{2}\right)\right]\left[s_{1}\left(y_{2}\right), s_{2} s_{1}\left(x_{1}\right)\right] } \\
& {\left[s_{2} s_{1}\left(x_{1}\right), s_{2}\left(y_{2}\right)\right]\left[s_{2}\left(y_{2}\right), s_{2} s_{0}\left(x_{1}\right)\right], }
\end{aligned}
$$

and all $x_{2} \in N G_{2}, y_{1} \in N G_{1}$,

$$
F_{(0)(2,1)}^{(3)}\left(x_{2}, y_{1}\right)=\left[s_{0}\left(x_{2}\right), s_{2} s_{1}\left(y_{1}\right)\right]\left[s_{2} s_{1}\left(y_{1}\right), s_{1}\left(x_{2}\right)\right]\left[s_{2}\left(x_{2}\right), s_{2} s_{1}\left(y_{1}\right)\right]
$$

whilst for all $x_{2}, y_{2} \in N G_{2}$,

$$
\begin{aligned}
F_{(0)(1)}^{(3)}\left(x_{2}, y_{2}\right) & =\left[s_{0}\left(x_{2}\right), s_{1}\left(y_{2}\right)\right]\left[s_{1}\left(y_{2}\right), s_{1}\left(x_{2}\right)\right]\left[s_{2}\left(x_{2}\right), s_{2}\left(y_{2}\right)\right], \\
F_{(0)(2)}^{(3)}\left(x_{2}, y_{2}\right) & =\left[s_{0}\left(x_{2}\right), s_{2}\left(y_{2}\right)\right] \\
F_{(1)(2)}^{(3)}\left(x_{2}, y_{2}\right) & =\left[s_{1}\left(x_{2}\right), s_{2}\left(y_{2}\right)\right]\left[s_{2}\left(y_{2}\right), s_{2}\left(x_{2}\right)\right] .
\end{aligned}
$$

We have examined the long exact Moore sequence

$$
\cdots \longrightarrow N G_{n} \longrightarrow \cdots \longrightarrow N G_{2} \longrightarrow N G_{1} \longrightarrow N G_{0} \quad *
$$

for case $i \geq 1$ and for $0 \leq i \leq n+1$. That is $\cdots 1 \rightarrow N G_{0}=G_{0}$.

3 Illustrative Examples: Pre-2-Crossed Modules and Quasi 3-Crossed Modules of a Simplicial Group with Moore Complex

Before giving definition of quasi 3 -crossed module it will be helpful to have notion of a pre-crossed module and introduce description of pre-2-crossed modules.

A pre-crossed module of groups consists of a group, M, a N-group M, and a group homomorphism $\partial: M \longrightarrow N$, such that for all $m \in M, \quad n \in N$ $C M 1) \quad \partial\left({ }^{n} m\right)=n \partial(m) n^{-1}$. Now we may describe that definition of a pre $-2-$ crossed module of group.

A pre-2-crossed modules consists of complex of groups

$$
L \xrightarrow{\partial_{2}} M \xrightarrow{\partial} N
$$

together with action of N on L and M so that $\partial_{2}, \partial_{1}$ are morphism of N-group where the group acts an itself by ${ }^{x} y$, action of M on L written $m \cdot l$ such that with this action

$$
L \xrightarrow{\partial_{2}} M
$$

is a pre-crossed module and there is a second action of M on L via N denoted ${ }^{m} l$, so that for all $l \in L, \quad m \in M$, and $n \in N$ that ${ }^{n} m={ }^{n m} l$. Further there is a N-equivalent function

$$
\{,\}: M \times M \rightarrow L
$$

called Peiffer commutator, which satisfying the following conditions:
$2 \mathrm{CM}_{p} \partial_{2}\{x, y\}={ }^{\partial_{1}(x)} y x y^{-1} x^{-1}$
$2 \mathrm{CM}_{p}$ (i) $\left\{x x^{\prime}, y\right\}={ }^{\partial_{1}(x)}\left\{x^{\prime}, y\right\}\left\{x, x^{\prime} y\left(x^{\prime}\right)^{-1}\right\}$
(ii) $\left\{x, y y^{\prime}\right\}=\{x, y\}{ }^{x y x^{-1}}\left\{x, y^{\prime}\right\}$
$2 \mathrm{CM}_{p}{ }^{n}\{x, y\}=\left\{{ }^{n} x,{ }^{n} y\right\}$
for all $x, y \in M, \quad n \in N, \quad l \in L$. Let G be a simplicial group with the Moore complex $N G$. Then the complex of groups

$$
N G_{2} \xrightarrow{\partial_{2}} N G_{1} \xrightarrow{\partial_{1}} N G_{0}
$$

is a pre -2 -crossed module, where the Peiffer commutator map is defined as follows:

$$
\begin{aligned}
\{,\}: N G_{1} \times N G_{1} & \longrightarrow N G_{2} \\
\left(x_{0}, x_{1}\right) & \longmapsto s_{0}\left(x_{0}\right) s_{1}\left(x_{1}\right) s_{0}\left(x_{0}\right)^{-1} s_{1}\left(x_{0}\right) s_{1}\left(x_{1}\right)^{-1} s_{1}\left(x_{0}\right)^{-1}
\end{aligned}
$$

