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Abstract 
 

In this paper, we introduce measure-theoretic for Borel probability measures to 

characterize upper and lower Katok measure-theoretic entropies in discrete type and 

the measure-theoretic entropy for arbitrary Borel probability measure in 

nonautonomous case. Then we establish new variational principles for Bowen 

topological entropy for nonautonomous dynamical systems. 
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1. Introduction  

As an important invariant of topological conjugacy, the notion of topological 

entropy was introduced by Adler, Konheim and McAndrew [1] in 1965 [3]. 

Topological entropy is a key tool to measure the complexity of a classical dynamical 

system, i.e. the exponential growth rate of the number of distinguishable orbits of 

the iterates of an endomorphism of a compact metric space. In 1973, Bowen [2] 

introduced the topological entropy ( ),B

toph T Z  for any set Z  in a topological 

dynamical system X , in a way resembling Hausdorff dimension, where X is a 

compact metric space and :T X X→  is a continuous self-map.          

Bowen topological entropy plays a key role in topological dynamics and dimension 

theory [2]. In 2012, Feng and Huang [6] showed that there is certain variational 

relation between Bowen topological entropy and measure-theoretic entropy for 

arbitrary non-invariant compact set of a topological dynamical system ( ),X T . 

Following the idea of Brin and Katok [8], they defined the measure-theoretic 

entropy for Borel probability measure on X for their results.  

In contrast with the autonomous discrete, in contrast with the autonomous discrete 

case [12], the properties of the entropies for the nonautonomous dynamical systems 

have not been fully investigated. In order to have a good understanding of the 

topological entropy of a skew product of dynamical systems (as we know that the 

calculation of its topological entropy can be transformed into that of its fibers), 

Kolyada and Snoha [4] proposed the concept of topological entropy in 1996 for a 

nonautonomous dynamical system determined by a sequence of maps.  

A nonautonomous discrete dynamical system (in short: NADDS) is a natural 

generalization of classical dynamical systems, its dynamics are determined by a 

sequence of continuous self-maps :nf X X→  where nN , defined on a 

compact metric space X . 

By a nonautonomous dynamical system (NADDS for short) we understand a pair

( )1
, n n

X f


=
, where X  is a compact metric space endowed with a metric d  and 


1n n

f


=
, is a sequence of continuous maps from X to X . In 2013, Kawan [10] 

generalized the classical notion of measure-theoretical entropy established by 

Kolomogorov and Sinai to NADSs, and proved that the measure-theoretical entropy 

can be estimated from above by its topological entropy. Following the idea of Brin 

and Katok [8] and Zhou [7] introduced the measure-theoretical entropy in 

nonautonomous case and established a variational principle for the first time. More 

results related to entropy for NADSs were developed in [11]. In this paper, We 

introduce ideas of Wang [9] to nonautonomous systems to establish new variational 

principles for Bowen topological entropy for nonautonomous dynamical systems. 
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Give a NADDS ( )1
, n n

X f


=
. For each n +N , the Bowen metric nd  on X  is 

defined by ( ) ( ) ( )( )1 1
0 1

, max ,i i

n
i n

d x y d f x f y
  −

= . For every 0  , we denote by 

( ),nB x   the open ball of radius   in the metric nd  around x , i.e.,

( ) ( ) , : ,n nB x y X d x y =   . 

We also consider a nonautonomous dynamical system (for short NADS) ( ),X 

where ( ),X d is a compact metric space and ): 0, X X   →  is a continuous 

map with ( )0, x x =  for x X . We want to know whether there is certain 

variational relation of entropy for nonautonomous dynamical systems. For our study, 

we need to define the measure-theoretic entropy for arbitrary Borel probability 

measure in nonautonomous case. 

Given a NADS ( ),X  . For any )0,t  , the t  Bowen metric td   on X  is 

defined by 

( ) ( ) ( )( )
0 1

, max , , ,t
i n

d x y d s x s y  
  −

=  

For every 0  , we denote by ( ),tB x   the open ball of radius   in the metric 

td   around x , i.e., 

( ) ( ) , : ,t tB x y X d x y  =   . 

Write ( ) ( ): ,i x i x =  for 1,2,i =   and x X .  

