On contra Λ_r -continuous functions

M.J. Jeyanthi¹, S. Pious Missier² and P. Thangavelu³

Abstract

In this paper, we introduce a new class of function called contra Ar-continuous function. Some characterizations and several properties concerning contra Ar-continuity are obtained.

Mathematics Subject Classification : 54C08, 54C10

Keywords: Λ_r -open, Λ_r -continuous, contra Λ_r -continuous.

1 Introduction

 Λ_r -open sets is recently introduced by the authors [6] and studied Λ_r -T₀, Λ_r -T₁ and Λ_r -T₂ spaces, Λ_r -regular spaces, Λ_r -normal spaces and variants of continuity

¹ Research Scholar, Research Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur-628 216(T.N.), India, e-mail: jeyanthimanickaraj@gmail.com

² Post Graduate and Research Department of Mathematics, V.O.Chidambaram College, Thoothukudi-628 008(T.N.), India, e-mail: spmissier@gmail.com

³ Department of Mathematics, Aditanar College, Tiruchendur-628216, India, e-mail:ptvelu12@gmail.com

Article Info: Revised : June 19, 2011. Published online : October 31, 2011

related to this concept in [6, 8, 7]. The purpose of the present paper is to introduce and investigate some of the fundamental properties of contra Λ_r -continuous functions and we obtain characterizations of contra Λ_r -continuous functions.

2 Preliminary Notes

Throughout the paper, (X, τ) (or simply X) will always denote a topological space. For a subset S of a topological space X, S is called regular-open [10] if S = *Int cl* S. Then the complement S^c (= X \ S) of a regular-open set S is called the regular-closed set. The family of all regular-open sets (resp. regular-closed sets) in (X, τ) will be denoted by RO(X, τ) (resp. RC(X, τ)). A subset S of a topological space (X, τ) is called Λ_r -set [6] if S = Λ_r (S), where

 $\Lambda_{\mathbf{r}}(\mathbf{S}) = \cap \{ \mathbf{G} / \mathbf{G} \in \operatorname{RO}(\mathbf{X}, \tau) \text{ and } \mathbf{S} \subseteq \mathbf{G} \}.$

The collection of all Λ_r -sets in (X, τ) is denoted by $\Lambda_r(X, \tau)$.

Throughout this paper, we adopt the notations and terminology of [6]. Let A be a subset of a space (X, τ) . Then A is called a Λ_r -closed set if $A = S \cap C$ where S is a Λ_r -set and C is a closed set. The complement of a Λ_r -closed set is called Λ_r -open. The collection of all Λ_r -open (resp. Λ_r -closed) sets in (X, τ) is denoted by $\Lambda_rO(X, \tau)$ (resp. $\Lambda_rC(X, \tau)$). Also note that every open set is Λ_r -open; arbitrary union of Λ_r -open sets is Λ_r -open and arbitrary intersection of Λ_r -closed sets is Λ_r -closed; and intersection of two open sets is Λ_r -open.

A point $x \in X$ is called a Λ_r -cluster point of A if for every Λ_r -open set U containing x, $A \cap U \neq \emptyset$. The set of all Λ_r -cluster points of A is called the Λ_r -closure of A and it is denoted by Λ_r -cl(A). Then Λ_r -cl(A) is the intersection of Λ_r -closed sets containing A and it is the smallest Λ_r -closed set containing A. Also A is Λ_r -closed if and only if $A = \Lambda_r$ -cl(A). The union of Λ_r -open sets contained in A is called Λ_r -interior of A and it is denoted by Λ_r -int(A). Before we enter into our work, we recall the following definitions.

Definition 2.1 A function $f: X \rightarrow Y$ is called

- (i) contra-continuous [3], if $f^{-1}(V)$ is closed in X for each open set V of Y
- (ii) Λ_r -continuous [7], if $f^{-1}(V)$ is a Λ_r -open set in X for each open set V in Y
- (iii) Λ_r -irresolute [7], if f⁻¹(V) is a Λ_r -open set in X for each Λ_r -open set V in Y
- (iv) Λ_r^* -open [7], if the image of each Λ_r -open set in X is a Λ_r -open set in Y
- (v) Λ_r^* -closed [7], if the image of each Λ_r -closed set in X is a Λ_r -closed set in Y

Definition 2.2 A topological space X is said to be

- (i) Urysohn space [11], if for each pair of distinct points x and y in X, there exists two open sets U and V in X such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$.
- (ii) ultra normal [9], if each pair of nonempty disjoint closed sets can be separated by disjoint closed sets.

