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Abstract 

The thickness of a graph is the minimum number of planar into which the graph 

can be decomposed. Determining the thickness of a graph is known too 

NP-complete problem. The outer thickness of a graph is minimum number of 

outer planar into which the graph can be decomposed. Outer thickness is one of 

the classical and standard measures of non-outer planarity of graphs. We 

conjecture that determining the outer thickness of a graph is also NP-complete. 

Arboricity of a graph is the minimum number of edge-disjoint forests whose union 

is G. In this paper, we show the new relations between thickness and outer 

thickness of a graph and its arboricity. 
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1  Introduction  

In VLSI circuit design, a clip id represented as a hyper graph corresponding 

to the nets connecting the cells, a chip-designer has to place the marco cells on a 

printed circuit bord (which usually consist of superimposed layers) , according to 

several designing rules. One of these requirements is to avoid crossing, since 

crossing lead to undesirable signals, it is therefore desirable to find ways to handle 

wire crossing of the graph representing the chip. In practice, crossing-wires must 

be laid out in different layers. There are two approaches for distributing the nets to 

the layers. 

According to the first method, one of the wires must change its layer with 

help of so-called contact cuts when ever a crossing between two wires occurs. 

Unfortunately, the presence of too many contact cuts leads to an increase in area 

and consequently to a higher probability of faulty chips. Therefore, a requirement 

of this manufacturing method is to reduce crossing as much as possible. If a large 

number of crossings are unavoidable, a second approach is appropriate. The 

representing graph is decomposed into planar sub graph each completely 

embedded. In one layer which is not used by the outer planar sub graph. 

Since no contact cuts are used, the manufacturing cost measure of this method is 

the number of layers. An application of this approach was given by Aggarwal, 

Klawe and Shor [1]. 

Indeed both approaches have a graph theoretic counterpart. In the first one 

we look for the minimum number of edge-crossing needed in a graph-embedding 

the so-called crossing number cr (G) of a graph. In the second approach, the 

minimum number of planar sub graph (graphs), whose union is (are) the original 

graph, is requested. This number is called the thickness (G) of the graph G. 

Similarly we define outer thickness. Determining the thickness of a graph is 

known too NP-complete problem [23, 21, 16, 4, 6, 8, 13, 17-19]. 
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2  Characterization of Planar and Outer Planer Graphs 

Definition 2.1. A graph H is said to be homemorphic from G if either H G  or 

H is isomorphic to a subdivision of G. A graph G1 is homemorphic with G2 if there 

exists a graph a graph G3 such that G1 and G2 are both homemorphic from G3. 

Corollary 2.1. If a graph G has sub graph that is homemorphic from K5 or K3,3, 

then G is non planar. 

Proof. Trivial.                                                     ◊ 

Theorem 2.1 [14]. A graph is planar if and only if it does not contain a sub graph 

which is homemorphic from K5 or K2,3. 

Theorem 2.2 [7]. A graph is outer planar if and only if it does not contain a sub 

graph which is homemorphic from K4 or K2,3. 

Corollary 2.2 [20]. Let G be a connected planar graph with n vertices, m edge, 

and f faces, the we have for the plane embedding of G  that 2 fmn . 

Corollary 2.3 [20]. If ( )il f  does not the length of face Fi in a plane graph G, 

then 2 ( )iE l f . 

Definition 2.2. If a graph ( , )G V E   is an outer planer sub graph of G such that 

every graph G obtained from G' by adding on edge from EE \  is non- outer 

planer, then G' is called a maximal outer planer sub graph of G. 

Definition 2.3. If there is no planar sub graph ( , )G V G   of G | | | |E E  , 

then G is a maximum planar sub graph. 

A maximal planar sub graph is maximal in the sense that adding edge is not 

possible and the maximum planar sub graph is maximal with respect to the 

cardinality of its edge set. 
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Definition 2.4. If a graph ( , )G V E   is a outer planer sub graph of G such that 

every graph G obtained from G by adding on edge from EE \  is non- outer 

planer, then G is called a maximal outer planer sub graph of G . 

Definition 2.5. Let ( , )G V E   be a maximal outer planer sub graph of G . If 

there is no outer planer sub graph ( , )G V E   of G  with | | | |E E  , then G 

is a maximum outer planer sub graph. 

 

Theorem 2.3. If G is a simple planar graph with at least three vertices, then 

63)(  nGE . If also G is triangle-free, then 42)(  nGE . 

Proof. It suffies to consider connected graphs; otherwise we could add edges. 

Euler's formula will relate n and E if we can dispose of f. 

Corollary 2.3. provides an inequality between E and F. every face {fi} be the list 

of face lengths, this yields ffE i 32  . 

But Enffmn  22   

    633362  nEEnE . 

When G is triangle- free, the faces length at least 4. In this case    

              42448242  nEEnEffE i .           ◊  

 

Theorem 2.4 [14]. Let ( , )G V E   be a maximum outer planar sub graph of a 

graph ( , )G V E , then 32  nE . If G is triangle-free, then 22
3||  nE . 

