Theoretical Mathematics & Applications, vol.2, no.2, 2012, 13-19 ISSN: 1792-9687 (print), 1792-9709 (online) International Scientific Press, 2012

Endomorphism Rings of Essentially

Pseudo Injective Modules

Ritu Jaiswal¹ and P.C. Bharadwaj²

Abstract

In this paper some of the results on the endomorphism rings of essentially pseudo injective modules have been obtained. In particular, it is proved that for a uniform essentially pseudo injective module M, the socle of M is essential in M iff Jacobson radical of endomorphism ring of M is equal to the set of all homomorphisms from socle of M to M. It has been shown that the endomorphism ring of an essentially pseudo injective uniform module is local and the mono-endomorphism of an essentially pseudo injective uniform module is an automorphism. Finally, we found a characterization for a uniform module M to be essentially pseudo injective in terms of its injective hull.

Mathematics Subject Classification: 16D50

Keywords: essentially pseudo injective modules, essentially pseudo stable submodule

Article Info: Received : January 16, 2012. Revised : April 5, 2012 Published online : June 30, 2012

¹ Department of Mathematics, Banaras Hindu University Varanasi-221005, India, e-mail: ritu11_bhu@yahoo.com

² Department of Mathematics, Banaras Hindu University Varanasi-221005, India, e-mail: drpcbharadwaj@yahoo.co.in

1 Introduction

Throughout this paper the basic ring R is supposed to be ring with unity and all modules are unitary left R-modules.

A submodule N of a module M is called essential in M and is denoted as $N \subseteq_e M$, if $N \cap L = 0$ where $L \subseteq M$ implies that L = 0. A nonzero module is called uniform if every nonzero submodule is essential in it.

A ring R is called regular (in the sense of Von-Neumann) if for each $r \in R$ there exists $x \in R$ such that r = rxr. The Jacobson radical of a module M, denoted by J(M) is the intersection of all maximal submodules of M. An R-module M is called local if it has a unique maximal submodule which contains every proper submodules of M. If M is an R-module then socle of M denoted by Soc(M) is defined as intersection of essential submodules of M. An R-module M is called π -injective if for all submodules U, V of M with $U \cap V = 0$, there exists $f \in S$ with $U \subset Kerf$ and $V \subset Ker(1 - f)$. We call a module M, a duo module if every submodule of M is fully invariant. An R-module M is called extending module if every submodule of M is essential in a direct summand of M.

2 Preliminary Notes

Definition 1. A module M is said to be essentially pseudo injective if for any module A, any essential monomorphism $g: A \to M$ and monomorphism $f: A \to M$ there exists $h \in End(M)$ such that f = hog.

Definition 2. A submodule T of a module M is said to be essentially pseudo stable if for any essential monomorphism $g: A \to M$ and monomorphism $f: A \to M$ with $Img + Imf \subseteq T$, there exists $h \in End(M)$ such that f = hog then $h(T) \subseteq T$.

3 Main Results

Proposition 3.1. Let M be an essentially pseudo injective uniform module. Then every monomorphism in End(M) is an automorphism.

Proof. Let $g: M \to M$ be any monomorphism then $Img \neq 0$ and since M is uniform, g is an essential monomorphism. By essential pseudo injectivity of $M, I_M: M \to M$ can be extended to a homomorphism $h: M \to M$ such that $hog = I_M \Rightarrow h$ is onto.

Again h is one-one as kerh = 0, for if $kerh \neq 0$ then $Img \cap kerh \neq 0 \Rightarrow \exists 0 \neq x \in Img \cap kerh \Rightarrow x \in Img$ and $x \in kerh \Rightarrow g(y) = x$ for some $y \in M$ and h(x) = 0.

Now $h(x) = 0 \Rightarrow hog(y) = 0 \Rightarrow I_M(y) = 0 \Rightarrow y = 0$

 $\Rightarrow x = 0$, a contradiction.

