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1 Introduction

The use and application of weighted distributions in research related to

reliability, bio-medicine, ecology and several other areas are of tremendous

practical importance in mathematics, probability and statistics. These distri-

butions arise naturally as a result of observations generated from a stochastic

process and recorded with some weight function. The concept of weighted

distributions has been employed in wide variety applications in reliability and

survival analysis, analysis of family data, meta-analysis, ecology, and forestry.

Several authors have presented important results on length-biased distribu-

tions and on weighted distributions in general. Rao [11] unified the concept of

weighted distributions. Vardi [14] derived the nonparametric maximum like-

lihood estimate (NPMLE) of a lifetime distribution in the presence of length

bias and established convergence to a pinned Gaussian process with a sim-

ple covariance function under mild conditions. Rao [10] identified the various

sampling situations that can be modeled by what he called weighted distribu-

tions, extending the idea of the methods of ascertainment upon estimation of

frequencies by Fisher. Patil and Rao [7], [8] investigated the applications of

the weighted distributions. Statistical applications of weighted distributions,

especially to the analysis of data relating to human population and ecology

can be found in Patil and Rao [7]. For additional and important results on

weighted distributions, see Gupta and Keating [4], Oluyede [6], Patil and Ord

[9], Zelen and Feinleib [15] and references therein.

Consider the following general class of weight functions given by

w(x) = xketxF i(x)F
j
(x), (1)

where F̄ (x) = 1 − F (x) and F (x) is the survival or reliability function and

cumulative distribution function (cdf) of the random variable X. Now setting

t = 0; k = j = i = 0; t = i = j = 0; (k = t = 0, i → i− 1, j = n − i);

k = t = i = 0 and k = t = j = 0 in the weight function, one at a time, im-

plies probability weighted moments, moment-generating functions, moments,

order statistics, proportional hazards and proportional reversed hazards, re-

spectively.

Let X be a non-negative random variable (rv) with its natural probability

density function (pdf) f(x; θ), where the natural parameter is θ ∈ Ω (Ω is the
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parameter space). Suppose a realization x of X under f(x; θ) enters the inves-

tigator’s record with probability proportional to w(x; β), so that the recording

(weight) function w(x; β) is a non-negative function with the parameter β rep-

resenting the recording (sighting) mechanism. Clearly, the recorded x is not

an observation on X, but on the rv Xw, having a pdf

fw(x; θ, β) =
w(x, β)f(x; θ)

ω
, (2)

where ω is the normalizing factor obtained to make the total probability equal

to unity by choosing 0 < ω = E[w(X, β)] < ∞. The random variable Xw is

called the weighted version of X, and its distribution is related to that of X

and is called the weighted distribution with weight function w.

The generalized Rayleigh distribution (GRD) is considered to be a very

useful life distribution. It presents a flexible family in the varieties of shapes

and is suitable for modeling data with different types of hazard rate func-

tion: increasing, decreasing and upside down bathtub shape (UBT). The main

objective of this article is to explore the properties of weighted generalized

Rayleigh distribution (WGRD).

This article is organized as follows. Section 2 contains the some basic

definitions, utility notions and useful functions including the weighted gen-

eralization. The probability density function (pdf), cumulative distribution

function (cdf), hazard function and reverse hazard function of the WGRD are

derived. In section 3, moments and related measures are derived. Measures of

uncertainty are presented in section 4, followed by concluding remarks.

2 Basic Utility Notions

In this section, some basic utility notions and results on the WGRD are

presented. Suppose the distribution of a continuous random variable X has

the parameter set θ∗ = {θ1, θ2, · · · , θn}. Let the pdf of the rv X be given by

f(x; θ∗). The corresponding cdf is defined to be

F (x; θ∗) =

∫ x

−∞
f(t; θ∗) dt. (3)

The hazard function of X can be interpreted as the instantaneous failure

rate or the conditional probability density of failure at time x, given that the
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unit has survived until time x, see Shaked and Shanthikumar [13]. The hazard

function h(x; θ∗) is defined to be

h(x; θ∗) = lim
∆x→0

P (x ≤ X ≤ x+ ∆x)

∆x[1− F (x; θ∗)]
=
−F̄ ′(x; θ∗)

F̄ (x; θ∗)
=

f(x; θ∗)

1− F (x; θ∗)
, (4)

where F̄ (x; θ∗) is the survival or reliability function. The concept of reverse

hazard rate was introduced as the hazard rate in the negative direction and

received minimal attention, if any, in the literature. Keilson and Sumita [5]

demonstrated the importance of the reverse hazard rate and reverse hazard

orderings. Shaked and Shanthikumar [13] presented results on reverse hazard

rate. See Chandra and Roy [2], Block and Savits [1] for additional details.

