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Abstract

In this study, the Gaussian white noise and the differential Poisson of the Stochastic Differential Equation(SDE) with
distributed jump are examined. Using Ito integral as a tool, a one step Euler-Maruyama (E-M) method is considered for
the approximation of Stochastic Dependent Poisson Analysis (SDPA) in finanace. The Deterministic Quadrature Rule

(DQR) was used in the establishment of the method for easy examination of the Black-Scholes asset price model for
stock investors; MATLAB package was used for simulation of the method. However the Mean Absolute Error (MAE) as
well as Strong Order of Convergence (SOC) method was considered to ascertain its usability. The result clearly shows
entry points and exit points of stock market. Consequently, the findings of this research is strongly recommended.
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1 INTRODUCTION
1.1 Preamble

Differential Equation (DE) is a type of equation which relates rate of change of a dependent variable with respect to one
or more independent variable.
mathematically,

y′ = f(x, y) (1.1)

1.2 Types of Differential Equation
Some of the types of DE that was studied in this research are listed below

• Ordinary Differential Equation ODE

• Partial Differential Equation PDE

• Stochastic Differential Equation SDE

Some Authors (example: Kayode S. J. and Abejide K. S. 2019) [12] had developed several numerical methods to solve
some kind of differential equations, the methods established were found to be accurate using the test criterion widely
studied from Lambert, J. D. 1991 [17]
In this study SDEs as it related to fiancial mathematics were studied using knowledge from Operation Research [15]

1.3 Stochastic Differential Equation

Stochastic differential equation (SDE) is a branch of mathematics which includes random variables in the deterministic
model. Stochastic models arise from different fields of studies such as biology, telecommunications, engineering, space
science, financial market, vibrations from bomb detonations, etc.
Below is an example of SDE with jump.

dQ = z(t,Q(t))dt+ y(t,Q(t))dW (t) + f(t,Q(t))dP (t,Q(t)), Q(t0) = Q0 (1.2)

The equation above are the mathematical representation of random phenomenon relating to the financial market. In most
cases, the analytical solution might not be readily available, this calls for other solution techniques which brings about
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the E-M method as an approximate solution. Some related research on SDEs are reviewed as follows

Kayode, Ganiyu and Ajiboye (2016) [14]developed a onestep method of Euler-Maruyama. This method was used to solve
the general form of stochastic differential equations without jump. In their method, effect of varying stepsizes was in-
spected as against the general simulation approach which uses a random step size. This method was found to be accurate
and recommended for further researches in the field of SDE.

On the other hand, Kayode and Ganiyu (2015)[13] developed a one step Milstien method on the approximation of the
general SDEs. In the work, graphical representation was used for result comparison and the effect of varying stepsizes was
also monitored. It was found that the order of convergence is 1 which implies accuracy of the method; and the method is
further recommended for applications and research purpose.

Some authors research were carefully studied to establish links between the Wiener process, Poisson Jumps and the dif-
ferential equation that form the SDEs; few of the authors are Higham and Kloeden P. E. (2000)[11], Lamba, Mattingly
and Stuart (2006)[16], Bayram, Partal and Byukoz(2018)[4] and Briand, Labart and Ghannoum (2018)[5].
The work of these authors was studied for the possibility of developing new methods in next chapters.

Akinbo, Faniran and Ayoola(2015)[1] produced a paper which provided an introduction to the main concepts and tech-
niques necessary for someone who wishes to carryout numerical experiments involving Stochastic Differential Equation
(SDEs).
SDEs are generally randomized in formulation and the solutions are continuous stochastic process that represent diffusive
dynamic especially in finance, the authors took into account random effects and influences in real life systems which are
essential in the accurate description of such situations. case studies around financial mathematics was experimented using
Taylor approach and their results were found to be accurate.

Araposthasis, Biswas and Caffarelli (2014)[2] studied stochastic differential equations with jumps with no diffusion part.
In their work, they provided some basic stochastic characterizations of solutions of the corresponding non-local partial
differential equations and prove the Harnack inequality for a class of these operators. They also established key connec-
tions between the recurrence properties of these jump processes and the non-local partial differential operator, this made
working on SDEs with no diffussion part very easy to use.
The Poisson distrubution properties was also studied by Araposthasis, Hmedi and Pang (2016)[3]. Further studies on
probabilty distributon [8], [9] was examined as required by this research.