So kerh = 0. Hence h is an isomorphism and therefore $h^{-1} = g$ is an automorphism.

Proposition 3.2. If S is the endomorphism ring of an essentially pseudo injective uniform module M then S is local.

Proof. If $\alpha \in S$ then $ker\alpha \subseteq M$. Either $ker\alpha = 0$ or $ker\alpha \neq 0$.

Case(1) Let $ker\alpha = 0$ then α is a mono-endomorphism of M which by Proposition 1 implies that α is an isomorphism, hence α is invertible.

Case(2) If $ker\alpha \neq 0$. Consider the map $g = (I_M - \alpha) : M \to M$. Claim that kerg = 0. Let $kerg \neq 0$ then $ker\alpha \cap kerg \neq 0 \Rightarrow \exists 0 \neq x \in ker\alpha \cap kerg$, then $x \in ker\alpha$ and $x \in kerg \Rightarrow \alpha(x) = 0$ and $g(x) = 0 \Rightarrow (I_M - \alpha)(x) = 0 \Rightarrow I_M(x) = 0 \Rightarrow x = 0$, a contradiction.

So, $kerg = 0 \Rightarrow g$ is a mono-endomorphism of $M \Rightarrow g$ is an isomorphism $\Rightarrow g = (I_M - \alpha)$ is invertible.

Thus for any $\alpha \in S$ either α or $I_M - \alpha$ is mono-endomorphism of M. So, S is local.

Proposition 3.3. Let M be an essentially pseudo injective uniform module. Let S be the endomorphism ring of M and J(S) be the Jacobson radical of S. Let $T = \{\alpha \in S | ker\alpha \text{ is essential in } M\}$ then

(a) T = J(S)
(b) J(S) ⊆ Hom(Soc(M), M).
(c) S/J(S) is Von-Neumann regular ring.

Proof. (a) Let $\alpha \in T$. Consider the map $g = (1 - \alpha) : M \to M$, then kerg = 0 follows from the proof of Proposition 2. So g is an isomorphism. Whence $(1 - \alpha)$ is an isomorphism. As $(1 - \alpha)$ is invertible $\Rightarrow \alpha \in J(S)$. So, $T \subseteq J(S)$. Conversely, let $\alpha \in J(S)$ and let $Ker\alpha \cap K = 0$ for some $K \subseteq M$. Let $\nu : K \to M$ be the inclusion map. There are two possibilities either $Im(\alpha o\nu) = 0$ or $Im(\alpha o\nu) \neq 0$.

Case 1. If $Im(\alpha o\nu) = 0$ then $\alpha o\nu(K) = 0 \Rightarrow \alpha(K) = 0 \Rightarrow K \subseteq Ker\alpha$ $\Rightarrow K = 0$. This shows that $Ker\alpha$ is an essential submodule of M and so $\alpha \in T$.

Case 2. If $Im(\alpha o\nu) \neq 0 \Rightarrow Im(\alpha o\nu)$ is an essential submodule of M. So by essential pseudo injectivity of $M \exists \psi \in End(M)$ such that $\nu = \psi o\alpha o\nu$ i.e. $\nu(K) = \psi o\alpha o\nu(K) \Rightarrow (1 - \psi o\alpha)\nu(K) = 0 \Rightarrow \nu(K) = 0 \Rightarrow K = 0$. Thus $Ker\alpha$ is an essential submodule of $M \Rightarrow \alpha \in T$. Thus, $J(S) \subseteq T$.