It is obvious to pre-crossed module condition is satisfied. Indeed it is sufficient to show that $\partial_{2}, \partial_{1}$ are pre-crossed modules and pre $-2-$ crossed module axioms are verified. That is $N G_{0}$ acts on $N G_{1}$ via s_{0} and $N G_{1}$ acts on $N G_{2}$ via s_{1} and $N G_{0}$ acts on $N G_{2}$ via $s_{1} s_{0}$. Thus

$$
\begin{aligned}
& \partial_{1}\left({ }^{x_{0}} x_{1}\right)=\partial_{1}\left(s_{0}\left(x_{0}\right) x_{1} s_{0}\left(x_{0}\right)^{-1}\right)=x_{0} \partial_{1}\left(x_{1}\right) x_{0}^{-1} \\
& \partial_{2}\left({ }^{\left(x_{1}\right.} x_{2}\right)=\partial_{2}\left(s_{1}\left(x_{1}\right) x_{2} s_{1}\left(x_{1}\right)^{-1}\right)=x_{1} \partial_{2}\left(x_{2}\right) x_{1}^{-1}
\end{aligned}
$$

$2 \mathrm{CM1}_{p}:$

$$
\begin{aligned}
\partial_{2}\left\{x_{0}, x_{1}\right\} & =\partial_{2}\left(s_{0}\left(x_{0}\right) s_{1}\left(x_{1}\right) s_{0} x_{0}{ }^{-1} s_{1}\left(x_{0}\right) s_{1}\left(x_{1}\right)^{-1} s_{1}\left(x_{0}\right)^{-1}\right), \\
& =s_{0} d_{1}\left(x_{0}\right) x_{1} s_{0} d_{1}\left(x_{0}\right)^{-1} x_{0}\left(x_{1}\right)^{-1}\left(x_{0}\right)^{-1}, \\
& =\partial_{1}\left(x_{0}\right) x_{1} \quad x_{0}\left(x_{1}\right)^{-1}\left(x_{0}\right)^{-1} .
\end{aligned}
$$

Other two conditions are clear and where $\partial_{1}, \partial_{2}$ are restrictions of $d_{1} d_{2}$ respectively.

Now we can give definition of a quasi 3 -crossed modules of groups.

Definition 3.1. A quasi 3 -crossed module of group consists of a complex N-groups

$$
K \xrightarrow{\partial_{3}} L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{1}} N
$$

and $\partial_{3}, \partial_{2}, \partial_{1}$ morphism of N-groups, where the group N acts on itself by conjugation, such that

$$
K \xrightarrow{\partial_{3}} L
$$

is a crossed module and

$$
L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{1}} N
$$

is a pre-2-crossed module. Thus L acts on K and we require that for all $k \in K, \quad l \in L, \quad m \in M$ and $n \in N$ that

$$
\left.{ }^{(n} m\right)\left({ }^{l} k\right)={ }^{n}\left({ }^{m}\left({ }^{l} k\right)\right) .
$$

Furthermore there is a N-equivalent function

$$
\{,\}: L \times L \rightarrow K
$$

Mutlu mapping is defined as follows

$$
\left\{l_{1}, l_{2}\right\}=H\left(l_{1}, l_{2}\right)=\left[s_{0}\left(l_{1}\right), s_{1}\left(l_{2}\right)\right]\left[s_{1}\left(l_{2}\right), s_{1}\left(l_{1}\right)\right]\left[s_{2}\left(l_{1}\right), s_{2}\left(l_{2}\right)\right],
$$

if the following conditions are verified.

$$
\begin{array}{rl}
3 C M 1_{q} & \partial_{2}, \partial_{1} \text { are pre-crossed module, } \partial_{3} \text { is a crossed module } \\
3 C M 2_{q} & L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{1}} N \text { is a pre- }-2-\text { crossed module } \\
3 C M 3_{q} & \partial_{3} H\left(l_{1}, l_{2}\right)=s_{0} d_{2}\left(l_{1}\right) s_{1} d_{2}\left(l_{2}\right) s_{1} d_{2}\left(l_{1}\right) s_{1} d_{2}(l)^{-1} l_{1} l_{2} l_{2}^{-1} \\
3 C M 4_{q} & (a) H\left(l, \partial_{3}(k)\right)=\left[l, s_{2}(k)\right] \\
& (b) H\left(\partial_{3}(k) l,\right)=\left[s_{2}(k), l\right] \\
3 C M 5_{q} & H\left(l, \partial_{3}(k)\right) H\left(\partial_{3}(k) l,\right)=1 \\
3 C M 6_{q} & H\left(\partial_{3}\left(k_{1}\right), \partial_{3}\left(k_{2}\right)\right)=\left[k_{1}, k_{2}\right]
\end{array}
$$