Burrage and Burrage (1996)[7] worked on the classical Runge-Kutta method as an approximate solution of SDEs. in their
work, it was stated that the pioneering work of Runge and Kutta about hundred years ago has ultimately led to suites
of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations.
However, it was gathered that in many modeling situations, the appropriate representation is a stochastic differential
equation and here numerical methods are much less sophisticated. This was the motivation for this work where a very
general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than
previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based
on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy
of this approach.
Some other authors who worked of SDEs are (Burrage, Burrage, Mitsui (2001) [6] ), ( Rio, Setiyo, Putri, Fajar, Andi and
Mudrik (2021)[19]), (Setiyo, Lukman, Freddy, Ketty, Fajar, Iwan and Septi (2020)[20]), (Floyed (2007)[10]) and (Moshe
(2020)[18]).

2 DERIVATION OF METHOD

In Kayode and Ganiyu 2015[13], Euler Maruyama methods with varying step-sizes was developed for stochastic differential
equation of the form

dQ(t) = z(t, Q(t)) + y(t, Q(t)) (2.1)

This SDE is independent of any form of perturbations or any other factor affecting the usual direction of the equation
and the wiener process.
In this research, there is focus on the internal disturbances which affects the usual movement of the resulting chart of the
equation relating to the asset price in stock market. This disturbances are called the Poisson distributed jumps.
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2.1 Ito Integral

This part is the basis on which the SDE is solved, it is the essential procedure to be established before the research can
proceed. ∫ t

0

Q(s)ds =

∫ t

0

z(s,Q(s))ds+

∫ t

0

y(s,Q(s))dW (s) +

∫ t

0

f(s,Q(s))dP (s,Q(s))ds, Q(t0) = Q0 (2.2)

[Q(s)]t0 =

∫ t

0

z(s,Q(s))ds+

∫ t

0

y(s,Q(s))dW (s) +

∫ t

0

f(s,Q(s))dP (s,Q(s))ds, Q(t0) = Q0 (2.3)

Q(t)−Q(0) =

∫ t

0

z(s,Q(s))ds+

∫ t

0

y(s,Q(s))dW (s) +

∫ t

0

f(s,Q(s))dP (s,Q(s))ds, Q(t0) = Q0 (2.4)

note that Q(0) = Q(t0) = Q0, so that 3.6 becomes

Q(t) = Q0 +

∫ t

0

z(s,Q(s))ds+

∫ t

0

y(s,Q(s))dW (s) +

∫ t

0

f(s,Q(s))dP (s,Q(s))ds, Q(t0) = Q0 (2.5)

2.2 Euler-Maruyama Approximation For Method One

Next is to obtain Euler-Maruyama approximation for equation 3.7
Represent t by τj in 3.8 to get

Q(τj) = Q0 +

∫ τj

0

z(s,Q(s))ds+

∫ τj

0

y(s,Q(s))dW (s) +

∫ τj

0

f(s,Q(s))dP (s,Q(s))ds, Q(t0) = Q0 (2.6)

in same manner, Represent t by τj + 1 in 3.8 to get

Q(τj + 1) = Q0 +

∫ τj+1

0

z(s,Q(s))ds+

∫ τj+1

0

y(s,Q(s))dW (s) +

∫ τj+1

0

f(s,Q(s))dP (s,Q(s))ds (2.7)

subtract equation 3.9 from equation 3.10 to obtain the following

Q(τj + 1)−Q(τj) =

∫ τj+1

0

z(s,Q(s))ds−
∫ τj

0

z(s,Q(s))ds+

∫ τj+1

0

y(s,Q(s))dW (s)−
∫ τj

0

y(s,Q(s))dW (s)

+

∫ τj+1

0

f(s,Q(s))dP (s,Q(s))ds−
∫ τj

0

f(s,Q(s))dP (s,Q(s))ds (2.8)

Theorem (Additivity of Riemann integral )

Let Qt:[a,b] → R be bounded on say [a,b] and let c ⊂ (a,b). If Qt is Riemann integrable on both [a,c] and [c,b], then Qt
is Riemann integrable on [a,b] and

∫ b
a
Qt =

∫ c
a
Qt +

∫ b
c
Qt

by the theorem, the following can be established.