Theorem 2.5 [10]. The maximum outer planar sub graph of Qn contains 

223 1  n  edge. 
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3  Thickness  

Definition 3.1 the thickness of a graph, denoted by (G), is the minimum of planar 

sub graph in to which the graph can be decomposed. Evidently, ( ) 1G  , if and 

only if G is planar. 

 

Theorem 3.1. If ( , )G V E  is a graph with ( | | 2V n   and | |E m . Then : 
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
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G  
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n

m
G , if G has no triangle. 

Proof. By Theorem 2.3, the denominator is the maximum size of each planar sub 

graph. The pigeonhole principle then yields the inequality.                  ◊ 

 

Theorem 3.2 [3,9,12]. If ( , )G V E  is a graph with ( | | 10V n   ) and 

| |E m  maximal degree d, then 
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Theorem 3.3 [5]. The thickness of the complete bipartite graph ,m nk  is 
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Theorem 3.4 [5]. The thickness of the complete bipartite graph ,n nk  is 





 


4

5
)( ,

n
k nn . 

Theorem 3.5 [3,15]. Let G be a graph with m edges, then it holds that 


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3

3

2
)(

m
G . 

Wessal [22] gave lower and upper bounds for the thickness of a graph as a 

function of the minimum and maximum degree. The upper bound was 

independently given also by Halton [12]. 

Theorem 3.6 [9].  Let G be a graph with minimum degree  and maximum 

degree  then 




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2
)(

4
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Theorem 3.7 [15].  The thickness of the hypercube Qn is 



 


4

1
)(

n
Qn . 

 
3.1 Algorithm for the thickness problem 

Now we describe the basic approach to get approximation for thickness. For a 

detailed description of the extracting method see algorithm (Thick).  

Algorithm (THICK) 

1. P 0  and  1t   

2. While 0E   do 

3.                Find a planar sub graph of ( , )tG V E  of ( , )G V E ; 

4.                 \ tE E E ; 

5.                  tEPP  ; 

6.                1t t   

7. return p; 
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4  Outer Thickness 

Definition 4.1. The outer thickness of a graph, denoted by 0 ( )G , is the 

minimum number of outer planar sub graph in to which the graph can be 

decomposed. 

Theorem 4.1. Let ( , )G V E  be a graph with | |V n  and | |E m . Then  





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)(0 n
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Proof. By Theorem 2.4, The denominator is maximum size of each outer planar 

sub graph. The pigeonhole principle yields the inequality.                   ◊             

Theorem 4.2 [10]. For complete graphs, 



 


4

1
)(0

n
kn , except that 3)( 70 k . 

Theorem 4.3 [11]. For complete bipartite graphs, with nm   





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Theorem 4.4 [20]. )1(0
8

)( 
m

G  for an arbitrary graph G with m edges. 

Theorem 4.5 [20]. For a graph with minimum degree  and maximum degree , it 

holds that  











2
)(

4 0 G
. 

Similarly, it is easy to modify (OThick) to approximate outer thickness by 

changing the "outer planar" in step 3 instead of planar. See algorithm (OThick). 
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4.1 Algorithm (OThick) 

1. 0P   and  1t   

2. While 0E  do 

3.           Find a outer planar sub graph of ),( tEVG   of ),( EVG  ; 

4. \ tE E E  ; 

5.  tEPP  ; 

6. 1t t   

7. return p; 

 

 

5  Arboricity 

Definition 5.1. The arboricity of G, denoted by (G), is the minimum number of 

edge-disjoint forests whose union is G. 

Nash – williams gave the exact solution for arboricity. 

Theorem 5.1 [9]. For any graph G, 



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e
G , where H ranges over 

all non-trival induced sub graph of G. 

Theorem 5.2 [2]. If G is d-regular, then  
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5.1 Relations among thickness and arboricity 

The arboricity and thickness of a graph G closely related in size; namely 

)(3)()( GGG   . The first inequality follows from the Definitions, and the 

second follows from Theorems 5.1 and 5.2, with together imply that any planar 

graph has arboricity at most 3. 
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5.2 New relation among outer thickness and arboricity 

It is well-know that outer thickness and arboricity within a constant factor of 

each other )(2)( 0 GG   . 

Now we show that 

)(
2

3
)( 0 GG   . 

Claim 1. If G  be a graph then  

)(
2

3
)( 0 GG   . 

Proof. According to Theorem 2.4  
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Also it has been shown that a planar graph can be divided into two outer planar 

graphs, therefore 0 ( ) 2 ( )G G  .                                      ◊ 

 

 

5.3 New relation among thickness and arboricity 

We show that  

)(4)( GG   . 

Claim 2. If G  is a graph then  

)(4)( GG   . 

Proof. According to theorem (2.4) 42  nm . 

)(2)()1(2)1(22242 )1.5( GGnmnnnm theorem     

Also since )()( 0 GG    and )(2)(0 GG   , then  

                 )(4)(22)(2)( 0 GGGG   .                  ◊ 
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5  Conclusion 

In this paper, we presented some results concerning the thickness and outer 

thickness of a graph. In particular, bound on the arboricity of a graph is given. It 

seems that bound are not unique. 
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