In this case, we take ( ) ( )n

nf x x= , then  1

n

n




=
 is a NADDS.  

Let ( )M X  denote the set of all Borel probability measures on X , Z X  and

( )M X , ( )1
, n n

X f


=
 is a NADDS. 

(1) A set E Z  is said to be an ( ), ,n Z -separated set if ,x y E  with x y  

implies ( ),nd x y  . Let ( ),nr Z  denote the maximum cardinality of ( ), ,n Z

-separated set. 

(2) A set F Z  is said to be an ( ), ,n Z -spanning set if, for any x X , there 

exists y F  with ( ),nd x y  . Let ( ),ns Z  denote the minimum cardinality 

of ( ), ,n Z -spanning sets.  

(3) A set F Z  is said to be a ( ), , ,n   -spanning set if the union ( ),n

x F

B x 


 

has  -measure more than or equal to1 − . Let ( ), ,nr     denote the minimum 

cardinality of ( ), , ,n   -spanning sets.  
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(4) We introduce a useful set: ( ) , : 1X Z X Z   =   − .  

Then it is clear that 

( ) ( )
,

, , inf ,n n
Z X

r r Z
 

   


=  

 

An open cover of X  is a family of open subsets of X , whose union is X . For 

two covers U  and V  we say that U  is a refinement of V  if for each U U  

there is V V  with U V . For nN  and open covers 1U /, 2U  ,    , nU /of X  

we denote 

 1 2 1 1 2 2
1

: , , ,
n

i n n n
i

A A A A A A
=

=     U U U U  

Note that 
1

n

i
i=
U  is also an open cover of X . We denote by ( )N U  the minimal 

cardinality of all subcovers chosen from U .  

Set 

( ) ( ) ( )
1

0

11 2
, ,n n n

i X i i i i ii n i n
f id f f f f f f f

−
−

++ − + −
= =  =  

 

For all ,i nN , where Xid  is the identity map on X .                    

Let 

( )

1

1
0

1

log

, limsup

n
i

i
i

top n n
n

f

h f
n

−
−

 =

=
→

 
 
 =
N U

U . 

 

The topological entropy is defined by 

( ) ( ) 1 1
, , : is an open cover of top n top nn n

h X f h f X
 

= =
= U U . 

 

It was proved in \cite{AKM} that for every NADS, we have 

( ) ( ) ( )
1 0 0

log , log ,
, lim limsup lim limsup

n n

top n n
n n

s X r X
h X f

n n 

 

= → →→ →

= = . 

 

Following the idea of Katok \cite{AKM},we give the following.  

Let ( )M X . The NADDS Katok measure-theoretical lower and upper entropies 

of   are defined respectively by 

( ) ( )
1 0 0

1
limlimliminf log , ,

K

n nn n
h f r

n 
  



= → → →⎯
=

( ) ( )
1 0 0

1
lim lim limsup log , ,

K

n nn
n

h f r
n


 

  
⎯ 

= → → →

=  
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In this paper, we introduce many quantities for Borel probability measure

( )M X , respectively denoted by ( )1n n
e f



=
, ( )1n n

e f




=⎯
, ( )1n n

e f

⎯ 

=
 ,

( )1n n
e f



=
, and so on.  

According to the relations of the several types of NADS topological entropies, it is 

natural to consider relationship of some new quantities and Katok measure-

theoretical lower and upper entropies. Therefore, we have the first main result. 

 

2. Main Results  

Theorem 2.1 Let ( )1
, n n

X f


=
be a NADDS, ( )M X .                 

Then following statements hold. 

(1) For any Z X , ( ) ( )1 1
, ,B P

top n top nn n
h f Z h f Z

 

= =
 . 

(2) ( ) ( )1 1

K

n nn n
h f e f 

⎯ ⎯ 

= =
= . 

(3) ( ) ( )1 1

K

n nn n
h f e f

 

 

= =⎯ ⎯
= . 

(4) ( ) ( ) ( )1 1 1n n nn n n
e f e f e f



⎯  

= = =⎯
  . 

(5) ( ) ( ) ( )
,

1 1 10 0
lim lim inf , ,P

n n top nn n nZ X
e f e f h f Z

 
 

 


  

= = =→ → 
 = . 

where the definitions of these notions will be given in Section 3. 