3 Contra Λ_r -continuous function

In this section, we introduce contra Λ_r -continuous functions, contra Λ_r -irresolute functions and perfectly contra Λ_r -irresolute functions and study their properties.

Definition 3.1 A function $f: (X, \tau) \to (Y, \sigma)$ is called contra Λ_r -continuous, if $f^{-1}(V)$ is Λ_r -closed in X for each open set V in Y.

Theorem 3.2 For a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the following are equivalent:

- (a) f is contra Λ_r -continuous
- **(b)** For every closed subset F of Y, $f^{-1}(F)$ is Λ_r -open in X
- (c) For each $x \in X$ and each closed subset F of Y with $f(x) \in F$, there exists a Λ_r -open set U of X with $x \in U$, $f(U) \subseteq F$

Proof. (a) \leftrightarrow (b) Obvious.

(b) \rightarrow (c) Let F be any closed subset of Y and let $f(x) \in F$ where $x \in X$. Then by (b), $f^{-1}(F)$ is Λ_r -open in X. Also $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then U is a Λ_r -open set containing x and $f(U) \subseteq F$.

(c) \rightarrow (b) Let F be any closed subset of Y. If $x \in f^{-1}(F)$, then $f(x) \in F$. Hence by (c), there exists a Λ_r -open set U_x of X with $x \in U_x$ such that $f(U_x) \subseteq F$. Then

 $f^{-1}(F) = \bigcup \{ U_x : x \in f^{-1}(F) \},\$

and hence $f^{-1}(F)$ is Λ_r -open in X.

Lemma 3.3 [1] The following properties hold for subsets A, B of a space X: (a) $x \in ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X,x)$ (b) $A \subseteq ker(A)$ and A = ker(A) if A is open in X (c) If $A \subseteq B$, then $ker(A) \subseteq ker(B)$.

Theorem 3.4 Let $f : X \rightarrow Y$ be a bijective function. Then the following are equivalent:

(a) f is contra Λ_r -continuous

(b) $f(\Lambda_r - cl(A)) \subseteq ker(f(A))$ for every subset A of X

(c) Λ_r -cl($f^{-1}(B)$) $\subseteq f^{-1}(ker(B))$ for every subset B of Y

Proof. (a) \rightarrow (b) Let A be any subset of X. Suppose $y \notin ker(f(A))$. By Lemma 3.3(a), there exists $F \in C(Y, f(x))$ such that $f(A) \cap F = \emptyset$. Then $A \cap f^{-1}(F) = \emptyset$. Since $f^{-1}(F)$ is Λ_r -open by (a), Λ_r - $cl(A) \cap f^{-1}(F) = \emptyset$. That implies $f(\Lambda_r$ - $cl(A)) \cap F = \emptyset$ and so $y \notin f(\Lambda_r$ -cl(A)). This shows that

 $f(\Lambda_r-cl(A)) \subseteq ker(f(A)).$

(b) \rightarrow (c) Let B be any subset of Y. Then by (b),

$$f(\Lambda_r - cl(f^{-1}(B))) \subseteq ker f(f^{-1}(B)) = ker B.$$

Therefore, Λ_r -*cl*(f⁻¹(B)) \subseteq f⁻¹(*ker* B).

(c) \rightarrow (a) Let V be open in Y. Then Λ_r - $cl(f^{-1}(V)) \subseteq f^{-1}(ker V) = f^{-1}(V)$ by (c) and Lemma 3.3(b). But $f^{-1}(V) \subseteq \Lambda_r$ - $cl(f^{-1}(V))$. So $f^{-1}(V) = \Lambda_r$ - $cl(f^{-1}(V))$. This means that $f^{-1}(V)$ is Λ_r -closed in X so that f is contra Λ_r -continuous. **Remark 3.5** The Examples 3.6 and 3.7 show that the concepts of Λ_r -continuity and contra Λ_r -continuity are independent of each other.

Example 3.6 Let $X = \{a,b,c\}, Y = \{a,b,c,d\}, \tau = \{X,\emptyset,\{c\},\{a,c\},\{b,c\}\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b,c\},\{a,b,c\}\}.$ Then $\Lambda_r O(X,\tau) = \tau$ and $\Lambda_r C(X,\tau) = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}.$

Define a function

 $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = d, f(b) = b and f(c) = c.