We present a formal definition of the reverse hazard function of a distribution

function F. See Ross [12], Chandra and Roy [2] for additional details. The

reverse Hazard function can be interpreted as an approximate probability of a

failure in [x, x+ dx], given that the failure had occurred in [0, x] .

Definition 2.1. Let (a, b), −∞ ≤ a < b <∞, be an interval of support for

F. Then the reverse hazard function of X (or F) at t > a is denoted by τF (t)

and is defined as

τ(t; θ∗) =
d

dt
logF (t; θ∗) =

f(t; θ∗)

F (t; θ∗)
. (5)

Some useful functions that are employed in subsequent sections are given

below. The gamma function is given by

Γ(x) =

∫ ∞
0

tx−1e−t dt. (6)

The digamma function is defined by

Ψ(x) =
Γ
′
(x)

Γ(x)
, (7)

where

Γ
′
(x) =

∫ ∞
0

tx−1(log t)e−t dt

is the first derivative of the gamma function. The second derivative of the

gamma function is

Γ
′′
(x) =

∫ ∞
0

tx−1(log t)2e−t dt.
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Definition 2.2. The nth-order derivative of gamma function is given by:

Γ(n)(s) =

∫ ∞
0

zs−1(log z)n exp(−z) dz. (8)

This derivative will be used frequently in this paper. The lower incomplete

gamma function and the upper incomplete gamma function are

γ(s, x) =

∫ x

0

ts−1e−t dt and Γ(s, x) =

∫ ∞
x

ts−1e−t dt, (9)

respectively.

2.1 Weighted Generalized Rayleigh Distribution

First consider the following two parameter probability density function

(pdf) given by

f(x; θ, k) =
k

θ
1
kΓ( 1

k
)

exp

(
−x

k

θ

)
for x ≥ 0, k > 0 and θ > 0. (10)

The corresponding moments are given by

E(Xm) =

∫ ∞
0

xm
k

θ
1
kΓ
(

1
k

) exp

(
−x

k

θ

)
dx. (11)

Let c =
k

θ
1
k Γ( 1

k
)

and z = xk

θ
, then x = θ

1
k z

1
k , dx = 1

k
θ

1
k z

1
k
−1 dz, and

E(Xm) = c

∫ ∞
0

(
θ
m
k z

m
k

)
exp(−z)

(
1
k
θ

1
k z

1
k
−1
)
dz

=
c θ

m+1
k

k

∫ ∞
0

z
m+1
k
−1 exp(−z) dz

=
k

θ
1
k Γ( 1

k
)

θ
m+1
k Γ(m+1

k
)

k

=
θ
m
k Γ(m+1

k
)

Γ( 1
k
)

.

Now consider the following weighted (length-biased) version of the pdf given

above in equation (10):

fl(x; θ, k) =
xf(x)

E(X)
=

kx

θ
2
kΓ( 2

k
)

exp

(
− xk

θ

)
for x ≥ 0, k > 0, and θ > 0.

(12)
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With k = 2 we obtain the usual Rayleigh probability density function (pdf).

The weighted pdf corresponding to fl(x) with weighted function w(x;m) = xm

and for x ≥ 0, k > 0, and θ > 0 is given by

gw(x; θ, k,m) =
xmfl(x)

E(Xm)

=
kxm+1

θ
m+2
k Γ(m+2

k
)

exp

(
−x

k

θ

)
.

Note that

lim
x→0

gw(x; θ, k,m) = 0, and lim
x→∞

gw(x; θ, k,m) = 0. (13)

The cdf corresponding to the weighted generalized Rayleigh distribution

(WGRD) gw(x; θ, k,m) is given by:

GW (x; θ, k,m) =

∫ x

0

gw(y; θ, k,m) dy. (14)

Let c0 =
k

θ
m+2
k Γ(m+2

k
)

and z = yk

θ
, then y = θ

1
k z

1
k and dy = θ

1
k z

1
k
−1

k
dz. We

have

GW (x; θ, k,m) = c0

∫ x

0

(
θ
m+1
k z

m+1
k

)
exp(−z)