Q(τj + 1)−Q(τj) =

∫ τj+1

τj

z(s,Q(s))ds+

∫ τj+1

τj

y(s,Q(s))dW (s) +

∫ τj+1

τj

f(s,Q(s))dP (s,Q(s))ds (2.9)

which will eventually become

Q(τj + 1) = Q(τj) +

∫ τj+1

τj

z(s,Q(s))ds+

∫ τj+1

τj

y(s,Q(s))dW (s) +

∫ τj+1

τj

f(s,Q(s))dP (s,Q(s))ds (2.10)

In differential calculus, there are some integrals that may not have an exact integration due to its complexity. such integrals
are approximated using the DETERMINISTIC QUADRATURE RULE; The rule states mathematically as follows∫ b

a

Q(s)ds ≈ w1Q(x1) + w2Q(x2) + ...+ wnQ(xn) =

n∑
i=1

wiQ(xi) (2.11)
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if n = 1, x1 = a and w1 = b− a; we can then assume the following by approximation∫ b

a

Q(s)ds ≈
n∑
i=1

wiQ(xi) = (b− a)Q(a) (2.12)

next, using the deterministic quadrature rule on each term of equation 2.10 as follows∫ τj+1

τj

z(s,Q(s))ds ≈ z(j,Q(τj))

∫ τj+1

τj

ds ≈ z(j,Q(τj))((τj + 1)− (τj)) (2.13)

∫ τj+1

τj

y(s,Q(s))dw(s) ≈ y(τj,Q(τj))

∫ τj+1

τj

dw(s) ≈ y(τj,Q(τj))(wτj+1 − wτj) (2.14)

∫ τj+1

τj

f(s,Q(s))d(p(s), Q(s)) ≈ f(τj,Q(τj))

∫ τj+1

τj

d(p(s), Q(s))

≈ f(τj,Q(τj))((pτj+1, Qτj+1)− (pτj , Qτj)) (2.15)

substituting equations 2.13, 2.14, 2.15 into equation 2.10 as follows

Q(τj + 1) = Q(τj) + z(j,Q(τj))((τj + 1)− (τj)) + y(τj,Q(τj))(wτj+1 − wτj)

+f(τj,Q(τj))((pτj+1, Qτj+1)− (pτj , Qτj)) (2.16)

from the equation above, we can make some simple definitions

1. Q(τj + r) ≡ Qj+r r = 0, 1, ..

2. dt = τj + 1 - τj

3. dwj = wτj+1 - wτj

4. dρQj = ρQτj+1 - ρQτj = (pτj+1, Qτj+1)− (pτj , Qτj)

as enumerated above, inserting each term into equation 2.10 to have

Qj+1 = Qj + z(τj , Qj)dt+ y(τj , Qj)dwj + f(τj , Qj)dρQτj (2.17)

equation 2.17 is the derived Euler-Maruyama method for Black-Scholes Stochastic Dependent Poisson Analysis.
The procedures to evaluate this method is stated as follows
for j = 0

Q1 = Q0 + z(τ0, Q0)dt+ y(τ0, Q0)dw0 + f(τ0, Q0)dρQτ0 (2.18)

for j=1

Q2 = Q1 + z(τ1, Q1)dt+ y(τ1, Q1)dw1 + f(τ1, Q1)dρQτ1 (2.19)

for j=2

Q3 = Q2 + z(τ2, Q2)dt+ y(τ2, Q2)dw2 + f(τ2, Q2)dρQτ2 (2.20)

for j=3

Q4 = Q3 + z(τ3, Q3)dt+ y(τ3, Q3)dw3 + f(τ3, Q3)dρQτ3 (2.21)

and so on.
This procedure is not easy to evaluate manually because of the Wiener process and the Levy process which needed to be
simulated; consequently, MATLAB is the application tool for simulation in this work.
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3 ANALYSIS OF METHOD

In this section, stock market model for assest analysis was investigated for stochastic dependent poisson analysis (SDPA).
Let us consider the famous Black-Scholes asset price model without a Levy process ρ

dQ(t) = µQ(t)dt+ σQ(t)dW (t) (3.1)

where µ and σ are arbitrary non negative values.
Suppose there is a little perturbation in this asset model as a result of some embedded Technical analysis in the chart; to
produce a levy process called the jump in stock prices and other financial asset studies. Then we can have the following
equation.

