A Brand new Approach to Collatz Conjecture

Robert Deloin ${ }^{1}$

Abstract

The aim of this paper is to propose a brand new approach on Collatz conjecture as well as a proof of it. The method is based on the fundamental theorem of arithmetics and on a definition of trajectories that implies a contradiction to the latter theorem when a divergence or looping of the algorithm is assumed. This contradiction proves Collatz conjecture.

Mathematics Subject Classification: 11A51, 11Y05, 11 Y 11.
Keywords: Conjecture, Collatz, Syracuse, 3n+1, Trajectory.

[^0]Article Info: Received: January 5, 2022. Revised: January 28, 2022.
Published online: February 3, 2022.

1. Introduction

Collatz conjecture (1937) [O’Connor and Robertson, 2009] states that for any natural integer N Collatz algorithm ends up at 1 . This algorithm is as follows.

1- choose $N>0$; set current $n=N$;
2- if n is odd replace n by $3 n+1$;
3 - if not replace n by $n / 2$;
4- repeat from step 2 until $n=1$.
Even if the algorithm can then loop with $1,4,2,1, \ldots$ after reaching 1 for the first time the algorithm is said to be done at the first occurrence of 1 .
As of 2021 this conjecture was still an open problem.

2. Preliminary Notes

2.1 Fundamentals on Integers

Theorem 1 Natural integers are infinitely many.
Note. For the infinite set \mathbb{N} of natural integers the symbol of infinity (∞) symbolically represents an unreachable and therefore an undefined integer. Moreover, should infinity exist as an integer of \mathbb{N}, let's say

$$
\begin{equation*}
\infty=N_{0} \tag{1}
\end{equation*}
$$

one would immediately fall into the impossibility

$$
\begin{equation*}
N_{0}+1>\infty \tag{2}
\end{equation*}
$$

2.2 Fundamental Theorem of Arithmetics

Initiated with lemmas circa 300 BCE by Euclid in his Elements [Heath, 1956] and proved by Gauss [Gauss, 1801] with Proposition 16 in book 1 (of 13) entitled Disquisitiones Arithmeticae, this theorem follows.

Theorem 2 Every composite integer (greater than one) can be expressed uniquely (up to the order) as a product of powers of primes.

$$
\begin{equation*}
\text { With } n>1 \text { in } N, n=\Pi_{j=1, J n} p_{j}^{e j} \tag{3}
\end{equation*}
$$

where $j, J n, e j$ are integers, p_{j} are prime numbers and $J n$ the number of prime numbers necessary to factorize n.

2.3 Extension of Domain

Theorem 1 is easily extended to set \mathbb{Z} of signed integers but theorem 2 can only be extended to $\mathbb{Z}^{* *}\left(\mathbb{Z}\right.$ without 0 and 1) so that only $\mathbb{N}^{* *}(\mathbb{N}$ without 0 and 1$)$ will be further used here to avoid dealing with signs, zero and prime considerations on number 1.

2.4 Factorization is a Discrete Function

Theorem 2 means that factorization sets up a one-to-one correspondence between any number in $\mathbb{N}^{* *}$ and a unique product of prime numbers. Factorization can then be written as a discrete function valid only for natural integers

$$
\begin{equation*}
F(n)=n=\Pi_{j=1, J n} p_{j}^{e j} \tag{4}
\end{equation*}
$$

where J_{n} is not infinite. As this function is multiplicative one has

$$
\begin{equation*}
F(a \times b)=F(a) \times F(b) \tag{5}
\end{equation*}
$$

2.5 Factorization is also an Algorithm

Factorization is obtained by an algorithm consisting in doing successive divisions by prime numbers p, these divisions being based on the fact that any integer n in $\mathbb{N}^{* *}$ can be written.

$$
\begin{equation*}
n=p q+r \tag{6}
\end{equation*}
$$

where the prime p is used as a test divisor, q is the integer quotient of n divided by p and r is the remainder of the division of n by p. A prime number p is validated as a factor of n only when r is null. The algorithm terminates when $\mathrm{q}=1$ and $\mathrm{r}=0$. Example of the algorithm for $n=312$:

$312=2 \times 156+0$	\rightarrow	2 is a factor of 312	\rightarrow	$312=2 \times 156$
$156=2 \times 78+0$	\rightarrow	2 is a factor of 156	\rightarrow	$312=2^{2} \times 78$
$78=2 \times 39+0$	\rightarrow	2 is a factor of 78	\rightarrow	$312=2^{3} \times 39$
$39=2 \times 19+1$ thus		2 is no more a factor of 312		
$39=3 \times 13+0$	\rightarrow	3 is a factor of 39	\rightarrow	$312=2^{3} \times 3 \times 13$
$13=3 \times 4+1$ thus		3 is no more a factor of 39	\rightarrow	
$13=5 \times 2+3$ thus		5 is not a factor of 13		
$13=7 \times 1+6$ thus		7 is not a factor of 13	\rightarrow	
$13=11 \times 1+2$	\rightarrow	11 is not a factor of 13	\rightarrow	
$13=13 \times 1+0$	\rightarrow	13 is a factor of 13	\rightarrow	$312=2^{3} \times 3 \times 13$

And as last $q=1$ and last $r=0$ (which together are the stop alert) the algorithm ends up and gives the factorization

$$
\begin{equation*}
F(312)=2^{3} \times 3 \times 13 \tag{7}
\end{equation*}
$$

as well as the trajectory of the prime factorization algorithm

$$
312,156,78,39,3,13,1
$$

which always ends up at 1 as, according to the fundamental theorem of arithmetics, a unique factorization always exists for any natural integer N in $\mathbb{N}^{* *}$.
Remark. The trajectory of the prime factorization has only two phases: the first is a sequence obtained by divisions by two of even numbers and the second is an ending-by- 1 sequence obtained by factoring the first encountered odd number into powers of increasing primes.

2.6 A First Look at Collatz Algorithm

Let's begin with an example for which we do not know if Collatz algorithm ends up at 1. For $n=312$ this algorithm begins with

$$
312,156,78,39 ; 118,59 ; 178,89 ; 268,134,67 ; 202, \ldots
$$

where commas indicate divisions by 2 and semi-colons jumps $a=3 n+1$ which separate and define series of numbers or branches. Let's notice that at the end of branch B, if J is the number of used jumps, one has

$$
\begin{equation*}
B=1+J \tag{8}
\end{equation*}
$$

due to the fact that the first branch does not begins by a jump but directly by the chosen N.
This proves that Collatz algorithm begins like the factorization of a number N that includes a power of 2 or not.
The difference with the usual prime factorization begins after the first encountered odd number (here $n=39$).

2.7 Trajectories

A normal or long trajectory is obtained when the algorithm uses jumps defined as

$$
\begin{equation*}
a=3 n+1 \tag{9}
\end{equation*}
$$

Some of the numerous studies use short trajectories obtained by using jumps defined as

$$
\begin{equation*}
a^{\prime}=(3 n+1) / 2 \tag{10}
\end{equation*}
$$

This shows that the choice of a trajectory is fundamental to solve the conjecture.

2.8 The Fundamental Questions

Here come the usual two cases and three questions covering all cases that can happen to Collatz algorithm:
$1-$ will it always end up at 1 ?
2 - or will it sometimes not end up at 1 ?

- by diverging to infinity?
- or by entering an endless loop excluding number 1 (the stop alert)?

Answers are given in the next sections.

2.9 Collatz Algorithm is a Special Factorization

Let's prove that Collatz algorithm is a special factorization by running it on another example ending up at 1 .
Proof. For $\mathrm{N}=28$ one gets the long trajectory

$$
28,14,7 ; 22,11 ; 34,17 ; 52,26,13 ; 40,20,10,5 ; 16,8,4,2,1
$$

Or the short version of it

$$
27,14,7 ; 11 ; 17 ; 26,13 ; 20,10,5 ; 16,8,4,2,1
$$

Here a new type of trajectory will be used, defined for $i \geq 2$ (the current branch index) by taking only the first number of each branch of the long trajectory so that

$$
\begin{gather*}
a_{l}=N \tag{11}\\
a_{i}=3 n_{i-l}+1 \tag{12}
\end{gather*}
$$

