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Existence results for a class of

semilinear elliptic systems
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Abstract

This paper deals with the existence of solutions to a class of semi-

linear potential elliptic systems of the form











−div(a(x)∇u) = λFu(x, u, v) in Ω,

−div(b(x)∇v) = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where the domain Ω is a bounded domain, the weights a(x), b(x) are

measurable nonnegative weights and λ is a positive parameter.
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1 Introduction

In this paper, we deal with a class of semilinear elliptic systems of the form











−div(a(x)∇u) = λFu(x, u, v) in Ω,

−div(b(x)∇v) = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1)

where the domain Ω is a bounded domain in R
N(N > 2), the weights a(x), b(x)

are measurable nonnegative weights on Ω, (Fu, Fv) = ∇F stands for the gra-

dients of F in the variables (u, v) ∈ R
2 and λ is a positive parameter.

Recently, many authors have studied the existence of nontrivial solutions

for such problems (see [3, 6, 8, 10,12-14] and their references) because several

physical phenomena related equilibrium of continuous media are modeled by

these elliptic problems (see [5]).

In [7], N.B. Zographopoulos studied a class of degenerate potential semi-

linear elliptic systems of the form











−div(a(x)∇u) = λµ(x)|u|γ−1|v|δ+1u in Ω,

−div(b(x)∇v) = λµ(x)|u|γ+1|v|δ−1v in Ω,

u = v = 0 on ∂Ω,

(2)

where λ > 0, γ, δ ≥ 0 and µ(x) may change sign. He proved the existence of

at least one solution for the system (2) under suitable assumption on the data.

In this paper, we consider system (1) and prove under the suitable con-

ditions on nonlinearities Fu and Fv, by using the Minimum principle (see [2,

p. 4, Theorem 1.2]) and the Mountain pass theorem of A. Ambrosetti and

Robinowitz [4], the system (1) has at least two nontrivial solutions.

Throughout this work, we assume the weights a, b ∈ L1
loc(Ω),

a−s, b−s ∈ L1(Ω), s ∈ (N
2
,∞) ∩ [1,∞). With the number s we define

2s =
2s

s+ 1
, 2∗s =

N2s
N − 2s

=
N2s

N(s+ 1)− 2s
> 2.

We define the Hilbert spaces W 1,2
0 (Ω, a) and W

1,2
0 (Ω, b) as the clusures of

C∞

0 (Ω) with respect to the norms

‖u‖2a =

∫

Ω

a(x)|∇u|2dx for all u ∈ C∞

0 (Ω),
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‖v‖2b =

∫

Ω

b(x)|∇v|2dx for all v ∈ C∞

0 (Ω).

Set W = W
1,2
0 (Ω, a) ×W

1,2
0 (Ω, b). It is clear that W is a Hilbert space under

the norm

‖(u, v)‖W = ‖u‖a + ‖v‖b for all (u, v) ∈ W,

and with respect to the scalar product

〈ϕ, ψ〉W =

∫

Ω

(a(x)∇ϕ1∇ψ1 + b(x)∇ϕ2∇ψ2)dx

for all φ = (ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ W.

Then W is a uniformly convex space. Moreover, the continuous embedding

W ↪→ (W 1,2s)2

holds with 2s =
2s

s+ 1
(cf. Example1.3, [15]) and we have the Sobolev’s em-

bedding W ↪→ (L2∗
s(Ω))2. We notice that the compact embedding

W ↪→ Lr(Ω)× Lt(Ω)

holds provided that 1 ≤ r, t < 2∗s.

Next, we assume that F (x, t, s) is a C1−functional on Ω×[0,∞)×[0,∞) →

R, satisfying the hypotheses below:

(F1) There exist positive constant c1, c2 such that

|Ft(x, t, s)| ≤ c1t
γsδ+1 , |Fs(x, t, s)| ≤ c2t

γ+1sδ

for all (t, s) ∈ R
2, a.e. x ∈ Ω and some γ, δ > 1 with γ+1

p
+ δ+1

q
= 1 and

γ + 1 < p < 2∗s, δ + 1 < q < 2∗s.

(F2) There exist positive constant c and 2 < α, β < 2∗s such that

|F (x, t, s)| ≤ c(1 + |t|α + |s|β).

(F3) There exist R > 0, θ and θ′ with 1
2∗
s

< θ, θ′ < 1
2
such that

0 < F (x, t, s) ≤ θtFt(x, t, s) + θ′sFs(x, t, s).

for all x ∈ Ω and |t|, |s| ≥ R.
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(F4) There exist α > 2, β > 2 and ε > 0 such that

|F (x, t, s)| ≤ c(|t|α + |s|β)

for all x ∈ Ω and |t|, |s| ≤ ε.