where $l_{1}, l_{2} \in L$ and $k_{1}, k_{2} \in K$

Theorem 3.2. (a) Let $N G_{i}=1$ for $\forall i \geq 1$ in the long exact Moore sequence if and only if the long exact Moore sequence become only group i.e., G_{0} be a group.
(b) Let $N G_{i}=1$ for $\forall i \geq 2$ in the long exact Moore sequence if and only if the long exact Moore sequence be crossed module that is $\cdots 1 \rightarrow N G_{1} \rightarrow N G_{0}$ is a crossed module.
(c) Let $N G_{i}=1$ for $\forall i \geq 3$ in the long exact Moore sequence if and only if the long exact Moore sequence become a 2 -crossed module i.e, $\cdots 1 \rightarrow N G_{2} \rightarrow$ $N G_{1} \rightarrow N G_{0}$ is a $2-$ crossed module.
(d) Let $N G_{i}=1$ for $\forall i \geq 4$ in the long exact Moore sequence if and only if the long exact Moore sequence be quasi 3 -crossed module $\cdots 1 \rightarrow N G_{3} \rightarrow$ $N G_{2} \rightarrow N G_{1} \rightarrow N G_{0}$ is a 3 -quasi crossed module (3-crossed complex).
(e) Let $N G_{i}=1$ for $\forall i \geq n+1$ in the long exact Moore sequence if and only if the long exact Moore sequence become an n-crossed complex that is, $\cdots 1 \rightarrow N G_{n} \rightarrow N G_{n-1} \rightarrow \cdots \rightarrow N G_{3} \rightarrow N G_{2} \rightarrow N G_{1} \rightarrow N G_{0}$ is an n-crossed complex.
(f) Let $N G_{i}=1$ for $\forall i \geq n+2$ in the long exact Moore sequence if and only if the long exact Moore sequence be a T-complex.
(g) Let $F_{(\alpha)(\beta)}\left(x_{\alpha}, y_{\beta}\right)=1$ hypercrossed complex pairings are described in [11, 13] if and only if the long exact Moore sequence be a crossed complex.

Proof: (a) Suppose that $N G_{i}=1$ for $\forall i \geq 1$ and so the long exact Moore sequence obtains as follows: $\cdots 1 \rightarrow 1 \rightarrow 1 \rightarrow \cdots \rightarrow 1 \rightarrow$ $1 \rightarrow 1 \rightarrow N G_{0}=G_{0}$. This is because of the long exact simplicial sequence

On the other hand, if $a \in \operatorname{Ker} d_{0}^{1}$, then $N G_{1}=1$ since $d_{0}(a)=1$. Moreover it is a cat ${ }^{0}$-group. (see Brown-Loday [3].)
(b) If $N G_{i}=1$ for $\forall i \geq 2(1 \leq i \leq n+2)$ in the long exact Moore sequence then the long exact Moore sequence obtains as follows i.e., $\cdots 1 \rightarrow 1 \rightarrow 1 \rightarrow$ $\cdots \rightarrow 1 \rightarrow 1 \rightarrow N G_{1} \rightarrow N G_{0}=G_{0}$ be a crossed module. (see [12] and [10].)
On other word, recall that $F_{\alpha, \beta}\left(x_{\alpha}, y_{\beta}\right)=1$ in $[11,13]$, then for $\alpha=(0), \beta=$ (1)

$$
\begin{aligned}
& F_{(0)(1)}^{(2)}\left(x_{1}, y_{1}\right)=N G_{1} \times N G_{1} \rightarrow N G_{2} \\
& F_{(0)(1)}^{(2)}\left(x_{1}, y_{1}\right)=s_{0}\left(x_{1}\right) s_{1}\left(y_{1}\right) s_{0}\left(x_{1}\right) s_{1}\left(x_{1} y_{1}^{-1} x_{1}^{-1}\right)=1
\end{aligned}
$$

since $N G_{1} \rightarrow N G_{0}$ be crossed module i.e, $N G_{0}$ acts on $N G_{1}$ together with ${ }^{x_{1}} y_{1}=s_{0}\left(x_{1}\right) y_{1} s_{0}(x)^{-1}$ verifies crossed axioms such as,

$$
\partial_{1}\left({ }^{x_{1}} y_{1}\right)=x_{1} \partial_{1}(y) x_{1}{ }^{-1}
$$

and

$$
\partial_{1}\left(x_{1}\right) y_{1}=s_{0} d_{1}\left(x_{1}\right) y_{1} s_{0} d_{1}\left(x_{1}\right)^{-1}=x_{1} y_{1} x_{1}^{-1} \quad\left(\partial_{1} \quad \text { by restriction } d_{1}\right) .
$$

(see $[12,13]$) Also the long exact simplicial sequence $\ldots 1 \underset{s_{0}, s_{1}}{\stackrel{d_{0}, d_{1}, d_{2}}{\rightleftharpoons}} 1 \underset{s_{0}}{\stackrel{d_{0}, d_{1}}{\rightleftarrows}} G_{0}$ be correspond to cat ${ }^{1}$-group which is proved in [10] by Loday. Recall that the structural morphism s and b are given by $d_{1}=s, \quad b=d_{0}$. Axiom (i) of cat ${ }^{1}$ - group follows that relations between face and degeneracy maps. To prove axiom (ii) it is sufficient to see for $x \in \operatorname{Ker} d_{1}$ and $y \in \operatorname{Ker} d_{0}$ the element [$\left.s_{1}\left(x_{1}\right) s_{0}\left(x_{0}\right)^{-1}, s_{1}\left(y_{1}\right)\right]$ of $N G_{2}$ where s_{0}, s_{1} are degeneracy maps and in fact its image by d_{2} is $[1, y]$. So $\left[\operatorname{Ker} d_{1}, \operatorname{Ker} d_{0}\right]=1$, since $\partial_{2} N G_{2}=1$ and also 1 -truncated hypercrossed complex, 1 -hypercrossed complex and 1 -crossed complex see Carrosco and Cegarra [5] and [12] respectively.
(c) Let $N G_{i}=1$ for $\forall i \geq 3$ then the long simplicial sequence
be and the long exact sequence of Moore complex $\cdots 1 \rightarrow N G_{2} \rightarrow N G_{1} \rightarrow$ $N G_{0}$ is a 2 -crossed module with $F_{(\alpha)(\beta)}^{(3)}\left(x_{\alpha}, y_{\beta}\right)=1$ for $\alpha, \beta \in P(3)$. So the Peiffer lifting is defined as follows:

$$
\begin{gathered}
\{,\}: N G_{1} \times N G_{1} \rightarrow N G_{2} \\
\left\{x_{1}, y_{1}\right\} \mapsto s_{0}\left(x_{1}\right) s_{1}\left(y_{1}\right) s_{0}\left(x_{1}\right) s_{1}\left(x_{1} y_{1}^{-1} x_{1}^{-1}\right)=1
\end{gathered}
$$

and thus 2 -crossed module conditions are also satisfied in [12, 13]. For sufficient condition, it is obvious from 2CM2, 2CM4(a) and (b) of $2-$ crossed modules axioms give us $F_{(\alpha)(\beta)}^{(3)}\left(x_{\alpha}, y_{\beta}\right)=1$ implies $N G_{3}=1$. Moreover Ellis and Stenier showed crossed square equivalent to cat ${ }^{2}$-group. Here we say cat ${ }^{2}$-group axioms verified i.e., axioms (a) and (b) of cat ${ }^{2}$-group follows from relations between face and degeneracy maps. To prove axiom (b) it is sufficient to see for $x \in \operatorname{Ker} d_{i}$ and $y \in \operatorname{Ker} d_{j}$ the element $\prod_{I, J}\left[K_{I}, K_{J}\right]$ of $N G_{3}$ and its image by d_{3} is $[x, y]=1$. As $N G_{3}=1$ it follows that $\left[\operatorname{Ker} d_{i}, \operatorname{Ker} d_{j}\right]=1$ for see details in $[13,17]$.
(d) Let G be a simplicial group with the Moore complex NG. Then the Moore complex of groups

$$
N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right) \xrightarrow{\partial_{3}} N G_{2} \xrightarrow{\partial_{2}} N G_{1} \xrightarrow{\partial_{1}} N G_{0}
$$

is a quasi 3 -crossed module of groups, where also D_{4} is the normal subgroup generated by the degenerate elements.

Now we can define Mutlu map is define as follows:

$$
\begin{aligned}
\{, \quad\}: N G_{2} \times N G_{2} & \longrightarrow N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right) \\
\left(x_{2}, y_{2}\right) & \longmapsto\left[s_{0}\left(x_{2}\right), s_{1}\left(y_{2}\right)\right]\left[s_{1}\left(x_{2}\right), s_{1}\left(y_{2}\right)\right]\left[s_{2}\left(x_{2}\right), s_{2}\left(y_{2}\right)\right]
\end{aligned}
$$

here the right hand side denotes a coset in $N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right)$ represented by an element in $N G_{3}$.
$\left(3 \mathrm{CM1}_{q}\right)$ Let $\partial_{2}, \partial_{1}$ are pre-crossed modules and so $N G_{1}$ acts on $N G_{2}$ via s_{1} and $N G_{0}$ acts on $N G_{1}$ via s_{0}. Thus $\partial_{1}\left({ }^{x_{0}} y_{1}\right)=\partial_{1}\left(s_{0}\left(x_{0}\right) y_{1} s_{0}\left(x_{0}\right)^{-1}\right)=$ $x_{0} \partial_{1}\left(y_{1}\right) x_{0}^{-1}={ }^{x_{0}} \partial_{1}\left(y_{1}\right)$ and $\partial_{2}\left({ }^{y_{1}} y_{2}\right)=\partial_{2}\left(s_{1}\left(y_{1}\right) y_{2} s_{1}\left(y_{1}\right)^{-1}\right)=y_{1} \partial_{2}\left(y_{2}\right) y_{1}^{-1}=$ ${ }^{y_{1}} \partial_{2}\left(y_{2}\right)$.
It is readily checked that the morphism $\partial_{3}: N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right) \rightarrow N G_{2}$ is a crossed module i.e., $N G_{2}$ acts on $N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right)$ via s_{2} and we have $\partial_{4} F_{(2)(3)}\left(x_{3}, y_{3}\right)=s_{2} \partial_{3}\left(x_{3}\right) y_{3} s_{2} \partial_{3}\left(y_{3}\right) x_{3} y_{3}^{-1} x_{3}^{-1}=1$ via $\bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)$. Thus $\partial_{4} F_{(2)(3)}\left(x_{3}, y_{3}\right)=s_{2} \partial_{3}\left(x_{3}\right) y_{3} s_{2} \partial_{3}\left(y_{3}\right)$
$x_{3} y_{3}^{-1} x_{3}^{-1} \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)$ so $\partial_{3}\left({ }_{3} y_{3}\right)=\partial_{3}\left(s_{3}\left(x_{3}\right) y_{3} s_{3}\left(x_{3}\right)^{-1}\right)=x_{3} \partial_{3}\left(y_{3}\right) x_{3}^{-1}$ and ${ }^{\partial_{3} x_{3}} y_{3}=s_{2} \partial_{3}\left(x_{3}\right) y_{3} s_{2} \partial_{3}\left(x_{3}\right)^{-1}=x_{3} y_{3} x_{3}^{-1}$ is obtained.
$\left(\mathbf{3 C M 2}_{q}\right) \quad N G_{2} \rightarrow N G_{1} \rightarrow N G_{0}$ is a pre-2-crossed module, where Peiffer map is defined as above.
$\left(\left(x_{0}, x_{1}\right) \longmapsto s_{0}\left(x_{0}\right) s_{1}\left(x_{1}\right) s_{0}\left(x_{0}\right)^{-1} s_{1}\left(x_{0}\right) s_{1}\left(x_{1}\right)^{-1} s_{1}\left(x_{0}\right)^{-1}\right)$
$\left(3 \mathrm{CM}_{q}\right)$