Then f is Λ_r -continuous. But f is not contra Λ_r -continuous since {b,c} is open in (Y, σ) but f⁻¹({b,c}) = {b,c} is not Λ_r -closed in (X, τ) .

Example 3.7 Let $X = Y = \{a,b,c,d\}, \tau = \{X,\emptyset,\{b,d\},\{b,c,d\},\{a,b,d\}\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b\},\{a,b\}\}$. Then $\Lambda_rO(X,\tau) = \tau$ and

$$\Lambda_{\rm r} {\rm C}({\rm X},\tau) = \{{\rm X},\emptyset,\{{\rm a}\},\{{\rm c}\},\{{\rm a},{\rm c}\}\}.$$

Define a function

 $f: (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b and f(d) = d. Then f is contra Λ_r -continuous. But f is not Λ_r -continuous since {a} is open in (Y, σ) but $f^{-1}(\{a\}) = \{a\}$ is not Λ_r -open in (X, τ) .

Theorem 3.8 If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra Λ_r -continuous and Y is regular, then f is Λ_r -continuous.

Proof. Let $x \in X$ and V be an open set in Y with $f(x) \in V$. Since Y is regular, there exists an open set W in Y such that $f(x) \in W$ and $cl(W) \subseteq V$. Since f is contra Λ_r -continuous and cl(W) is a closed subset of Y with $f(x) \in cl(W)$, by Theorem 3.2 there exists a Λ_r -open set U of X with $x \in U$ such that $f(U) \subseteq cl(W)$. That is, $f(U) \subseteq V$. By Theorem 3.4 of [7], f is Λ_r -continuous.

Recall that a topological space (X, τ) is said to be Λ_r -normal [8] if for every pair of disjoint closed sets A and B of X, there exists Λ_r -open sets U and V in X such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.9 If $f: (X, \tau) \to (Y, \sigma)$ is closed, injective and contra Λ_r -continuous and Y is ultra normal, then X is Λ_r -normal.

Proof. Let A and B be disjoint closed subsets of X. Since f is closed and injective, f(A) and f(B) are disjoint closed subsets of Y. Since Y is ultra normal, there exists two clopen sets U and V in Y such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $U \cap V = \emptyset$. Since f is contra Λ_r -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are Λ_r -open sets in (X, τ) . Also $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. This shows that X is Λ_r -normal.

Recall that a space (X, τ) is $\Lambda_r - T_2$ [6] if for each pair of distinct points x and y in X, there exists a Λ_r -open set U and a Λ_r -open set V in X such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Theorem 3.10 If a function $f: (X, \tau) \to (Y, \sigma)$ is injective, contra Λ_r -continuous and Y is a Urysohn space, then X is Λ_r - T_2 .

Proof. Let $x,y \in X$ with $x \neq y$. Since f is injective, $f(x) \neq f(y)$. Since Y is a Urysohn space, there exists open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $cl(U) \cap cl(V) = \emptyset$. Since f is contra Λ_r -continuous, by Theorem 3.2 there exists Λ_r -open sets A and B in X such that $x \in A$, $y \in B$ and $f(A) \subseteq cl(U)$, $f(B) \subseteq cl(V)$. Then $f(A) \cap f(B) = \emptyset$ and so $f(A \cap B) = \emptyset$. This implies that $A \cap B = \emptyset$ and hence X is Λ_r -T₂.

Remark 3.11 Every contra-continuous function is contra Λ_r -continuous since every closed set is Λ_r -closed. But the converse need not be true.

For example, let $X = Y = \{a,b,c,d\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and

 $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}.$ Then the closed sets of (X, τ) are X, \emptyset , $\{b,c,d\}, \{a,c,d\}, \{c,d\}$ and Λ_r -closed sets of (X, τ) are X, \emptyset , $\{b,c,d\}, \{a,c,d\}, \{c,d\}, \{a\}, \{b\}$. Define a function

$$f: (X, \tau) \rightarrow (Y, \sigma)$$
 by $f(a) = d$, $f(b) = a$, $f(c) = c$ and $f(d) = c$.

Then f is contra Λ_r -continuous but not contra-continuous since {a} is open in (Y, σ) but $f^{-1}(\{a\}) = \{b\}$ is not closed in (X, τ) .