dQ(t) = µQ(t)dt+ σQ(t)dW (t) + αQ(t)dρ(t) (3.2)

where µ, σ and α are arbitrary non negative values.
Equation 3.2 is a standard Black-Scholes asset price model(Technical Analysis) (SDPA) and the following assumptions
were made

• Q(t)dρ(t) is the Jump process

• Q(t) is present in the system because the root cause of the jump is embedded in the market chart

• dρ(t) is the changes in the levy process that produces the jump

Exact solution of equation 3.2 is given as

Q0(1 + vpt0 ) exp(µ0−σ2
0/2)t+σ0ω(t) (3.3)

Next is to solve equation 3.2 using the method generated in equation 2.17. The levy process and the geometrically
distributed wiener process are randomly generated using MATLAB simulation with the following steps.

Qj+1 = Qj + µ(Qj)dt+ σ(Qj)dwj + α(Qj)dρQτj (3.4)

the starting points required for the MATLAB simulation are as follows
for j=0

Q1 = Q0 + µ(Q0)dt+ σ(Q0)dw0 + α(Q0)dρQτ0 (3.5)

for j=1

Q2 = Q1 + µ(Q1)dt+ σ(Q1)δw1 + α(Q1)dρQτ1 (3.6)

for j=2

Q3 = Q2 + µ(Q2)dt+ σ(Q2)dw2 + α(Q2)dρQτ1 (3.7)

for j=3

Q4 = Q3 + µ(Q3)dt+ σ(Q3)dw3 + α(Q3)dρQτ3 (3.8)

take µ = 0.5, σ = 0.8 and α = 1
imposing the available data

Qj+1 = Qj + 0.5(Qj)dt+ 0.8(Qj)dwj + (Qj)dρQτj (3.9)

the starting points required for the MATLAB simulation are as follows
for j=0

Q1 = Q0 + 0.5(Q0)dt+ 0.8(Q0)dw0 + (Q0)dρQτ0 (3.10)

for j=1

Q2 = Q1 + 0.5(Q1)dt+ 0.8(Q1)δw1 + (Q1)dρQτ1 (3.11)
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for j=2

Q3 = Q2 + 0.5(Q2)dt+ 0.8(Q2)dw2 + (Q2)dρQτ1 (3.12)

for j=3

Q4 = Q3 + 0.5(Q3)dt+ 0.8(Q3)dw3 + (Q3)dρQτ3 (3.13)

equations 3.9, 3.10, 3.11, 3.12 and 3.13 are the SDPA for Asset price model to be simulated with MATLAB. taking t = 2−8

The following graph was generated for the Asset price problem, this solution clearly shows the weiner process as well as
the jump in the system and also shows entry points for potential investors in asset.

Figure 1: Graph of jump process for Black-Scholes SDPA Model.

The following table was generated for the Asset price Q(t) and time interval of t = 2−8 Error table for Black-Scholes
model (Technical Analysis).
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Table 1: Error between the analytical solution and developed method

t =2−8 Q Euler-Maruyama Q Exact Solution Error
1

256 1.000000000000000 1.000000000000000 0.0000000000000000
10
256 0.812908199215707 0.814537619624799 0.0016294204090920
20
256 0.726216432102308 0.732005284815325 0.0057888527130170
30
256 0.598892303324720 0.604742397803245 0.0058500944785250
40
256 0.751691073205030 0.757542027157013 0.0058509539519830
50
256 0.869067180529991 0.870944529623458 0.0018773490934670
60
256 1.027459259177800 1.040964676541320 0.0135054173635201
70
256 1.057119444725450 1.076053640100730 0.0189341953752800
80
256 0.897443354897564 0.903887980900941 0.0064446260033770
90
256 0.846875047308351 0.871249902130323 0.0243748548219721
100
256 0.772607019597246 0.794590692551104 0.0219836729538581
110
256 0.909496579532232 0.931853869807439 0.0223572902752071
120
256 0.956278014483808 0.972059100165068 0.0157810856812600
130
256 0.849192986683570 0.862721604467754 0.0135286177841840
140
256 0.884361156179665 0.902170922704207 0.0178097665245419
150
256 0.812381490317926 0.829832126603794 0.0174506362858681
160
256 0.815058405700508 0.832237599687052 0.0171791939865440
1700
256 0.718274886575970 0.732615732523400 0.0143408459474299
180
256 0.516418120788345 0.522728109258762 0.0063099884704170
190
256 0.676897914315295 0.681231896569507 0.0043339822542120
200
256 0.784808464308656 0.808282753571219 0.0234742892625630
210
256 1.019730119601270 1.054328499269870 0.0345983796686000
220
256 1.144575760664370 1.179610644713260 0.0350348840488899
230
256 1.093090150530610 1.131793924211570 0.0387037736809599
240
256 1.274364659616550 1.324676569666680 0.0503119100501299
250
256 1.176438831160300 1.216056628977870 0.0396177978175700