$$
\partial_{3} H\left(x_{2}, y_{2}\right)={ }^{s o d_{2}\left(x_{2}\right)} s_{1} d_{2}\left(y_{2}\right)^{s_{1} d_{2}\left(x_{2}\right)} s_{1} d_{2}\left(y_{2}\right)^{-1} \quad x_{2} y_{2} y_{2}^{-1} .
$$

$\left(3 \mathrm{CM} 4{ }_{q}\right)$ (a) Using the hypercrossed complex parings are defined in $[11,13]$
and then

$$
\begin{aligned}
1 \equiv \partial_{4} F_{(0)(3,1)}^{(4)}\left(x_{3}, y_{2}\right)= & {\left[s_{0} d_{3}\left(x_{3}\right), s_{1}\left(y_{2}\right)\right]\left[s_{1}\left(y_{2}\right), s_{1} d_{3}\left(x_{3}\right)\right] } \\
& {\left[s_{2} d_{3}\left(x_{3}\right), s_{2}\left(y_{2}\right)\right]\left[s_{2}\left(y_{2}\right), x_{3}\right] } \\
& \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)
\end{aligned}
$$

is calculated. Thus we have

$$
H\left(\partial_{3}\left(x_{3}\right), y_{2}\right)
$$

$$
\begin{aligned}
= & {\left[s_{0} d_{3}\left(x_{3}\right), s_{1}\left(y_{2}\right)\right]\left[s_{1}\left(y_{2}\right), s_{1} d_{3}\left(x_{3}\right)\right] } \\
& {\left[s_{2} d_{3}\left(x_{3}\right), s_{2}\left(y_{2}\right)\right] \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right) }
\end{aligned}
$$

and therefore we obtain

$$
\begin{aligned}
H\left(\partial_{3}\left(x_{3}\right), y_{2}\right) \quad & =\left[x_{3}, s_{2}\left(y_{2}\right)\right] \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right) \\
& ={ }^{x_{3}} y_{2} y_{2}^{-1} . \text { (definition of the action) }
\end{aligned}
$$

(b) Again using the hypercrossed complex parings in [11, 13] then

$$
\begin{aligned}
1 \equiv \partial_{4} F_{(0,3)(1)}^{(4)}\left(y_{2}, x_{3}\right)= & {\left[s_{0}\left(y_{2}\right), s_{1} d_{3}\left(x_{3}\right)\right]\left[s_{1} d_{3}\left(x_{3}\right), s_{1}\left(y_{2}\right)\right] } \\
& {\left[s_{2}\left(y_{2}\right), s_{2} d_{3}\left(x_{3}\right)\right]\left[x_{3}, s_{2}\left(y_{2}\right)\right] } \\
& \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)
\end{aligned}
$$

is found. This equality also holds
$H\left(y_{2}, \partial_{3}\left(x_{3}\right)\right)$

$$
\begin{aligned}
= & {\left[s_{0}\left(y_{2}\right), s_{1} d_{3}\left(x_{3}\right)\right]\left[s_{1} d_{3}\left(x_{3}\right), s_{1}\left(y_{2}\right)\right] } \\
& {\left[s_{2}\left(y_{2}\right), s_{2} d_{3}\left(x_{3}\right)\right] \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right) }
\end{aligned}
$$

and so this implies that
$H\left(y_{2}, \partial_{3}\left(x_{3}\right)\right)=\left[s_{2}\left(y_{2}\right), x_{3}\right] \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)$
which is commutated. Thus the results of (a) and (b) of $\mathbf{3 C M} 4_{q}$ is given as above.
$3 \mathrm{CM} 5{ }_{q}$

$$
H\left(\partial_{3}\left(x_{3}\right), y_{2}\right) H\left(y_{2}, \partial_{3}\left(x_{3}\right)\right)=\left[x_{3}, s_{2}\left(y_{2}\right)\right]\left[s_{2}\left(y_{2}\right), x_{3}\right]=1
$$

$3 \mathbf{C M} 6{ }_{q}$ Using by $[11,13]$ we may also be written this equation as

$$
\begin{aligned}
1 \equiv \partial_{4} F_{(0)(1)}^{(4)}\left(x_{3}, y_{3}\right)= & {\left[s_{0} d_{3}\left(x_{3}\right), s_{1} d_{3}\left(y_{3}\right)\right]\left[s_{1} d_{3}\left(x_{3}\right), s_{1} d_{3}\left(y_{3}\right)\right] } \\
& {\left[s_{2} d_{3}\left(x_{3}\right), s_{2} d_{3}\left(y_{3}\right)\right]\left[y_{3}, x_{3}\right] } \\
& \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right) .
\end{aligned}
$$