Definition 1.1. We say that (u, v) ∈ W is a weak solution of system (1) if

and only if
∫

Ω

(a(x)∇u∇ϕ+ b(x)∇v∇ψ)dx = λ

∫

Ω

(Fu(x, u, v)ϕ+ Fv(x, u, v)ψ)dx,

for all (ϕ, ψ) ∈ W .

The functional corresponding to problem (1) is

Iλ(u, v) =
1

2

∫

Ω

(a(x)|∇u|2 + b(x)|∇v|2)dx− λ

∫

Ω

F (x, u, v)dx. (3)

It is easy to see that the functional I(u, v) is well defined and is of class C1 in

W. Thus, weak solutions of (1) are exactly the critical points of the functional

Iλ.

Now, we can describe our main results as follows.

Theorem 1.2. Suppose that the condition (F1) is satisfied. Then there

exists a constant λ > 0 such that for all 0 ≤ λ < λ, system (1) has a weak

solution.

Theorem 1.3. In addition suppose that the condition (F1)− (F4) are sat-

isfied. Then problem (1) has a nontrivial solution.

2 Proof of Theorem 1.2

Lemma 2.1. The functional Iλ given by (3) is weakly lower semicontinous

in W .
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Proof. Let {(um, vm)} be a sequence that converges weakly to (u, v) in W .

By the weak lower semicontinuity of the norms in the spaces W 1,2
0 (Ω, a) and

W
1,2
0 (Ω, b) we deduce that

lim inf
m→∞

∫

Ω

[

a(x)|∇um|
2+ b(x)|∇vm|

2
]

dx ≥

∫

Ω

[

a(x)|∇u|2+ b(x)|∇v|2
]

dx. (4)

We shall show that

lim
m→∞

∫

Ω

F (x, um, vm)dx =

∫

Ω

F (x, u, v)dx. (5)

Indeed, we have

∣

∣

∣

∫

Ω

[

F (x, um, vm)− F (x, u, v)
]

dx
∣

∣

∣

≤

∫

Ω

∣

∣

∣
Fu(x, u+ θ1,m(um − u), v + θ2,m(vm − v))

∣

∣

∣
|um − u|dx

+

∫

Ω

∣

∣

∣
Fv(x, u+ θ1,m(um − u), v + θ2,m(vm − v))

∣

∣

∣
|vm − v|dx

≤ c1

∫

Ω

|u+ θ1,m(um − u)|γ|v + θ2,m(vm − v)|δ+1|um − u|dx

+c2

∫

Ω

|u+ θ1,m(um − u)|γ+1|v + θ2,m(vm − v)|δ|vm − v|dx

≤ c1‖u+ θ1,m(um − u)‖γLp‖v + θ2,m(vm − v)‖δ+1
Lq ‖um − u‖Lp

+c2‖u+ θ1,m(um − u)‖γ+1
Lp ‖v + θ2,m(vm − v)‖δLq‖vm − v‖Lq . (6)

Since 2 < γ + 1 < p < 2∗s and 2 < δ + 1 < q < 2∗s, the sequence {(um, vm)}

converges strongly to (u, v) in the space Lp(Ω)× Lq(Ω). It is easy to see that

‖u+ θ1,m(um − u)‖Lp

and

‖v + θ2,m(vm − v)‖Lq

are bounded. Thus, it follows from (6) that relation (5) holds true. Then we

have

Iλ(u, v) ≤ lim inf
m→∞

Iλ(um, vm).
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Lemma 2.2. The functional Iλ given by (3) is coercive and bounded below

in W .

Proof. By (F1), there exists c3 > 0 such that for all (t, s) ∈ R2 and a.e.

x ∈ Ω we have

|F (x, t, s)| ≤ c3|t|
γ+1|s|δ+1.

Using Holder’s and Young’s inequalities, we obtain

∫

Ω

F (x, u, v)dx ≤ c3

∫

Ω

|u|γ+1|v|δ+1dx

≤ c3

(γ + 1

p

∫

Ω

|u|pdx+
δ + 1

q

∫

Ω

|v|qdx
)

≤ c3

(γ + 1

p
s

∫

Ω

a(x)|∇u|2dx+
δ + 1

q
s′
∫

Ω

b(x)|∇v|2dx
)

where s and s′ are the imbedding constants of W 1,2
0 (Ω, a) ↪→ Lp(Ω) and

W
1,2
0 (Ω, b) ↪→ Lq(Ω), respectively. Then we can write

Iλ(u, v) ≥
(1

2
− λc

γ + 1

p

)

‖u‖2a +
(1

2
− λc

δ + 1

q

)

‖v‖2b ,

where c = max{c3s, c3s
′}. Let λ = min

{

p

2c(γ+1)
, q

2c(δ+1)

}

> 0, then for all

0 ≤ λ < λ we conclude that Iλ(u, v) → ∞, provided that ‖(u, v)‖ → ∞.

By Lemmas (2.1) and (2.2), applying the Minimum principle, the functional

Iλ attains its minimum, and thus system (1) admits at least one weak solution.