 

Theorem 2.2 Let ( )1
, n n

X f


=
be a NADDS. If K X  is a non-empty and 

compact, then 

( ) ( ) ( ) ( ) 1 1
, sup : , 1B

top n nn n
h f K e f M X K  

 

= =
=  = . 

 

Theorem 2.3 Let ( ),X   be a NADS, ( )M X . Then following statements 

hold. 

(1) For any Z X , ( ) ( ), ,B P

top toph Z h Z  . 

(2) ( ) ( ) ( )e e e 


  
⎯

⎯
  . 

(3) ( ) ( ) ( )
,0 0

limlim inf , ,P

top
Z X

e e h Z
 

 
 

   

→ → 
 = . 

 

 

 



6                                           Jiao Yang   

Theorem 2.4 Let ( ),X   be a NADS. If K X  is non-empty and compact, then 

( ) ( ) ( ) ( ) , sup : , 1B

toph K e M X K   =  = . 

 

3. Preliminary Notes 

3.1 NADDS 

In this subsection, let ( )1
, n n

X f


=
 be a NADDS, next we introduced NADDS's 

entropies. Following, we give some definitions of several NADDS topological 

entropies of subsets. 

 

Definition 3.1 Let Z X , 0s  , N N   and 0  , define 

( ) ( ), 1
, inf exps

N n in
i

M f Z sn



=
= − , 

where the infimum is taken over all finite or countable families ( ) ,
in iB x   such 

that ix X , in N  and  ( ),
in i

i

B x Z  . The quantity  ( ), 1
,s

N n n
M f Z



=
 

does not decrease as N  increase and   decreases, hence the following limits 

exist: 

( ) ( ),1 1
, lim ,s s

n N nn nN
M f Z M f Z 

 

= =→
= , 

( ) ( )1 10
, lim ,s s

n nn n
M f Z M f Z



 

= =→
= ). 

Bowen's topological entropy ( )1
,B

top n n
h f Z



=
 is defined as a critical value of the 

parameters s , where ( )1
,s

n n
M f Z



=
 jumps from   to 0 , i.e. 

( )
( )
( )

1

1

1

0   , ,

,

  , ,

B

top n n
s

n n
B

top n n

s h f Z

M f Z

s h f Z



=

= 

=

 


= 
 


 

Definition 3.2 Let Z X . For 0s  , N N  and 0  , define 

( ) ( ), 1
, sup exps

N n in
i

P f Z sn



=
= − , 

where the supremum is taken over all finite or countable pairwise disjoint families

( ) ,
in iB x 

⎯

 such that ix Z , in N  for all i ,  

where  

( ) ( ) , : : ,
in i nB x y X d x y 

⎯

=   . 
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The quantity ( ), 1
,s

N n n
P f Z



=
 does not decrease as N ,  decrease.         

Hence the following limit exists: 

( ) ( ),1 1
, lim ,s s

n N nn nN
P f Z P f Z 

 

= =→
= . 

Define 

( ) ( )1 1
1 1

, inf , :s s

n n i in n
i i

f Z P f Z Z Z 


 

= =
= =

 
=  

 
P . 

There exists a critical value of the parameters s , which we will denote by

( )1
, ,P

top n n
h f Z 



=
, where ( )1

,s

n n
f Z



=
P  jumps  from   to 0 , i.e. 

( )
( )
( )

1

1

1

0   , , ,

,

  , , ,

P

top n n
s

n n
P

top n n

s h f Z

f Z

s h f Z







=

= 

=

 


= 
 


P  

Note that ( )1
, ,P

top n n
h f Z 



=
 increases when   decreases.  

We call 

( ) ( )1 10
, : lim , ,P P

top n top nn n
h f Z h f Z




 

= =→
=  

the topological packing entropy of Z . 

 

Definition 3.3 Let Z X . For 0s  , N N  and 0  , define 

( ) ( ), 1
, inf exps

N n n
i

R f Z sN



=
= −  

where the infimum is taken over all finite or countable families ( ) ,N iB x   such 

that ix X , and ( ),N i

i

B x Z  .                                    