Using the equation is obtained as
$H\left(\partial_{3}\left(x_{3}\right), \partial_{3}\left(y_{3}\right)\right)$

$$
\begin{aligned}
= & {\left[s_{0} d_{3}\left(x_{3}\right), s_{1} d_{3}\left(y_{3}\right)\right]\left[s_{1} d_{3}\left(y_{3}\right), s_{1} d_{3}\left(x_{3}\right)\right] } \\
& {\left[s_{2} d_{3}\left(x_{3}\right), s_{2} d_{3}\left(y_{3}\right)\right] }
\end{aligned}
$$

$\bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)$.
Here we yield
$H\left(\partial_{3}\left(x_{3}\right), \partial_{3}\left(y_{3}\right)\right) \quad \equiv\left[x_{3}, y_{3}\right] \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)$.
(e) If $N G_{i}=1$ for $\forall i \geq n+1$ in the long exact Moore sequence, then the long exact Moore sequence be an n-crossed complex with $F_{(\alpha)(\beta)}^{(n+1)}(x, y)=1$. Recalling by $[11,14]$ we have the trivial map as follows:

$$
F_{(\alpha)(\beta)}^{(n+1)}(x, y)=N G_{(n+1))-\# \alpha} \times N G_{(n+1))-\# \beta} \rightarrow N G_{n+1} .
$$

So $N G_{n}$ also be an abelian group for $n \geq 2$ since

$$
\begin{aligned}
1 & =\partial_{n+1} F_{(n-1)(n)}^{(n+1)}(x, y) \\
& =s_{n-1} d_{n}(x) y s_{n-1} d_{(}(x)^{-1} x y^{-1} x^{-1} \\
& =\phi_{n-1}^{(n+1)} d_{n}(x) y x y^{-1} x^{-1} \\
& =[y, x] .
\end{aligned}
$$

Here $N G$ is a simplicial chain complex where $N G_{n}$ is abelian for $n \geq 2, \phi_{n-1}^{(n+1)}$ is action of $N G_{0}$ on $N G_{n}$ for each $n \geq 1$ and ∂_{n} is $N G_{0}$-group homomorphism defined as

$$
\cdots \longrightarrow N G_{n} / \partial_{n+1} K_{n+1} \longrightarrow N G_{n-1} / \partial_{n} K_{n} \longrightarrow \cdots \longrightarrow N G_{3} / \partial_{4} K_{4} \longrightarrow
$$

$$
N G_{2} / \partial_{3} K_{3} \longrightarrow N G_{1} / \partial_{2} K_{2} \longrightarrow N G_{0}
$$

is obviously a crossed complex, $K_{i}=N G_{i} \cap D_{i}$.
To prove the opposite of it $N G_{n} / \partial_{n+1} K_{n+1}$ be abelian group for $n \geq$ 2 , then

$$
\begin{aligned}
\partial_{n+1} F_{(n-1)(n)}^{(n+1)}(x, y) & =s_{n-1} d_{n}(x) y s_{n-1} d_{n}(x)^{-1} x y^{-1} x^{-1} \\
& =[y, x]=1 .
\end{aligned}
$$

Thus $F_{(\alpha)(\beta)}^{(n-1)}(x, y)=1$ implies that $N G_{n+1}=1$. This is also an n-truncated complex. (see Carrasco and Cegarra[5].)
(f) Let $N G_{i}=1$ for $\forall i \geq n+2$ in the long exact Moore sequence if and only if the long Moore sequence be a T-complex. To proof see Ashley [1] and Carrasco and Cegarra [5].
(g) Let $F_{(\alpha)(\beta)}^{(n-1)}\left(x_{\alpha}, y_{\beta}\right)=1$ in the long Moore sequence if and only if the long exact Moore sequence become a crossed complex.

Example 3.3. 3-truncated complex is a quasi 3-crossed module.
Therefore we have following results.

Corollary 3.4. If $N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right)=1$, then $N G_{2} \rightarrow N G_{1} \rightarrow N G_{0}$ corresponds a 2 -crossed module. (see [12, 13])

Corollary 3.5. If $N G_{0}=1$, then

$$
N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right) \xrightarrow{\partial_{3}} N G_{2} \xrightarrow{\partial_{2}} N G_{1}
$$

is a 2-crossed module with defined Peiffer map as

$$
\begin{aligned}
\{, \quad\}: N G_{2} \times N G_{2} & \longrightarrow N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right) \\
\left(x_{2}, y_{2}\right) & \longmapsto s_{1}\left(x_{2}\right) s_{2}\left(y_{2}\right) s_{1}\left(x_{2}\right)^{-1} s_{2}\left(y_{2}\right) s_{2}\left(x_{2}\right)^{-1} s_{2}\left(y_{2}\right)^{-1} .
\end{aligned}
$$