(
1

k
θ

1
k z

1
k
−1

)
dz

=
c0θ

m+2
k

k

∫ x

0

z
m+2
k
−1 exp(−z) dz. (15)

Since the lower incomplete gamma function is defined as

γ(s, x) =

∫ x

0

ts−1 exp(−t) dt, (16)

we have:

GW (x; θ, k,m) =
c0θ

m+2
k

k

∫ x

0

z
m+2
k
−1 exp(−z) dz

=
k

θ
m+2
k Γ(m+2

k
)

θ
m+2
k

k
γ(m+2

k
, x)

=
γ(m+2

k
, x)

Γ(m+2
k

)
. (17)
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The survival function is given by

ḠW (x; θ, k,m) = 1−GW (x; θ, k,m) = 1−
γ(m+2

k
, x)

Γ(m+2
k

)
. (18)

The corresponding hazard function is given by

hGW (x; θ, k,m) =
gw(x; θ, k,m)

ḠW (x; θ, k,m)

=

(
kxm+1 exp(−xk

θ
)

θ
m+2
k Γ(m+2

k
)

)/(
1−

γ(m+2
k
, x)

Γ(m+2
k

)

)
=

kxm+1 exp(−xk

θ
)

θ
m+2
k

[
Γ(m+2

k
)− γ(m+2

k
, x)
] . (19)

The reverse hazard function τGW (x; θ, k,m) is given by

τGW (x; θ, k,m) =
gw(x; θ, k,m)

Gw(x; θ, k,m)

=

kxm+1 exp(−x
k

θ
)

θ
m+2
k Γ(m+2

k
)

γ(m+2
k

,x
k

θ
)

Γ(m+2
k

)

=
kxm+1 exp(−xk

θ
)

θ
m+2
k

γ(m+2
k

,x
k

θ
)
. (20)

We study the behavior of the hazard function of the WGRD via the fol-

lowing lemma, due to Glaser [3].

Lemma 2.3. Let f(x) be a twice differentiable probability density function of

a continuous random variable X. Define η(x) = −f ′(x)
f(x)

, where f ′(x) is the first

derivative of f(x) with respect to x. Furthermore, suppose the first derivative

of η(x) exist.

1. If η′(x) < 0, for all x > 0, then the hazard function is monotonically

decreasing (DHR).

2. If η′(x) > 0, for all x > 0, then the hazard function is monotonically

increasing (IHR).

3. Suppose there exist x0 such that η′(x) > 0, for all 0 < x < x0, η′(x0) = 0

and η′(x) < 0 for all x > x0. In addition, limx→0 f(x) = 0, then the hazard

function is upside down bathtub shape (UBT).
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4. Suppose there exist x0 such that η′(x) < 0, for all 0 < x < x0, η′(x0) = 0

and η′(x) > 0 for all x > x0. In addition, limx→0 f(x) = ∞, then the hazard

function is bathtub shape (BT).

Now consider the weighted distribution discussed above. We compute the

quantity ηGW (x; θ, k,m)(x) = −g′w(x;θ,k,m)
gw(x;θ,k,m)

, and apply Glaser [3] result. Note

that

ηGW (x; θ, k,m) = −g
′
W (x; θ, k,m)

gW (x; θ, k,m)

= −

[
kxm+1 exp(−xk

θ
)
]′

cxm+1 exp(−xk

θ
)

=
kxk − (m+ 1)θ

θx
.

The derivative η
′
GW

(x) is given by

η
′

GW
(x) =

d

dx

(
− m+ 1

x
+
k

θ
xk−1

)
=

m+ 1

x2
+
k(k − 1)

θ
xk−2. (21)

• If k ≥ 1, then η
′
GW

(x) > 0; and the hazard function is monotonically

increasing.

• If 0 < k < 1, then η
′
GW

(x) = m+1
x2
− k(1−k)

θ
xk−2. There exists x0 =

k

√
θ(m+1)
k(1−k)

such that η
′
GW

(x) > 0, for all 0 < x < x0, η
′
GW

(x0) = 0 and

η
′
GW

(x) < 0 for all x > x0. In addition, limx→0 gw(x) = 0, consequently,

the hazard function is upside down bathtub shape (UBT).