Let 

( ) ( ),1 1
, liminf ,

s s

n N nn nN
R f Z R f Z


 

= =⎯ →
= , 

( ) ( ),1 1
, limsup ,

s

s

n N nn n
N

R f Z R f Z 

⎯  

= =
→

=  

and 

( ) ( )  ( ) 1 1 1
, inf : , 0 sup : ,

s s

n n nn n nZ
Ch f s R f Z s R f Z

 


  

= = =⎯ ⎯⎯
= = = = + , 

( ) ( ) ( )1 1 1
, inf : , 0 sup : ,

s s

Z n n nn n n
Ch f s R f Z s R f Z 
⎯ ⎯ ⎯  

= = =

   
= = = = +   

   
. 
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The lower and upper capacity topological entropies of 
1n n

f


=
 restricted to Z  are 

defined respectively by 

( ) ( )1 10
lim ,n nn nZ Z

Ch f Ch f



 

= =→⎯ ⎯
= , 

( ) ( )1 10
lim ,Z Zn nn n

Ch f Ch f



⎯ ⎯ 

= =→
= . 

Definition 3.4 Let ( )M X , 0s  , N N ,  0   and 0 1  , define 

( ) ( ), 1
, , inf exps

N n in
i

M f sn  


=
= − , 

where the infimum is taken over all finite or countable families ( ) ,
in iB x   such 

that ix X , in N and ( ), 1
in i

i

B x  
 

 − 
 

.  

The quantity  ( ), 1
, ,s

N n n
M f  



=
 does not decrease as  N  increase, hence the 

following limit exist: 

( ) ( ),1 1
, , lim , ,s s

n N nn nN
M f M f    

 

= =→
=  

Using standard method, we have following is well- defined: 

( ) ( )  ( ) 1 1 1
, , inf : , , 0 sup : , ,s s

n n nn n n
e f s M f s M f       

  

= = =
= = = = +  

Defined 

( ) ( )1 10 0
limlim , ,n nn n

e f e f 
 

 
 

= =→ →
= . 

 

Definition 3.5 Let ( )M X , 0s   , N N , 0   and 0 1  , put 

( ) ( ), 1
, , inf exps

N n n
i

R f sN  


=
= − , 

where the infimum is taken over all finite or countable families ( ) ,N iB x   such 

that ix X , and ( ), 1N i

i

B x  
 

 − 
 

. 

 Let 

( ) ( ),1 1
, , liminf , ,

s s

n N nn nN
R f R f


   
 

= =⎯ →
= , 

( ) ( ),1 1
, , limsup , ,

s

s

n N nn n
N

R f R f    
⎯  

= =
→

= . 
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Using standard method, we have following is well- defined: 

( ) ( )  ( ) 1 1 1
, , inf : , , 0 sup : , ,

s s

n n nn n n
e f s R f s R f

 
     

  

= = =⎯ ⎯⎯
= = = = +  

( ) ( ) ( )1 1 1
, , inf : , , 0 sup : , ,

s s

n n nn n n
e f s R f s R f       
⎯ ⎯ ⎯  

= = =

   
= = = = +   

   
 

Define 

( ) ( )1 10 0
limlim , ,n nn n

e f e f
  

 
 

= =→ →⎯ ⎯
= , 

( ) ( )1 10 0
limlim , ,n nn n

e f e f 
 

 
⎯ ⎯ 

= =→ →
= . 

 

Definition 3.6 Let ( )M X , 0s  , N N ,  0   and 0 1  , put 

( ) ( )1 1
1 1

, , inf , : 1s s

n n i in n
i i

f P f Z Z    


 

= =
= =

  
=  −  

  
P , 

where ( )1
,s

n in
P f Z



=
 is defined in Definition 2.2. There exists a critical value of 

s  such that 

( ) ( )  ( ) 1 1 1
, , : , , 0 sup : , ,s s

n n nn n n
e f s f s f       

  

= = =
= = = = +P P . 

Define 

( ) ( )1 10 0
limlim , ,n nn n

e f e f 
 

 
  

= =→ →
= . 

 

3.2 NADS 

In this subsection, let ( ),X   be a NADS, next we introduced NADS's entropies. 

 

Definition 3.7 Let Z X , 0s  , N N   and 0  ,  

define 

( ) ( ), , inf exps

N i

i

M Z st  = − , 

where the infimum is taken over all finite or countable families ( ) ,
it iB x   such 

that ix X , it N  and ( ),
it i

i

B x Z   . The quantity ( ), ,s

NM Z   does not 

decrease as N  increase and   decreases.  