Definition 3.12 A topological space X is said to be Λ_r -connected, if X cannot be written as a disjoint union of two nonempty Λ_r -open sets.

A subset B of a topological space X is Λ_r -connected, if B is Λ_r -connected as a subspace of X.

Theorem 3.13 For a topological space *X*, the following are equivalent:

- (i) X is Λ_r -connected
- (ii) The only subsets of X which are both Λ_r-open and Λ_r-closed are the sets X and
- (iii) Each Λ_r -continuous function of X into a discrete space Y with atleast two points is a constant function

Proof. (i) \rightarrow (ii) Let U be a both Λ_r -open and Λ_r -closed subset of X. Then $X \setminus U$ is both Λ_r -open and Λ_r -closed. Since X is Λ_r -connected and X is the disjoint union of Λ_r -open sets U and $X \setminus U$, one of these must be empty.

Hence either $U = \emptyset$ or U = X.

(ii) \rightarrow (i) Suppose that X is not Λ_r -connected. Then $X = A \cup B$ where A and B are nonempty Λ_r -open sets such that $A \cap B = \emptyset$. Since $B = X \setminus A$ is Λ_r -open, A is both Λ_r -open and Λ_r -closed. By (ii), $A = \emptyset$ or X. That is, either $A = \emptyset$ or $B = \emptyset$, which is a contradiction. Therefore X is Λ_r -connected.

(ii) \rightarrow (iii) Let $f: X \rightarrow Y$ be a Λ_r -continuous function from a topological space X into a discrete topological space Y. Then for each $y \in Y$, $\{y\}$ is both open and closed in Y. Since f is Λ_r -continuous, $f^{-1}(y)$ is both Λ_r -open and Λ_r -closed in X. Hence X is covered by Λ_r -open and Λ_r -closed covering $\{f^{-1}(y): y \in Y\}$.

By (ii), $f^{-1}(y) = \emptyset$ or X for each $y \in Y$. If $f^{-1}(y) = \emptyset$ for each $y \in Y$, then f fails to be a map. Hence there exists only one point $y \in Y$ such that $f^{-1}(y) = X$, which shows that f is a constant function.

(iii) \rightarrow (ii) Let U be both Λ_r -open and Λ_r -closed in X. Suppose $U \neq \emptyset$. Let f: X \rightarrow Y be a Λ_r -continuous function from a topological space X into a discrete topological space Y defined by f (U) = {y} and f (X \ U) = {w}, where y, w \in Y and y \neq w. By (iii), f is constant so that U = X.

Theorem 3.14 Let (X, τ) be a Λ_r -connected space and (Y, σ) be any topological space. If $f: X \to Y$ is surjective and contra Λ_r -continuous, then Y is not a discrete space.

Proof. If possible, let Y be a discrete space. Let A be any proper nonempty subset of Y. Then A is both open and closed in (Y, σ) . Since f is contra Λ_r -continuous,

 $f^{-1}(A)$ is Λ_r -closed and Λ_r -open in (X, τ) . Since X is Λ_r -connected, by Theorem 3.13, the only subsets of X which are both Λ_r -open and Λ_r -closed are the sets X and \emptyset . Hence $f^{-1}(A)$ is either X or \emptyset . If $f^{-1}(A) = \emptyset$, then it contradicts to the fact that $A \neq \emptyset$ and f is surjective. If $f^{-1}(A) = X$, then f fails to be a map. Hence Y is not a discrete space.

Theorem 3.15 If $f: (X, \tau) \to (Y, \sigma)$ is surjective, contra Λ_r -continuous and X is Λ_r -connected, then Y is connected.

Proof. Assume that Y is not connected. Then $Y = A \cup B$ where A and B are nonempty open sets in Y such that $A \cap B = \emptyset$. Set $U = Y \setminus A$ and $V = Y \setminus B$. Then U and V are nonempty closed sets in Y. Since f is surjective and contra Λ_r -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty Λ_r -open sets in (X, τ) .

Now, $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ and $f^{-1}(U) \cup f^{-1}(V) = X$. This contradicts to the fact that X is Λ_r -connected and so Y is connected.

Theorem 3.16 A space X is Λ_r -connected if every contra Λ_r -continuous function from a space X into any T_0 -space Y is constant.