3 Moment Generating Function and Moments

Under the density function fl(x) =
xf(x)

E(x)
=

kx

θ
2
kΓ( 2

k
)

exp(−xk

θ
), we have

E(etX
k

) =

∫ ∞
0

etx
k kx

θ
2
k Γ( 2

k
)

exp(−x
k

θ
) dx

= cl

∫ ∞
0

x exp

[
− xk

(
1

θ
− t
)]

dx, (22)
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where cl = k

θ
2
k Γ( 2

k
)
. Let z = xk(1

θ
− t), where θt < 1, then we have x = z

1
k

( 1
θ
−t)

1
k

and dx = z
1
k
−1

k( 1
θ
−t)

1
k
dz, so that

E(etX
k

) = cl

∫ ∞
0

z
1
k

(1
θ
− t) 1

k

exp(−z)
z

1
k
−1

k(1
θ
− t) 1

k

dz

=
cl

k(1
θ
− t) 2

k

∫ ∞
0

z
2
k
−1 exp(−z) dz (23)

=
k

θ
2
k Γ( 2

k
)

Γ( 2
k
)

k(1
θ
− t) 2

k

=
1

(1− θt) 2
k

. (24)

We also present the raw moments, mean, variance, coefficients of variation,

skewness and kurtosis for the WGRD. Now, under the weighted generalized

Rayleigh pdf gw(x; θ, k,m), the nth raw moment is given by:

E(Xn) =

∫ ∞
0

c0x
nxm+1 exp

(
− xk

θ

)
dx = c0

∫ ∞
0

xn+m+1 exp

(
− xk

θ

)
dx,

(25)

where c0 = k

θ
m+2
k Γ(m+2

k
)
. Let z = xk, then

E(Xn) = c0

∫ ∞
0

z
m+n+1

k exp

(
− z

θ

)(
1

k
z

1
k
−1

)
dz

=
c0

k

∫ ∞
0

z
m+n+2

k
−1 exp(−z

θ
) dz

=
k

θ
m+2
k Γ(m+2

k
)

1

k

[
θ
m+n+2

k Γ(m+n+2
k

)
]

=
θ
n
k Γ(m+n+2

k
)

Γ(m+2
k

)
. (26)

Let Γ0 = Γ(m+2
k

) and Γj = Γ(m+j+2
k

), then E(Xn) can be rewritten as θ
n
k Γn
Γ0

.

The variance σ2, coefficient of variation (CV), coefficient of skewness (CS), and

coefficient of kurtosis (CK) are given below. The variance is

σ2 =
θ

2
kΓ(m+4

k
)

Γ(m+2
k

)
−
θ

2
kΓ2(m+3

k
)

Γ2(m+2
k

)
. (27)
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The coefficient of variation (CV) is given by

CV =
θ

1
k

[
Γ(m+2

k
)Γ(m+4

k
)− Γ2(m+3

k
)
]1/2

/Γ(m+2
k

)

θ
1
kΓ(m+3

k
)/Γ(m+2

k
)

=
(Γ0Γ2 − Γ2

1)
1
2

Γ1

. (28)

Note that

µ3 =
θ

3
kΓ(m+5

k
)

Γ(m+2
k

)
− 3

θ
1
kΓ(m+3

k
)

Γ(m+2
k

)

θ
2
kΓ(m+4

k
)

Γ(m+2
k

)
+ 2

θ
3
kΓ3(m+3

k
)

Γ3(m+2
k

)
,

and

σ3 =
θ

3
k

[
Γ(m+2

k
)Γ(m+4

k
)− Γ2(m+3

k
)
] 3

2

Γ3(m+2
k

)
.

The coefficient of skewness (CS) is given by

CS =
µ3

σ3

=
Γ2

0Γ3 − 3Γ0Γ1Γ2 + 2Γ3
1

[Γ0Γ2 − Γ2
1]

3
2

. (29)

The coefficient of kurtosis (CK) is defined as CK =
µ4

σ4

which can be readily

computed. In fact,

µ4 =
θ

4
kΓ(m+6

k
)

Γ(m+2
k

)
− 4

θ
1
kΓ(m+3

k
)

Γ(m+2
k

)

θ
3
kΓ(m+5

k
)

Γ(m+2
k

)
+ 6

θ
2
kΓ2(m+3

k
)

Γ(m+2
k

)

θ
2
kΓ(m+3

k
)

Γ(m+2
k

)
− 3

θ
4
kΓ4(m+3

k
)

Γ4(m+2
k

)

= θ
4
k

(
Γ4

Γ0

− 4
Γ1Γ3

Γ2
0

+ 6
Γ2

1Γ2

Γ3
0

− 3
Γ4

1

Γ4
0

)
. (30)