 

Hence the following limits exist: 

( ) ( ),, lim ,s s

N
N

M Z M Z  
→

= , 

( ) ( )
0

, lim ,s sM Z M Z


 
→

= . 
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Bowen's topological entropy ( ),B

toph Z  is defined as a critical value of the 

parameters s , where ( ),sM Z  jumps from   to 0 , i.e. 

( )
( )

( )

0   , ,
,

  , ,

B

tops

B

top

s h Z
M Z

s h Z






 
= 

 

 

Other topological entropy definitions are similar to the discrete case definition. 

 

 

Definition 3.8 Let ( )M X , 0s  , N N , 0   and 0 1  ,  

define 

( ) ( ), , , inf exps

N i

i

M st    = − , 

where the infimum is taken over all finite or countable families ( ) ,
it iB x   such 

that ix X , it N  and ( ), 1
it i

i

B x  
 

 − 
 

. The quantity ( ), , ,s

NM      

does not decrease as N  increase, hence the following limit exist: 

( ) ( ),, , lim , ,s s

N
N

M M      
→

= . 

Using standard method, we have following is well- defined: 

( ) ( )  ( ) , , inf : , , 0 sup : , ,s se s M s M          = = = = + , 

defined 

( ) ( )
0 0

limlim , ,e e 
 

   
→ →

= . 

 

4. Proof of Theorem 

4.1 Proof of Theorem 2.1 

Proposition 4.1 Let 0 1  , ( )M X ,  
1i i

Z


=
 be a family of Borel subsets 

of X  with 1i

i

Z 
 

 − 
 

. For any 0  , 

( ) ( )1 1
1

, , ,s s

n n in n
i

M f M f Z  


 

= =
=

 . 

Poof For any 0  , N , 𝑖 ∈ ℕ , there exists iN N  such that 

( ) ( ), 1 1
, ,

2i

s s

N n i n i in n
M f Z M f Z 

 

= =
 + .$$ 
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Hence, there exists a countable family ( ) 
1

,i
j

i

jn
j

B x 


=

 such that
i

j in N , 
i

jx X , 

( ) 
1

,i
j

i

j in
j

B x Z


=

 , 

( ) ( )1
1

exp ,
2

i s

j n i in
j

sn M f Z




=
=

−  + . 

Since 1i

i

Z 
 

 − 
 

, we have ( )
1 1

, 1i
j

i

jn
i j

B x  
 

 
 − 

 
. Hence 

( ) ( ) ( )1 1
1 1 1

, , exp ,s i s

n j n in n
i j i

M f sn M f Z  


 

= =
  =

 −   . 

Proof (1) Let Z X and assume be ( )1
0 ,B

top n n
s h f Z



=
  . For any nN  and

0  , let ( )1
, ,n n n

R R f Z 


=
=  be the largest number so that there is a disjoint 

family ( ) 
1

,

R

n i

i

B x 
⎯

=

 with ix Z . Then it is easy to see that for any 0  , 

( )
1

,2
R

n i

i

B x Z 
⎯

=

+  , 

which implies that 

( ) ( ) ( ),2 ,1 1
, exp ,s s

n n n nn n
M f Z R ns P f Z  

 

+ = =
  −   

for any 0s  , and hence ( ) ( )2 1 1
, ,s s

n nn n
M f Z P f Z  

 

+ = =
 , we have 

( ) ( )2 1 1
, ,s s

n nn n
M f Z f Z  

 

+ = =
 P . Since ( )1

0 ,B

top n n
s h f Z



=
  , we have 

( )1
,s

n n
M f Z



=
=   and thus ( )2 1

, 1s

n n
M f Z 



+ =
  when   and   are small 

enough. Hence ( )1
, 1s

n n
f Z



=
P and ( )1

, ,P

top n n
h f Z s



=
  when   is small. 

Therefore ( ) ( )1 10
, lim , ,P P

top n top nn n
h f Z h f Z s




 

= =→
=  .  

This implies that ( ) ( )1 1
, ,B P

top n top nn n
h f Z h f Z

 

= =
 . 