Proof: Indeed the function is satisfied $2-$ crossed module axioms.
2CM1: To prove easier since $\partial_{3}\left\{x_{2}, y_{2}\right\}={ }^{\partial_{2}\left(x_{2}\right)} y_{2} \quad x_{2} y_{2}^{-1} x_{2}^{-1}$.
2CM2: Let $\partial_{4} F_{(1)(2)}^{(4)}\left(x_{2}, y_{2}\right)=d_{4}\left(F_{(1)(2)}\left(x_{2}, y_{2}\right)\right)=\left[s_{1} d_{3} x_{2}, s_{2} d_{3} y_{2}\right]$ $\left[s_{2} d_{3} y_{2}, s_{2} d_{3} x_{2}\right]\left[x_{2}, y_{2}\right]$. So $\partial_{4} F_{(1)(2)}^{(4)}\left(x_{2}, y_{2}\right)=1 \bmod _{4}\left(N G_{4} \cap D_{4}\right)$. Then $\left\{\partial_{3}\left(x_{2}\right), \partial_{3}\left(y_{2}\right)\right\}=\left[y_{2}, x_{2}\right]$ is obtained. (see $[11,13]$)
2CM3: (i) $\left\{x_{2} x_{2}^{\prime}, y_{2}\right\}={ }^{2} x\left\{x_{2}^{\prime}, y_{2}\right\} \quad\left\{x_{2}, x_{2} y_{2} x_{2}^{-1}\right\}$
(ii) $\left\{x_{2}, y_{2} y_{2}^{\prime}\right\}=\left\{x_{2}, y_{2}\right\}{ }^{x_{2} y_{2} x_{2}^{-1}}\left\{x_{2}, y_{2}^{\prime}\right\}$

2CM4: (a) Let $\partial_{4} F_{(1)(3,2)}^{(4)}\left(y_{3}, x_{2}\right)=d_{4}\left(F_{(1)(3,2)}\left(y_{3}, x_{2}\right)\right)=\left[s_{1} d_{3} y_{3}, s_{2} x_{2}\right]$ $\left[s_{2} x_{2}, s_{2} d_{3} y_{3}\right]\left[y_{3}, s_{2} x_{2}\right]=1 \bmod \partial_{4}\left(N G_{4} \cap D_{4}\right)$. Then $\left\{\partial_{3}\left(y_{3}\right), x_{2}\right\}=\left[s_{2}\left(x_{2}\right), y_{2}\right]={ }^{x_{2}} y_{3} y_{3}^{-1}$ is obtained by the definition of action. (b) Let $F_{(3,1)(2)}^{(4)}\left(x_{2}, y_{3}\right)=d_{4}\left(F_{(3,1)(2)}\left(x_{2}, y_{3}\right)\right)=\left[s_{1} x_{2}, s_{2} d_{3} y_{3}\right]\left[s_{2} d_{3} y_{3}, s_{2} x_{2}\right]$ $\left[s_{2} x_{2}, y_{3}\right]\left[y_{3}, s_{1} x_{2}\right]$. So $F_{(3,1)(2)}^{(4)}\left(x_{2}, y_{3}\right)=1 \bmod _{4}\left(N G_{4} \cap D_{4}\right)$. Then $\left\{x_{2}, \partial_{3}\left(y_{3}\right)\right\}=\left[s_{1}\left(x_{2}\right), y_{3}\right]\left[y_{3} s_{2}\left(x_{2}\right)\right]=x \cdot y^{x_{2}} y_{3} y_{3}^{-1}$
is found.
2CM5 $\left\{x_{2}, \partial_{3}\left(y_{3}\right\}\left\{\partial_{3}\left(y_{3}\right), x_{2}\right\}=(x \cdot y)^{x} y y^{-1}={ }^{\partial_{2}\left(x_{2}\right)} y_{2} \cdot y_{2}^{-1}\right.$
is calculated by the definition of the action.
2CM6 ${ }^{n}\{x, y\}=\left\{{ }^{n} x{ }^{n} y\right\}$.
Now we consider the following diagram of morphisms

The group $N G_{2}$ acts, in two way on the group $N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right)$ by conjugation via s_{1} and via s_{2} both within G_{3}. The action via s_{1} will be denoted by $x \cdot y=s_{1}(x) y s_{1}(x)^{-1}$ and the action via s_{2} will be denoted by ${ }^{x} y=s_{2}(x) y s_{2}(x)^{-1}$. The action of $N G_{1}$ on $N G_{3}$ is given as follows: from equality $\left[s_{1}(x)^{-1} s_{2} s_{1} d_{2}(x), y\right] \equiv 1 \bmod N G_{3} / \partial_{4}\left(N G_{4} \cap D_{4}\right)$, there is a commutative diagram

given by

which gives an equality

$$
\partial_{2} x y=s_{2} s_{1} d_{2}(x) y s_{2} s_{1} d_{2}(x)^{-1}=s_{1}(x) y s_{1}(x)^{-1} .
$$

Let us define the map ρ by $\rho\left(x, x^{\prime}\right)={ }^{\partial_{2}(x)} x^{\prime} \quad x\left(x^{\prime}\right) x^{-1}$ for $x, x^{\prime} \in N G_{2}$, that is the Peiffer commutator in $N G_{2}$ corresponding $\left\{x, x^{\prime}\right\}$. Thus if the map ρ is a trivial map then $\partial_{2}: N G_{2} \rightarrow N G_{1}$ is a crossed module.

Now if the long Moore sequence is iterated as follows, then two results are obtained where $K_{i}=N G_{i} \cap D_{i}$.

$$
\cdots 1 \longrightarrow N G_{n} / \partial_{n+1} K_{n+1} \longrightarrow N G_{n-1} / \partial_{n} K_{n} \cdots N G_{1} / \partial_{2} K_{2} \longrightarrow N G_{0}
$$

Corollary 3.6.

$$
\cdots 1 \longrightarrow N G_{k} / \partial_{k+1} K_{k+1} \xrightarrow{\partial_{k}} N G_{k-1} \xrightarrow{\partial_{k-1}} N G_{k-2} \longrightarrow 1 \longrightarrow \cdots \longrightarrow 1
$$

is a 2 -crossed module with defined Peiffer commutator

$$
\left\{x_{k-1}, y_{k-1}\right\}=s_{k-1}\left(x_{k-1}\right) s_{k}\left(y_{k-1}\right) s_{k-1}\left(x_{k-1}\right)^{-1} s_{k}\left(x_{k-1} y_{k-1}^{-1} x_{k-1}^{-1}\right)
$$

the 2 -crossed module conditions are clearly verified.