(b) Let $\alpha \in J(S)$ then $Ker\alpha$ is essential in M and so $Soc(M) \subseteq Ker\alpha \subseteq M$ Now, $Ker\alpha \subseteq_e M$ and $Soc(M) \subseteq M \Rightarrow Soc(M) \cap Ker\alpha \subseteq_e Soc(M)$, which by [3, Proposition 5.16(2)] implies $Ker\alpha \subseteq_e Soc(M) \Rightarrow Ker\alpha \subseteq Soc(M)$ $\Rightarrow \alpha \in Hom(Soc(M), M) \Rightarrow J(S) \subseteq Hom(Soc(M), M).$

(c) Let $\alpha \in S$ be such that $\alpha \notin J(S)$ then $Ker\alpha \cap K = 0$ and $K \neq 0$ for some $K \subseteq M$. If $\nu : K \to M$ is the inclusion map, then $(\alpha o\nu)$ is an essential monomorphism from K to M, since $\alpha|_K$ is an essential monomorphism. By essential pseudo injectivity of M, there exists $\psi \in End(M)$ such that $\nu = \psi o\alpha o\nu$. We have $\alpha o\nu(K) = \alpha o\psi o\alpha o\nu(K)$ which implies that $(\alpha - \alpha o\psi o\alpha)\nu(K) = 0$ $\Rightarrow (\alpha - \alpha o\psi o\alpha)K = 0 \Rightarrow K \subseteq Ker(\alpha - \alpha o\psi o\alpha) \subseteq M$. As K is essential in M and K is a nonzero submodule of M, it implies that K is essential in $Ker(\alpha - \alpha o\psi o\alpha)$ and $Ker(\alpha - \alpha o\psi o\alpha)$ is essential in M. This shows that $(\alpha - \alpha o\psi o\alpha) \in J(S)$ and hence S/J(S) is Von-Neumann regular ring.

Notation: If N is a direct summand of M it will be denoted by $N \subseteq^{\oplus} M$.

Ritu Jaiswal and P.C. Bharadwaj

Proposition 3.4. Let M be any pseudo injective module and End(M) be the endomorphism ring of M. If $ker \alpha \subseteq^{\oplus} M$ for every $\alpha \in End(M)$ then $\alpha(M) \subseteq^{\oplus} M$.

Proof. Follows from [5, Proposition 9].

Proposition 3.5. Let M be any pseudo injective module and End(M) denotes the endomorphism ring of M. Then if $ker \alpha \subseteq^{\oplus} M$ for every $\alpha \in End(M)$ then End(M) is regular.

Proof. Follows from [5, Proposition 11].

Corollary 5.1: Endomorphism ring of a completely reducible pseudo injective module is regular.

Proposition 3.6. Let M be an essentially pseudo injective uniform module. If S = End(M) then Soc(M) is essential in M iff J(S) = Hom(Soc(M), M).

Proof. Let J(S) = Hom(Soc(M), M) and $\alpha \in J(S)$ then by Proposition 3(a), Ker α is essential in M. As $\alpha \in J(S)$, $\alpha \in Hom(Soc(M), M)$ which implies that $Ker\alpha \subseteq Soc(M) \subseteq M \Rightarrow Soc(M)$ is essential in M.

Conversely, let Soc(M) be essential in M. Let $\alpha \in J(S)$ then by $3(b) J(S) \subseteq Hom(Soc(M), M)$.

Now, let $\alpha \in Hom(Soc(M), M)$ then $Ker\alpha \subseteq Soc(M)$. As $Soc(M) \subseteq_e M$ and $Ker\alpha \subseteq M \Rightarrow Ker\alpha \cap Soc(M) \subseteq_e Ker\alpha$ and by [3, Proposition 5.16(2)] we get $Soc(M) \subseteq_e Ker\alpha \Rightarrow Soc(M) \subseteq Ker\alpha \subseteq M \Rightarrow Ker\alpha \subseteq_e M$, which in turn implies that $\alpha \in J(S)$ and hence

$$Hom(Soc(M), M) \subseteq J(S) \Rightarrow J(S) = Hom(Soc(M), M).$$

Proposition 3.7. [6, Proposition 3.3(1)] If $Soc(M) \subseteq_e M$, then $\Delta = l_S(Soc(M))$, where $\Delta = \{\alpha \in S | ker\alpha \text{ is essential in } M\}$ and $l_S(Soc(M))$ is the annihilator of Soc(M) in S.