(2) Denote 

( ) ( )
1

1
, , limsup log , ,

K

n nn
n

h f r
n

     
⎯ 

=
→

=  

then ( ) ( )1 10 0
limlim , ,

K K

n nn n
h f h f 

 
 

⎯ ⎯ 

= =→ →
= .  
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We first prove that 

( ) ( )1 1
, , , ,

K

n nn n
e f h f    
⎯ ⎯ 

= =
  

for any 0 1   and 0  , using like-Huasdorff dimension method. For any 

( )1
, ,

K

n n
s h f  

⎯ 

=
  and ,Z X   ,  let F  is a ( ), ,n Z -spanning set, then 

( ) ( ) ( ), 1
, , exp exps

n n n
x F

R f sn F sn  


=


 − =   − } 

which follows that 

( ) ( ) ( )
,

, 1
, , exp inf ,s

n n nn Z X
R f sn r Z

 
   



= 
 −  . 

Hence 

( ) ( ) ( )
( )

1
log , ,

, 1
, , exp , ,

nn s r
s n

n n nn
R f sn r e

  

     
 

− − 
 

=
 −  = . 

Since ( ) ( )
1

1
, , limsup log , ,

K

n nn
n

h f r s
n

     
⎯ 

=
→

=  , we have 

( ), 1
limsup , , 0s

n n n
n

R f  


=
→

= . 

For ( )1
, ,

K

n n
s h f  

⎯ 

=
  we get ( )1

, , 0
s

n n
R f  
⎯ 

=
=  and ( )1

, ,n n
e f s  
⎯ 

=
 . 

Hence ( ) ( )1 1
, , , ,

K

n nn n
e f h f    
⎯ ⎯ 

= =
 . 

Next we prove ( ) ( )1 1
, , , ,

K

n nn n
e f h f    
⎯ ⎯ 

= =
  for any 0 1   and 

0   by showing ( )1
, ,

K

n n
h f s  
⎯ 

=
  whenever ( )1

, ,n n
s e f  

⎯ 

=
 . For 

such a s , we have ( )1
, , 0

s

n n
R f  
⎯ 

=
= . Then there exists N N  such that 

( ), 1
, , 1s

n n n
R f  



=
  for any n N . Fix n N , we can find a finite family

( ) ,n i i I
B x 


 such that ix X , 

( ), 1n i

i I

B x  


 
 − 

 
 and 1snI e−    

So ( ), , sn

nr e     for any n N . Hence ( )1
, ,

K

n n
h f s  
⎯ 

=
 . 
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(3) The proof of (3) is similar to (2). 

(4) The proof of (4) is a consequence of definition. 

(5) We first show that ( ) ( )1 1n nn n
e f e f 

 

= =
 . Let ( )1n n

s e f



=
 , 0 1   

and  
1i i

Z


=
 be a family of Borel subsets of X  with

1

1i

i

Z 


=

 
 − 

 
. For any 

,i nN  and 0  , let ( ),i

n iR R Z =  be the largest number such that there is a 

disjoint family ( ) 
1

,

i
nR

i
n j

j

B x 
⎯

=

 with 
i

j ix Z . Then we can verify that for any 

0  , 

( ) , 2i
j

i

j in
B x Z +  . 

It following that ( ) ( ),2 ,1 1
, ,s i sn s

n n i n n n in n
M f Z R e P f Z  

 −

+ = =
     

and ( ) ( )2 1 1
, ,s s

n i n in n
M f Z f Z  

 

+ = =
 P . Therefore,  by the Proposition4.1,   

we have ( ) ( )2 1 1
, , , ,s s

n nn n
M f f     

 

+ = =
 P . As ( )1n n

s e f



=
 , we can get

( )1
, 2 ,n n

s e f   


=
 +  when  ,  ,   are small enough. This implies that 

( )2 1
, ,s

n n
M f   



+ =
=   and thus ( )1

, ,s

n n
f  



=
= P . Therefore, it can be 

deduced that ( )1n n
e f s



=
 . So the desired inequality holds. 

Now we proved that ( ) ( )
,

1 10 0
lim lim inf , ,P

n top nn nZ X
e f h f Z

 


 


 

= =→ → 
= .  