This then gives the new trajectory

$$
\text { 28; 22; 34; 52; 40; } 16
$$

Noticing that all of the a_{i} 's can also be factorized as

$$
\begin{equation*}
a_{i}=2^{d i} n_{i} \tag{13}
\end{equation*}
$$

where d_{i} are the number of divisions in each branch i and n_{i} their last odd number we now define the property $T(N)$ of this trajectory made of B branches as the product of these numbers

$$
\begin{equation*}
T(N)=\Pi_{i=1, B}\left(a_{i}\right) \tag{14}
\end{equation*}
$$

For $N=28$ this gives

$$
\begin{equation*}
T(N)=28 \times 22 \times 34 \times 52 \times 40 \times 16=697016320 \tag{15}
\end{equation*}
$$

From (28) this trajectory can also be written as

$$
\begin{equation*}
T(N)=\Pi_{i=1, B}\left(2^{d i} n_{i}\right) \tag{16}
\end{equation*}
$$

so that

$$
\begin{equation*}
T(N)=2^{d} K \tag{17}
\end{equation*}
$$

with

$$
\begin{align*}
& d=\sum_{i=1, B}\left(d_{i}\right) \tag{18}\\
& K=\Pi_{i=l, B}\left(n_{i}\right) \tag{19}
\end{align*}
$$

For $N=28$ this gives

$$
\begin{equation*}
T(28)=2^{13}(7 \times 11 \times 17 \times 13 \times 5) \tag{20}
\end{equation*}
$$

This proves that Collatz algorithm is a special factorization of property $T(N)$ that secondarily gives the exact number of divisions by 2 needed by the whole trajectory to end up at 1 (here $d=13$).

3. Main Results

Proof. We just have seen that according to the fundamental theorem of arithmetics the factorizations $F(N)$ and $F(T(N))$ always exist.
Hypothesis. Let's now suppose that Collatz algorithm diverges or loops (excluding number 1) for one particular number N_{0} in $\mathbb{N}^{* *}$. We would then simultaneously have

- On one hand (the hypothesis being inactive) the infinitely many existing factorizations $F\left(N \neq N_{0}\right)$ of all $N>1$ except N_{0} and particularly those of all their multiples including $F(T(N)=K N)$;
- And on the other hand (the hypothesis being active for a particular N_{0}) the existing factorization $F\left(N_{0}\right)$ and those of all its multiples except $F\left(K_{0} N_{0}\right)$. This is because the assumed hypothesis of a diverging or looping algorithm implies that the number B of branches becomes infinity and is therefore undefined according to section 2.1. This in turn implies that

$$
\begin{equation*}
K_{0}=\Pi_{i=1, \infty}\left(n_{i}\right) \tag{21}
\end{equation*}
$$

is also undefined as well as the particular multiple $K_{0} N_{0}$ of N_{0} so that the prime factorization

$$
\begin{equation*}
F\left(T\left(N_{0}\right)\right)=F\left(K_{0} N_{0}\right) \tag{22}
\end{equation*}
$$

is also undefined.
This is a contradiction to the fundamental theorem of arithmetics which states that there always exists a unique factorization for each integer number greater than 1 and particularly for N_{0} and its multiple $T\left(N_{0}\right)=K_{0} N_{0}$.
This contradiction proves that Collatz algorithm always ends up at 1.

4. Conclusion

This paper proves Collatz conjecture by addressing the three fundamental questions about Collatz algorithm and by defining a new type of trajectory that avoids the need to find a formula (or an approximation) for the usual long or short trajectories that (still in 2021) seem to be unfitted for a solution.

References

[1] O'Connor, J.J., and Robertson, E. F. (2009). Lothar Collatz. Mac Tutor History of Mathematics. http://mathshistory.st-andrews.ac.uk/Biographies/Collatz/
[2] Heath, T. L. (1956), The Thirteen Books of Euclid's Elements, Dover Publications, New York.
[3] Gauss, C. F. (1801). Disquisitiones arithmeticae, Göttinger Digitalizierungzentrum. http://gdz.sub.uni-goettingen.de/id/PPN235993352

[^0]: ${ }^{1}$ Independent researcher, 13320 Bouc Bel Air, France.