Proof. Suppose that X is not Λ_r -connected and every contra Λ_r -continuous function from X into a T₀-space Y is constant. Since X is not Λ_r -connected, by Theorem 3.13, there exists a proper nonempty subset A of X such that A is both

 Λ_r -open and Λ_r -closed. Let $Y = \{a,b\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b\}\}\)$ be a topology for Y. Let $f: X \to Y$ be a function such that $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is non constant and contra Λ_r -continuous such that Y is T_0 , which is a contradiction. This shows that X must be Λ_r -connected.

Theorem 3.17 If $f : (X, \tau) \to (Y, \sigma)$ is contra Λ_r -continuous and $g : (Y, \sigma) \to (Z, \gamma)$ is continuous, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is contra Λ_r -continuous.

Proof. It directly follows from the definitions.

Theorem 3.18 Let $f: (X, \tau) \to (Y, \sigma)$ be surjective, Λ_r -irresolute and Λ_r^* -open and $g: (Y, \sigma) \to (Z, \gamma)$ be any function. Then $g \circ f$ is contra Λ_r -continuous if and only if g is contra Λ_r -continuous.

Proof. Suppose $g \circ f$ is contra Λ_r -continuous. Let F be any closed set in (Z, γ) . Then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is Λ_r -open in (X, τ) . Since f is Λ_r^* -open and surjective, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is Λ_r -open in (Y, σ) and we obtain that g is contra Λ_r -continuous.

For the converse, suppose g is contra Λ_r -continuous. Let V be closed in (Z, γ) . Then g⁻¹(V) is Λ_r -open in (Y, σ) . Since f is Λ_r -irresolute, f⁻¹(g⁻¹(V)) = (g \circ f)⁻¹(V) is Λ_r -open in (X, τ) and so g \circ f is contra Λ_r -continuous.

Theorem 3.19 Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra Λ_r -continuous, then f is contra Λ_r -continuous.

Proof. Let U be an open set in Y. Then $X \times U$ is open in $X \times Y$. Since g is contra Λ_r -continuous, $g^{-1}(X \times U) = f^{-1}(U)$ is Λ_r -closed in X. This shows that f is contra Λ_r -continuous.

Theorem 3.20 If $f: X \to Y$ is contra-continuous, $g: X \to Y$ is contra-continuous and Y is Urysohn, then $E = \{x \in X : f(x) = g(x)\}$ is Λ_r -closed in X.

Proof. Let $x \in X \setminus E$. Then $f(x) \neq g(x)$. Since Y is Urysohn, there exists open sets V and W in Y such that $f(x) \in V$, $g(x) \in W$ and $cl(V) \cap cl(W) = \emptyset$. Since f is contra-continuous, $f^{-1}(cl(V))$ is open in X. Since g is contra-continuous, $g^{-1}(cl(W))$ is open in X. Let $G = f^{-1}(cl(V))$ and $H = g^{-1}(cl(W))$ and set $A = G \cap H$. Then A is a Λ_r -open set containing x in X. Now,

 $f(A) \cap g(A) \subseteq f(G) \cap g(H) \subseteq cl(V) \cap cl(W) = \emptyset$. This implies that $A \cap E = \emptyset$ where A is Λ_r -open. So x is not a Λ_r -cluster point of E. Hence $x \notin \Lambda_r$ -cl(E) and this completes the proof.

Definition 3.21 A subset A of a topological space X is said to be Λ_r -dense in X if Λ_r -*cl*(A) = X.

Theorem 3.22 Let $f: X \to Y$ be a contra-continuous function and $g: X \to Y$ be a contra-continuous function. If Y is Urysohn and f = g on a Λ_r -dense set $A \subseteq X$, then f = g on X.

Proof. Let $E = \{x \in X : f(x) = g(x)\}$. Since f is contra-continuous, g is contra-continuous and Y is Urysohn, by Theorem 3.20, E is Λ_r -closed in X. By assumption, we have f = g on A where A is Λ_r -dense in X. Since $A \subseteq E$, A is Λ_r -dense and E is Λ_r -closed, we have

$$\mathbf{X} = \Lambda_{\mathbf{r}} - cl(\mathbf{A}) \subseteq \Lambda_{\mathbf{r}} - cl(\mathbf{E}) = \mathbf{E}$$

Hence f = g on X.