Also σ4 is

σ4 =
(
σ2
)2

=

(
θ

2
kΓ2

Γ0

− θ
2
kΓ2

1

Γ2
0

)2

=
θ

4
k

Γ4
0

(
Γ2Γ0 − Γ2

1

)2
, (31)

so that the coefficient of kurtosis (CK) is given by

CK =

θ
4
k

(
Γ4

Γ0

− 4Γ3Γ1

Γ2
0

+
6Γ2

1Γ2

Γ3
0

− 3Γ4
1

Γ4
0

)
θ
4
k

Γ4
0

(Γ2Γ0 − Γ2
1)

2

=
Γ4Γ3

0 − 4Γ1Γ3Γ2
0 + 6Γ2

1Γ2Γ0 − 3Γ4
1

(Γ2Γ0 − Γ2
1)

2 . (32)
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Figure 1: Plot of coefficient of variation with fixed m or k

The graphs of the coefficients of variation (CV), skewness (CS) and kurtosis

(K) are given in Figure 1, Figure 2 and Figure 3 when the parameters θ, and

k are fixed.

4 Some Measures of Uncertainty for WGRD

The concept of entropy plays a vital role in information theory. The en-

tropy of a random variable is defined in terms of its probability distribution

and can be shown to be a good measure of randomness or uncertainty. In

this section, we present some useful and important measures of uncertainty in-

cluding Shannon entropy, β−entropy, and generalized entropy for the WGRD.

4.1 Shannon Entropy

Shannon entropy of a random variable X is a measure of the uncertainty
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Figure 2: Plot of coefficient of skewness with fixed m or k

and is given by EF (−log(f(X)), where f(x) is the pdf of the random variable

X. Under the WGRD, Shannon entropy is given as follows:

H(gw) = E [− log gw(X)] = −
∫ ∞

0

[log gw(x)] gw(x; θ, k,m) dx. (33)

Note that

log gw(x) = log
kxm+1 exp

(
−xk

θ

)
θ
m+2
k Γ(m+2

k
)

= log c0 + (m+ 1) log x− xk

θ
, (34)

where c0 = k

θ
m+2
k Γ(m+2

k
)
, so that

E [− log gw(X)] =

∫ ∞
0

[log gw(x)] gw(x)dx

=

∫ ∞
0

[
log c0 + (m+ 1) log x− xk

θ

]
c0 x

m+1 exp

(
− xk

θ

)
dx
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Figure 3: Plot of coefficient of kurtosis with fixed m or k

= −c0(m+ 1)

∫ ∞
0

xm+1 exp(−x
k

θ
) log x dx

− c0 log c0

∫ ∞
0

xm+1 exp(−x
k

θ
) dx

+
c0

θ

∫ ∞
0

xk+m+1 exp(−x
k

θ
) log x dx.

Let z = xk

θ
, then x = θ

1
k z

1
k , dx = 1

k
θ

1
k z

1
k
−1, xm+1 = θ

m+1
k z

m+1
k and log x =

log(θ
1
k z

1
k ) = 1

k
log θ + 1

k
log z, so that

c0(m+ 1)

∫ ∞
0

xm+1e−
xk

θ log x dx =
c0(m+ 1)θ

m+2
k

k2

∫ ∞
0

z
m+2
k
−1 (log(θz)) e−z dz

=
(m+ 1) log θ

k
+

(m+ 1)Γ
(1)
0

kΓ0

. (35)

Also, note that∫ ∞
0

c0 log c0 x
m+1 exp

(
− xk

θ

)
dx = c0 log c0

∫ ∞
0

θ
m+1
k z

m+1
k e−z

(
1

k
θ

1
k z

1
k
−1

)
dz

=
c0θ

m+2
k log c0

k

∫ ∞
0

z
m+2
k
−1e−z dz

= log k − (m+2
k

) log θ − log Γ0, (36)
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and∫ ∞
0

c0

θ
xk+m+1 exp

(
− xk

θ

)
dx =

c0

θ

∫ ∞
0

xk+m+1 exp(−x
k

θ
) dx

=
c0

θ

∫ ∞
0

θ
m+k+1

k z
m+k+1

k exp(−z)

(
1

k
θ

1
k z

1
k
−1

)
dz

=
c0θ

m+k+2
k

kθ

∫ ∞
0

z
m+2
k exp(−z) dz

=
k

θ
m+2
k Γ

(
m+2
k

) θm+2
k

k
Γ(m+k+2

k
)