Let ( )1n n
e f s



=
 , then there exists   , 0    such that ( )1

, ,n n
e f s  



=
  

for any ( )0,    and ( )0,   . Thus ( )1
, ,s

n n
f  



=
= P .  

For any ,Z X    and any  
1i i

Z


 with
1

i

i

Z Z


=

 , we have
1

1i

i

Z 


=

 
 − 

 
.   

It follows from ( )1
, ,s

n n
f  



=
= P  that ( )1

1

,s

n in
i

P f Z




=
=

=  .  

So ( )1
,s

n n
f Z



=
= P , which gives that ( )1

, ,P

top n n
h f Z s



=
 . 

On the other hand, let ( )
,

10 0
lim lim inf , ,P

top n nZ X
s h f Z

  




=→ → 
 . Then there exist   ,

0    such that ( )1
, ,P

top n n
h f Z s



=
  for any ( )0,    , ( )0,   and
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,Z X   . Thus, we have ( )1
,s

n n
f Z



=
= P . Fix   

1i i
Z


 with 

1

1i

i

Z 


=

 
 − 

 
 

and write
1

i

i

Z Z


=

= , then ,Z X   . So ( )1
1

,s

n in
i

P f Z




=
=

=  , which yields that

( )1
, ,s

n n
f  



=
= P . Furthermore, we can get ( )1

, ,n n
e f s  



=
  and

( )1n n
e f s



=
 . 

 

4.2 Proof of Theorem 2.2 

Proposition 4.2 For ( )M X , it holds that 

( ) ( ) ( ) ( ) 1 1 1
inf , : 1B

n n top nn n n
h f e f h f K K



  

= = =⎯
  = . 

Proof The second inequality is a direct consequence of the definition and we only 

deduce the first one. For 0s   with ( )1n n
h f s




=⎯
 . By a standard procedure, 

there exist A X  with ( ) 0A   and N N  such that 

( )( ), , ,sn

nB x e x A n N  −     

Pick ( )( )0, A  .  Let ,
2in i

i I

B x




  
  

  
 be a countable family such that in N ,

ix X  and , 1
2in i

i I

B x


 


  
 −  

  
 that intersects A , if taking 

,
2ii n iy B x A
 

  
 

, then one has ( ), ,
2i in i n iB x B y



 

 
 

 and thus 

( )( ), ,
2

i

i i

sn

n i n iB x B y e


   −  
   

  
 

 

Then we have 

( )( ), ,
2

i

i i

i I i I i I

sn

n i n ie B y A B x A


  
  

−   
    

  
    

( ), 0
2in i

i I

B x A A


 


  
 =   

  
 

Hence ( ) ( ) ( )
1 1,

2 2

, , , ,s s

n nn nN
M f M f A     

 

= =
  . By Bowen's definition, 

we can derive that 
1
, ,
2

n n
e f s






=

 
 

 
 and moreover ( ) ( )1 1n nn n

h f e f


 

= =⎯
 . 
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Definition 4.3 Let ( )M X . The NADS ( , )X   measure-theoretical lower  

entropies of   is defined  by 

( ) ( ) ( ),h h x d x
 
  

⎯ ⎯
=   

where 

( ) ( )( )
0

1
, limliminf log ,t

t
h x B x

t




  

→ →⎯
= − . 

 

 

Lemma 4.4 ([5,theorem1.4]) Let 
1

( , )n n
X f



=
be a NADDS. If K X          

is non-empty and compact, then 

( ) ( ) ( ) ( ) 1 1
, sup : , 1B

top n nn n
h f K h f M X K


 

 

= =⎯
=  = . 

 

Proof By the Proposition, we have 

( ) ( ) ( )  ( ) ( ) ( ) 1 1
sup : , 1 sup : , 1n nn n

h f M X K e f M X K


   
 

= =⎯
 =   =  

( ) ( ) ( ) 1
inf , : , 1B

top n n
h f K M X K 



=
  =  

Combining with lemma, 

( ) ( ) ( ) ( ) 1 1
, sup : , 1B

top n nn n
h f K h f M X K


 

 

= =⎯
=  =  

the conclusion can be proved. 

 

Using the same proof method of Theorem 2.1 and, Theorem 2.2, we have result of 

Theorem 2.3 and Theorem 2.4. 
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