Proposition 3.8. If M is an essentially pseudo injective uniform module and if $Soc(M) \subseteq_e M$ then $J(S) = l_S(Soc(M))$.

Proof. By Proposition 3(a) we have $J(S) = \Delta$ and so by Proposition 7 we get, $J(S) = l_S(Soc(M))$

Proposition 3.9. Let M be a duo, essentially pseudo injective module. Let S = End(M) and $T = \{\alpha \in S | ker\alpha \text{ is essential in } M\}$. Then: (a) for every $f \in T$, Kerf is an essentially pseudo stable submodule of M. (b) if M is extending then every submodule of M is essentially pseudo stable submodule of any direct summand of M.

Proof. (a) Let $f \in T$ then Kerf is essential in M. Let $g : A \to Kerf$ be an essential monomorphism, $\psi : A \to Kerf$ be a monomorphism and $\nu :$ $Kerf \to M$ be the inclusion map. Then clearly $Im(\nu og) + Im(\nu o\psi) \subseteq Kerf$. By essential pseudo injectivity of M there exists $h \in End(M)$ such that $hovog = \nu o\psi$. Since M is duo and $Kerf \subseteq M$, $h(Kerf) \subseteq Kerf$, proving that Kerf is an essentially pseudo stable submodule of M.

(b) Let A be any submodule of M. As M is extending there exists a direct summand N of M such that A is essential in N. Since direct summand of essentially pseudo injective module is essentially pseudo injective implies that N is essentially pseudo injective. Rest of the proof follows from (a).

For a uniform module M we give below a characterization as to when M is essentially pseudo injective in terms of its injective hull.

Proposition 3.10. Let M be a uniform module. Then M is essentially pseudo injective iff for every $f \in End(E(M))$, $f(M) \subseteq M$, where E(M) is the injective hull of M.

Proof. Let M be essentially pseudo injective, let $f \in End(E(M))$ and $N = \{m \in M | f(m) \in M\}$. Then N is an essential submodule of M. Let $i : N \to M$ be inclusion map. As M is essentially pseudo injective, the map $f|_N$ can be extended to a map $g : M \to M$ such that $g|_N = f|_N$. Claim

that $M \cap (g - f)(M) = 0$. If not then there exists $0 \neq m \in M$ such that m = (g - f)(m') for some $m' \in M$. This implies that $f(m') = g(m') - m \in M$. So, $m' \in N$. Hence m = g(m') - f(m') = 0. We have M is essential submodule of E(M). So, $(g - f)(M) = 0 \Rightarrow f(M) \subseteq M$.

The converse follows from [5, Proposition 17] with suitable changes. \Box

Proposition 3.11. Let M be an essentially pseudo injective uniform, duo module. Let S = End(M). For every $f \in J(S)$, Kerf is an essentially pseudo stable submodule of M.

Proof. By Proposition 3(a) we have T = J(S). Rest of the proof follows from Proposition 9(a).

References

- A.K. Tiwary and K.N. Chaubey, Small projective modules, *Indian J. Pure Appl. Math.*, 16(2), (February, 1985), 133-138.
- [2] Chen Zhizhong, Direct injective modules, Acta Mathematica Sinica, New Series, 9(3), (1993), 307-310.
- [3] F.W. Anderson and K.R. Fuller, *Rings and categories of modules*, Springer-Verlag, 1974.
- [4] M.J. Canfell, Completion of diagrams by automorphisms and Bass first stable range condition, *Journal of Algebra*, **176**, (1995), 480-503.
- [5] Ritu Jaiswal and P.C. Bharadwaj, On Pseudo-Projective And Essentially Pseudo Injective Module, *International Mathematical Forum*, 6(9), (2011), 415-422.
- [6] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math Univ. Comeniance, LXXI(1), (2002), 27-33.