Corollary 3.7.

$$
\begin{aligned}
& \cdots 1 \longrightarrow N G_{k} / \partial_{k+1} K_{k+1} \xrightarrow{\partial_{k}} N G_{k-1} \xrightarrow{\partial_{k-1}} \\
& N G_{k-2} \xrightarrow{\partial_{k-2}} N G_{k-3} \xrightarrow{\partial_{k-3}} 1 \longrightarrow \cdots \longrightarrow 1
\end{aligned}
$$

is a quasi 3-crossed modules, where the Mutlu map is defined as follows:

$$
\left\{x_{k-1}, y_{k-1}\right\}=F_{(0)(1)}^{(k)}\left(x_{k-1}, y_{k-1}\right)
$$

It is obvious that quasi 3-crossed modules conditions are satisfied.
We can follow the same procure as we make in Corollary 3.7 in order to get to result.

Corollary 3.8. The category of quasi 3 -crossed modules is equivalent to the category of simplicial groups with Moore complex of length 3.

References

[1] N. Ashley, Simplicial T-Complexes: a non abelian version of a theorem of Dold-Kan, Dissertationes Math., 165, (1988), 11-58, Ph.D. Thesis, University of Wales, Bangor, 1978.
[2] R. Brown and J. Huesbschmann, Identities among relations, Low dimension topology, London Math. Soc. Lecture Note Series, (ed. R. Brown and T. L. Thickstun, Cambridge University Press), 48, (1982), 153-202.
[3] R. Brown and J.-L. Loday, Van Kampen Theorems for Diagram of Spaces, Topology, 26, (1987), 311-335.
[4] P. Carrasco, Complejos Hipercruzados, Cohomologia y Extensiones, Ph.D. Thesis, Universidad de Granada, 1987.
[5] P. Carrasco and A.M. Cegarra, Group-theoretic Algebraic Models for Homotopy Types, Jour. Pure Appl. Algebra, 75, (1991), 195-235.
[6] D. Conduché, Modules Croisés Généralisés de Longueur 2, Jour. Pure Appl. Algebra, 34, (1984), 155-178.
[7] J. Duskin, Simplicial methods and the interpretations of "triple" cohomology, Memoirs Amer. Math. Soc., 163, (1975).
[8] Paul G. Glenn, Realization of Cohomology in Arbitrary Exact Categories, Jour. Pure Appl. Algebra, 25, (1982), 33-105.
[9] D. Guin-Waléry and J.L. Loday, Obstructions à l'Excision en K-théorie Algébrique, Lecture Notes in Math., Springer, 854, (1981), 179-216.
[10] J.-L. Loday, Spaces having finitely many non-trivial homotopy groups, Jour. Pure Appl. Algebra, 24, (1982), 179-202.
[11] A. Mutlu, Peiffer Pairings in the Moore Complex of a Simplicial Group, Ph.D. Thesis, University of Wales Bangor, 1997.
[12] A. Mutlu, The proof of the Brown-Loday Lemma's by using Peiffer commutators, Hadronic Journal Supplement, 13, (1998), 299-314.
[13] A. Mutlu and T. Porter, Applications of Peiffer pairings in the Moore complex of a simplicial group, Theory and Applications of Categories, 4(7), (1998), 148-173.
[14] A. Mutlu and T. Porter, Free crossed resolution from a simplicial algebra with given $C W$-basis, Cahiers de Topologie et Géometrie Différentielle Catégoriques, XL-4, (1999), 261-283.
[15] A. Mutlu and T. Porter, Freeness Conditions for 2-Crossed Modules and Complexes, Theory and Applications of Categories, 4(8), (1998), 174-194.
[16] A. Mutlu and T. Porter, Freeness conditions for crossed squares and squares complexes, K-Theory, 20(4), (2000), 345-368.
[17] A. Mutlu and T. Porter, Iterated Peiffer pairings in the Moore complex a of simplicial group, Applied Categorical Structure, 9(2),(2001), 111-130.
[18] B. Mutlu, The Generalization to $3^{\text {rd }}$ Dimension of Crossed Modules (Quasi 3-crossed Modules), Master of Science Thesis, University of Celal Bayar, Graduate School of Natural and Applied Sciences, August, 2002.
[19] T. Porter, n-Types of simplicial groups and crossed n-cubes, Topology, 32, (1993), 5-24.
[20] J.H.C. Whitehead, Combinatorial Homotopy I and II, Bull. Amer. Math. Soc., 55, (1949), 231-245 and 453-496.

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science,University of Celal Bayar, Muradiye Campus 45047,Manisa, Turkey, e-mail: ali.mutlu@bayar.edu.tr
 ${ }^{2}$ Hasan Türek Anatolian High School, Mathematics Teacher 45020, Manisa/Turkey, e-mail: abgmutlu@hotmail.com