=
Γk
Γ0

. (37)

Therefore, Shannon Entropy H(gw) is given by

E [− log gw(X)] = −
∫ ∞

0

[log gw(x)] gw(x) dx

= −(m+ 1) log θ

k
− (m+ 1)Γ

(1)
0

kΓ0

− log k

+
(m+ 2) log θ

k
+ log Γ0 +

Γk
Γ0

=
log θ

k
− log k + log Γ0 −

(m+ 1)Γ
(1)
0

k Γ0

+
Γk
Γ0

. (38)

4.2 β-Entropy

In this section, we present β-entropy for the WGRD, which is given by

Hβ(gw) =
1

β − 1

[
1−

∫ ∞
0

gβw(x) dx

]
=

1

β − 1

[
1−

∫ ∞
0

cβ0 x
β(m+1) exp

(
− βxk

θ

)
dx

]
, (39)

where c0 = k

θ
m+2
k Γ(m+2

k
)
. Let z = βxk

θ
, then x = ( θ

β
)
1
k z

1
k , dx = 1

k
z

1
k
−1( θ

β
)
1
k dz
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and xβ(m+1) = ( θ
β
)
β(m+1)

k z
β(m+1)

k . We have:∫ ∞
0

gβw(x)dx = cβ0

∫ ∞
0

(
θ

β
)
β(m+1)

k z
β(m+1)

k exp(−z)

(
1

k
z

1
k
−1(

θ

β
)
1
k

)
dz

=
cβ0
k

(
θ

β
)
β(m+1)+1

k

∫ ∞
0

z
β(m+1)+1

k
−1 exp(−z) dz

=
cβ0
k

(
θ

β
)
β(m+1)+1

k Γ

(
β(m+ 1) + 1

k

)
=

kβ−1 θ
1−β
k

Γβ(m+2
k

) β
β(m+1)+1

k

Γ

(
β(m+ 1) + 1

k

)
. (40)

Therefore, β-entropy for the WGRD is given by:

Hβ(gw) =
1

β − 1

[
1−

∫ ∞
0

gβw(x)dx

]
=

1

β − 1

[
1− kβ−1 θ

1−β
k

Γβ(m+2
k

) β
β(m+1)+1

k

Γ

(
β(m+ 1) + 1

k

)]
, (41)

for β 6= 1.

4.3 Generalized Entropy

In this section, we present the generalized entropy, which is defined by

IGW (α) =
vαµ

−α − 1

α(α− 1)
α 6= 0, 1, (42)

where vα =
∫
xα dF (x) and F (x) is the cumulative distribution function (cdf)

for the random variable X. Since

vα =
θ
α
k Γ(m+α+2

k
)

Γ(m+2
k

)
, (43)

we have

IGW (α) =
1

α(α− 1)

[
θ
α
k Γ(m+α+2

k
)

Γ(m+2
k

)

θ−
α
k Γ−α(m+3

k
)

Γ−α(m+2
k

)
− 1

]

=
1

α(α− 1)

[
Γ(m+α+2

k
)Γ−α(m+3

k
)

Γ1−α(m+2
k

)− 1

]
=

1

α(α− 1)

(
ΓαΓ−α1

Γ1−α
0

− 1

)
, (44)

for α 6= 0, 1.
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The mean logarithmic deviation (MLD) index is given by

IGW (0) = lim
α→0

I(α) = log µ− v0

= log
θ

1
kΓ(m+3

k
)

Γ(m+2
k

)
− 1

=
1

k
log θ + log Γ

(
m+ 3

k

)
− log Γ

(
m+ 2

k

)
− 1. (45)

The Theil index is given by

IGW (1) = lim
α→1

I(α)

=
µ

v1

− log µ

=
θ

1
k Γ(m+3

k
)/Γ(m+2

k
)

θ
1
k Γ(m+3

k
)/Γ(m+2

k
)
− log µ

= 1− 1

k
log θ − log Γ

(
m+ 3

k

)
+ log Γ

(
m+ 2

k

)
. (46)

5 Concluding Remarks

Some properties of the generalized Rayleigh distribution and weighted gen-

eralized Rayleigh distributions are presented. The probability density function,

cumulative distribution function, the failure rate function or hazard function

and the reverse hazard function are presented. The behavior of the hazard

function was also established, indicating that this generalization covers a wide

range of possibilities as a lifetime model. Entropy measures, including Shannon

entropy, β−entropy, and generalized entropy for the WGRD are also derived.
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