The table above shows the comparison between the numerical solution and the exact solution.

4 CONVERGENCE ANALYSIS

This section covers the process of which the method was tested for validity. In numerical methods of solving Stochastic
Differential Equation with distributed jumps, the test for convergence entails Mean Absolute Error (MAE) analysis.

4.1 Theorem: Strong Order of Convergence of Euler-Maruyama Scheme for Jump Pro-
cesses

Let QEt and QN1
t be the exact solution and Euler-Maruyama Method for the stochastic jump process respectively; let ∆t

be the time step in the methods. Then there exist a constant Π such that

E|QN1
t −QEt
j

| ≤ Π.∆t (4.1)

E|QN1
t −QEt | ≤ Π.j∆t (4.2)

for 1
j is halving the time step ∀j ≥ 1

Proof:
it is sufficient to clearly state the Exact Solution (ES) of method and the Euler-Maruyama(EM) method.

QEt = Q0(1 + V0)Pt exp(µ0−σ2
0/2)t +σ0ω(t).... ... ... ES (4.3)

obtain the expected value of the ES follows

E(QEt ) = E(Q0(1 + V0)Pt exp(µ0−σ2
0/2)t +σ0ω(t)) (4.4)
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For Poisson Distribution(discrete distribution), take the Probability Density Function(PDF) as follows

P (t) = exp−λ0t
∞∑
k=0

(λ0t)
k

k!
(1 + v0)k (4.5)

let the Wiener process ω(t) be normally distributed with PDF as follows

1√
2πt

∫ ∞
−∞

exp−ω
2/2t expσ0ω dω (4.6)

suppose equation 4.5 converges to the following at k=0; as the starting point

exp−λ0t expλ0t(1+v0) (4.7)

and in same manner equation 4.6 converges to

exp(σ2
0t/2) (4.8)

so that we can have the following

Q0 exp(µ0−σ2
0/2)t exp−λ0t expλ0t(1+v0) exp(σ2

0t/2) (4.9)

and finally to obtain the following for 1 + v0 = λ0v0

Q0 exp(µ0+λ0v0)∆t (4.10)

the equation above represent the convergent form of the exact solution as required.
Next is to obtain the convergent form of the Euler-Maruyama method as follows.
Let the approximate value of equation 1.2 be given as follows

Qk = Qk−1(1 + µ0∆t+ σ0∆ωk−1 + v0ρk−1) (4.11)

∀ k=1;Nt
NB: Expectation of the Poisson coefficient v0 = 0
Expected value of the E-M method is of equation 4.11 is given below

E(Qk) = Qk−1(1 + µ0∆t) (4.12)

such that for k=1
E(Q1) = Q0(1 + µ0∆t) (4.13)

for k=2
E(Q2) = Q1(1 + µ0∆t) (4.14)

for k=3
E(Q3) = Q2(1 + µ0∆t) (4.15)

using backward substitution technique, equation 4.15 can be expressed as follows

E(Q3) = Q1(1 + µ0∆t)(1 + µ0∆t) (4.16)

�

E(Q3) = Q0(1 + µ0∆t)(1 + µ0∆t)(1 + µ0∆t) (4.17)

implies
E(Q3) = Q0(1 + µ0∆t)3 (4.18)

and for Nt term
E(QNt) = Q0(1 + µ0∆t)Nt (4.19)

insert equation 4.19 and equation 4.10 in LHS of equation 4.2

E|Q0 exp(µ0+λ0v0)∆t−Q0(1 + µ0∆t)Nt| (4.20)

from the assumption that expectation of the Poisson Coefficient equals zero. i.e v0 = 0