3 Proof of Theorem 1.3

Lemma 3.1. The functional Iλ given by (3) satisfies the Palais-Smale con-

dition in W .

Proof. Let {(um, vm)} be a Palais-Smale sequence for the functional Iλ,

thus there exists c4 > 0 such that

|Iλ(um, vm)| ≤ c4 for any m ∈ N (7)
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and there exists a strictly decreasing sequence {εm}
∞

m=1, limm→∞ εm = 0, such

that

|〈I ′λ(um, vm), (ξ, η)〉| ≤ εm‖(ξ, η)‖, (8)

for any m ∈ N and for any (ξ, η) ∈ W .

By Lemma (2.2), we deduce that Iλ is coercive, relation (7) implies that

the sequence {(um, vm)} is bounded in W . Since W is a Hilbert space, there

exists (u, v) ∈ W such that, passing to subsequence, still denote by {(um, vm)},

it converges weakly to (u, v) in W and strongly in Lp(Ω) × Lq(Ω). Choosing

(ξ, η) = (um − u, 0) in (7), we have

∣

∣

∣

∫

Ω

a(x)|∇um|∇(um − u)− λ

∫

Ω

Fu(x, um, vm)(um − u)
∣

∣

∣
≤ εm‖um − u‖. (9)

Using the condition (F1) combined with Holder’s inequality we conclude that

∫

Ω

Fu(x, um, vm)|um − u|dx ≤ c1

∫

Ω

|um|
γ|vm|

δ+1|um − u|dx

≤ c1‖um‖
γ
Lp‖vm‖

δ+1
Lq ‖um − u‖Lp .

It follows from relations (9) and (10) that

lim
m→∞

∫

Ω

a(x)|∇um|∇(um − u)dx = 0

subtracting
∫

Ω

a(x)|∇u|(∇um −∇u)dx,

we obtain

0 = lim
m→∞

∫

Ω

a(x)(|∇um| − |∇u|)(∇um −∇u)dx ≥ lim
m→∞

(‖um‖a − ‖u‖a)
2 ≥ 0

which implies that ‖um‖a → ‖u‖a. The uniform convexity of W 1,2
0 (Ω, a) yields

that um converges strongly to u in W 1,2
0 (Ω, a).

Similarly, we obtain vm → v in W 1,2
0 (Ω, b) as n→ ∞.

By Lemma (3.1), we obtain that the functional Iλ satisfies (PS)-condition

(compactness condition). Now we verify that the functional Iλ has the geom-

etry of the Mountain pass theorem.

Lemma 3.2. Under assumption (F1)− (F4), the functional Iλ satisfies
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(i) There exists ρ, σ > 0 such that ‖(u, v)‖H = ρ implies I(u, v) ≥ σ > 0.

(ii) There exists (z1, z2) ∈ W such that ‖(z1, z2)‖H > ρ and I(z1, z2) ≤ 0.

Proof. (i) From (F2) and (F4), one obtains

|F (x, u, v)| ≤ c(|u|α + |v|β + |u|α + |v|β)

for all x ∈ Ω and (u, v) ∈ R2 where 2 < α, α, β, β < 2∗s. By Sobolev embedding

we obtain
∫

Ω

F (x, u, v)dx ≤ c(‖u‖αa + ‖v‖βb + ‖u‖αa + ‖v‖βb ).

So, we can estimate the functional Iλ(u, v) by

Iλ(u, v) ≥
1

2
(‖u‖2a + ‖v‖2b)− c(‖u‖αa + ‖v‖βb + ‖u‖αa + ‖v‖βb )

which implies that there exist σ, ρ > 0 such that Iλ(u, v) ≥ σ > 0 for ‖u‖a +

‖v‖b = ρ.

(ii) Using (F3), we have

d

dt
F (x, tθu, tθ

′

v) = θuFu(x, t
θu, tθ

′

v)tθ−1 + θ′vFv(x, t
θu, tθ

′

v)tθ
′
−1

≥
1

t
F (x, tθu, tθ

′

v)

which implies that there exists some function K(x, u, v) such that

F (x, tθu, tθ
′

v) ≥ tK(x, u, v). (10)

From (11), we obtain

I(tθu, tθ
′

v) =
1

2
(t2θ‖u‖2a + t2θ

′

‖v‖2b)−

∫

Ω

F (x, tθu, tθ
′

v)dx

≤
1

2
(t2θ‖u‖2a + t2θ

′

‖v‖2b)− t

∫

Ω

K(x, u, v)dx.

Since 2θ, 2θ′ < 1, we conclude that

I(tθu, tθ
′

v) → −∞ as t→ +∞,

and thus there exists a constant t0 such that I(tθ0u, t
θ′

0 v) < 0.

Consequently, the functional Iλ has a nonzero critical point and the nonzero

critical point of Iλ is precisely the nontrivial solution of problem (1).
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