Definition 3.23 A space (X, τ) is said to be

(i) Λ_r -space, if every Λ_r -open set is open in X

(ii) locally Λ_r -indiscrete, if every Λ_r -open set is closed in X.

Theorem 3.24 Let $f: X \rightarrow Y$ be a contra Λ_r -continuous function. Then

- (i) f is contra-continuous, if X is a Λ_r -space
- (ii) *f* is continuous, if X is locally Λ_r -indiscrete

Proof. (i) and (ii) are directly follows from the definitions.

Theorem 3.25 Let $f: X \to Y$ be surjective, closed and contra Λ_r -continuous. If X is Λ_r -space, then Y is locally indiscrete.

Proof. Let V be open in Y. Since f is contra Λ_r -continuous, f⁻¹(V) is Λ_r -closed in X and hence closed in X since X is Λ_r -space. Since f is closed and surjective, $f(f^{-1}(V)) = V$ is closed in Y and so Y is locally indiscrete.

Recall that a function $f : X \to Y$ is said to be contra λ -continuous [2] (resp., contra α -continuous [5], contra-precontinuous [4]), if $f^{-1}(V)$ is λ -closed (resp., α -closed, pre-closed) in X for each open set of Y.

Remark 3.26 Since every Λ_r -closed set is λ -closed, every contra Λ_r -continuous function is contra λ -continuous. But the converse need not be true which is shown by the following example.

Let $X = Y = \{a,b,c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{X, \emptyset, \{a\}\}.$ Then the function $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = a, f(b) = a and f(c) = c is contra λ -continuous but not contra Λ_r -continuous.

The following examples show that contra Λ_r -continuous and contra-precontinuous functions (resp., contra- α -continuous) are independent notions.

The function which is defined in Remark 3.11 is contra Λ_r -continuous but not contra-precontinuous and not contra- α -continuous.

Let $X = Y = \{a,b,c\}, \tau = \{X,\emptyset,\{a\}\} \text{ and } \sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a,b\}\}.$ Then $\Lambda_r O(X, \tau) = \tau$, $PO(X, \tau) = \{X, \emptyset, \{a\}, \{a,b\}, \{a,c\}\} \text{ and } \alpha(X, \tau) = \{X, \emptyset, \{a\}, \{a,c\}\}.$

Define a function

 $f: (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = b and f(c) = a. Then f is contra-pre continuous and contra- α -continuous but not contra

 $\Lambda_{\rm r}$ -continuous.

Definition 3.27 A function $f: (X, \tau) \to (Y, \sigma)$ is called contra Λ_r -irresolute, if $f^{-1}(V)$ is Λ_r -closed in (X, τ) for each Λ_r -open set V in (Y, σ) .

Remark 3.28 The following examples show that the concepts of Λ_r -irresolute and contra Λ_r -irresolute are independent of each other.

Example 3.29 Let X = {a,b,c,d}, Y = {a,b,c,d,e}, $\tau = \{X, \emptyset, \{a\}, \{a,c\}, \{a,b,d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,b,e\}, \{a,c,d\}, \{a,b,c,d\}\}$. Then $\Lambda_r O(X, \tau) = \tau$, $\Lambda_r C(X, \tau) = \{X, \emptyset, \{c\}, \{b,d\}, \{b,c,d\}\}$ and $\Lambda_r O(Y, \sigma) = \sigma$. Define a function

 $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = e, f(c) = c and f(d) = e.

Then f is Λ_r -irresolute but not contra Λ_r -irresolute since {a} is open in (Y, σ), but $f^{-1}(\{a\}) = \{a\}$ is not Λ_r -closed in (X, τ).

Example 3.30 Let $X = Y = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}.$

Then $\Lambda_r O(X, \tau) = \{X, \emptyset, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d\}, \{a,d\}\},\$ $\Lambda_r C(X, \tau) = \{X, \emptyset, \{a\}, \{d\}, \{a,d\}, \{b,c\}, \{b,c,d\}\} \text{ and } \Lambda_r O(Y, \sigma) = \sigma.$ Define a function

 $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = f(b) = f(c) = d and f(d) = a.

Then f is contra Λ_r -irresolute but not Λ_r -irresolute since {a} is open in (Y, σ), but $f^{-1}(\{a\}) = \{d\}$ is not Λ_r -open in (X, τ).

Remark 3.31 Every contra Λ_r -irresolute function is contra Λ_r -continuous. But the converse need not be true as shown by the following example. In Example 3.7, f is contra Λ_r -continuous but not contra Λ_r -irresolute.