E|Q0 expµ0∆t−Q0(1 + µ0∆t)Nt| (4.21)
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Definiton 1

suppose A and B are ⊂ < then, the subtraction of the absolute value of A and B are commutative. i.e.
|A−B| = |B −A|
Consequently, equation 4.21 can take the following form

E|Q0(1 + µ0∆t)Nt −Q0 expµ0∆t | (4.22)

will give the following
E|Q0[(1 + µ0∆t)Nt −Q0 expµ0∆t]| (4.23)

for expectations of Q at Q = Q0 the values in equation 4.23 can be given as

|Q0||(1 + µ0∆t)Nt − expµ0∆t | (4.24)

Definiton 2

suppose a, b and c takes any value within the domain of <. i.e. a, b, c ⊂ <
then
|(a+ b)c| = | expc ln(a+b) |

So that equation 4.24 can become

|Q0|| expNt ln(1+µ0∆t)− expµ0∆t | (4.25)

from the transformation of stochastic equation the term
expNt ln(1+µ0∆t) converges to expµ0tf exp−0.5µ2

0tf∆t

so that equation 4.25 can become

|Q0|| expµ0tf exp−0.5µ2
0tf∆t− expµ0tf | (4.26)

|Q0| expµ0tf | exp−0.5µ2
0tf∆t−1| (4.27)

it is worthy to note that exp−0.5µ2
0tf∆t converges to 1 as the power approaches zero from the negative side.

Then it can be assumed that (exp−0.5µ2
0tf∆t−1) converges to −0.5µ2

0tf∆t
then the folowing can be established

|Q0| expµ0tf | − 0.5µ2
0tf∆t| = |Q0| expµ0tf 0.5µ2

0tf∆t (4.28)

compare 4.28 to 4.2
Π = |Q0| expµ0tf 0.5µ2

0 (4.29)

it can be explicitly expressed as
1

j
E|QN1

t −QEt | ≤ |Q0| expµ0tf 0.5µ2
0tf∆t (4.30)

but
1

j
E|QN1

t −QEt | = Π∆jt (4.31)

which implies
E|QN1

t −QEt | ≤ |Q0| expµ0tf 0.5µ2
0tfj∆t (4.32)

Equation 4.32 is the Strong Order of Convergence(SOC).
if MAE ≤ SOC ∀ j; then, it converges at those points.
In this research, j = 1, 2, 3, 4, 5..., Q0 = 1, ∆t = 0.0625 (to reduce large data to smaller bits for easier analysis) and tf =
max (t) =1
was used for the convergent analysis

Table examining the convergence bounds and conditions for the problem
The convergence analysis of this problem-method relationship determines when the chart is said to be stable enough for
entry or exit of the financial market.
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Table 2: Convergence analysis using MAE and SOC

S/N MAE FOR PROBLEM SDPA J SOC
1 0.0186291999 1 0.01288063493
2 0.0186291999 2 0.02576126985
3 0.0186291999 3 0.03864190479
4 0.0186291999 4 0.05152253972
5 0.0186291999 5 0.06440317465

(4.33)

from the table above it is seen that the convergence analysis failed at the point one because
MAE6≤ SOC
Therefore, the region of stability is j ≥ 2

Figure 2: Graph of convergence analysis for Black-Scholes model S/N plotted against J values

5 RESULTS

The method developed in this work was tested with numerical problem in stock market. The approximate solution from
the experiment shows the efficiency and less human effort MATLAB programs; it is observed from the table that the results
obtained from the method are close to the exact solution thereby establishing a reasonable link between the numerical
method and the analytical method. The region of stability also shows clearly that the market is stable enough for entry
or exit at j ≥ 2. The unstable region is marked blue.

6 CONTRIBUTION TO KNOWLEDGE

The graph of this method revealed the jumps in the system as well as the Wiener process, recommendations can be made
based on this revelation.
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The strong order of convergence and the region of convergence and the region of stability for j is a critical breakthrough
in the method generated.

7 CONCLUSION

In this research a standard stochastic differential equation with distributed jumps was studied, where E-M methods for
stochastic dependent Poisson analysis was developed for Black-Scholes Asset price model; the behaviour of the jumps were
properly studied to give an acceptable result.

The property of the convergence analysis was taken into consideration and region of stability was established for the
method developed.
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