Theorem 3.32 A function $f: (X, \tau) \to (Y, \sigma)$ is contra Λ_r -irresolute if and only if $f^{-1}(V)$ is Λ_r -open in X for each Λ_r -closed set V in Y. **Proof.** Obvious.

Theorem 3.33 Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \gamma)$ be two functions. Then

- (a) if g is Λ_r -irresolute and f is contra Λ_r -irresolute, then $g \circ f$ is contra Λ_r -irresolute
- **(b)** if g is contra Λ_r -irresolute and f is Λ_r -irresolute, then $g \circ f$ is contra Λ_r -irresolute

Proof. (a) Let V be Λ_r -open in Z. Since g is Λ_r -irresolute, $g^{-1}(V)$ is Λ_r -open in Y. Since f is contra Λ_r -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is Λ_r -closed in X. This means that $g \circ f$ is contra Λ_r -irresolute. (b) is similar to (a).

Theorem 3.34 If $f: (X, \tau) \to (Y, \sigma)$ is contra Λ_r -irresolute and $g: (Y, \sigma) \to (Z, \gamma)$ is Λ_r -continuous, then $g \circ f$ is contra Λ_r -continuous. **Proof.** It directly follows from the definitions.

Recall that a subset A of a topological space (X, τ) is called Λ_r -clopen [8] if A is both Λ_r -open and Λ_r -closed in X. The collection of all Λ_r -clopen sets in (X, τ) is denoted by $\Lambda_r CO(X, \tau)$. **Definition 3.35** A function $f : (X, \tau) \to (Y, \sigma)$ is called perfectly contra Λ_r -irresolute if $f^{-1}(V)$ is Λ_r -clopen in X for each Λ_r -open set V in Y.

Remark 3.36 Every perfectly contra Λ_r -irresolute function is contra Λ_r -irresolute and Λ_r -irresolute. The following two examples show that a contra Λ_r -irresolute function may not be perfectly contra Λ_r -irresolute, and a Λ_r -irresolute function may not be perfectly contra Λ_r -irresolute.

In Example 3.30, f is contra Λ_r -irresolute but not perfectly contra Λ_r -irresolute.

In Example 3.29, f is Λ_r -irresolute but not perfectly contra Λ_r -irresolute.

Theorem 3.37 A function $f: (X, \tau) \to (Y, \sigma)$ is perfectly contra Λ_r -irresolute if and only if f is contra Λ_r -irresolute and Λ_r -irresolute.

Proof. It directly follows from the definitions.

We have the following relation for the functions defined above:

In this diagram,

References

- Ahmad Al-Omari and Mohd Salmi Md Noorani, Contra-ω-continuous and Almost contra-ω-continuous, *International Journal of Mathematics and Mathematical Sciences*, 2007, Article ID 40469.
- [2] F.G. Arenas, J. Dontchev and M. Ganster, On λ-sets and dual of generalized continuity, *Questions Answers Gen. Topology*, 15, (1997), 3-13.
- [3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Internat. J. Math. Sci.*, 19, (1996), 303-310.
- [4] Erdal Ekici, Almost contra-pre continuous functions, *Bull. Malaysian Math.* Sc. Soc. (second series), 27, (2004), 53-65.
- [5] S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, *Iranian International Journal of Science*, 2(2), (2001), 153-167.
- [6] M.J. Jeyanthi, S. Pious Missier and P. Thangavelu, Λ_r -sets and separation axioms, *Malaysian Journal of Mathematical Sciences*, **5**(1), (2011), 45-60.
- [7] M.J. Jeyanthi, S. Pious Missier and P. Thangavelu, On Λ_r -open sets and functions. (Submitted).
- [8] S. Pious Missier, P. Thangavelu and M.J. Jeyanthi, On Λ_r -regular and Λ_r -normal spaces, *International J. of Math. Sci. and Engg. Appls.*, **4**(V), (Dec.2010), 225-235.
- [9] R. Staum, The algebra of bounded continuous functions into a non-archimedean field, *Pacific J. Math.*, 50, (1974), 169-185.
- [10] M.H. Stone, Applications of the theory of boolean rings to the general topology, *Trans. A.M.S.*, 41, 375-481.
- [11] S. Willard, General Topology, Addison-Wesley, 1970.