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Abstract 
 

In 1857, twenty years after Dirichlet's theorem on arithmetic progressions, the 

conjecture of the Ukrainian mathematician Victor Y. Bunyakovsky (1804-1889) is 

already a try to generalize this theorem to polynomial integer functions of degree 

m>1. This conjecture states that under three conditions a polynomial integer 

function of degree m>1 generates infinitely many primes. 

The main contribution of this paper is to introduce a new approach to this conjecture. 

The key ideas of this new approach is to relate the conjecture to a general theory 

(here arithmetic progressions) and use the active constraint of this theory 

(Dirichlet's theorem) to achieve the proof. 
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1. Introduction  

In 1837 (Dirichlet, 1837)(Stephan, 2014), the German mathematician P. G. L. 

Dirichlet (1805-1859) proved that an arithmetic progression a+bd of modulus d (a 

polynomial integer function of degree 1 in d where d, a and b are integers with  

gcd(a, d)=1), generates infinitely many primes. 

In 1857, twenty years after Dirichlet's theorem, the conjecture of the Ukrainian 

mathematician Victor Y. Bunyakovsky (1804-1889) mentioned in (Bounyakowsky, 

1857) is already a try to generalize this theorem to polynomial integer functions of 

degree m>1. This conjecture states that, under three conditions mentioned hereafter, 

a polynomial function of degree m>1 generates infinitely many primes. As of year 

2020, this conjecture was still open. 
 

2. Preliminary Notes 

Definition 2.1 General functions are said to be polynomial integer functions if their 

expression is a polynomial of degree d=m: 

 

 f(n) = am nm + am-1 n
m-1 + am-2 n

m-2 + ... + a2 n
2 + a1 n + a0   (1) 

 

with the integers n, ai in Z and m>0 so that all values f(n) are also in Z, Z being the 

infinite set of integers. 

 

Bunyakovsky's conjecture states that, under three conditions mentioned hereafter, a 

polynomial integer function of degree m>1 generates infinitely many primes. The 

three conditions come from the fact that the considered polynomial moreover has 

to be irreducible, this word being taken with the sense given to it by Bunyakovsky's 

in its article: 

 

A. the leading coefficient must be positive; 

B. the polynomial coefficients have to verify gcd(coefficients) = 1; 

C. the polynomial has to be irreducible, that is to say, not divisible by any other 

polynomial of degree d with 0 ≤ d < m.  

 

Note. The integer function f(n) = 5n2 + 15n + 125 is not irreducible because gcd(ai) 

= 5; f(n) = n2 + n + 2 is also not irreducible but for a different reason: an hidden 

constant factor 2 appears when f(n) is written as  

 f(n) = n2 + n + 2 = 2( n(n+1)/2 +1)  

as n(n+1)/2 is always an integer and factor 2 is a polynomial of degree d=0. 
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3. Main Results  

The proof will be given in two steps. 

1. the polynomial integer function f(n) will be related to a general theory from 

which it gets constraints; 

2. the constraints will be applied to reach the proof. 

 

3.1 Relating the Conjecture to the Theory of Arithmetic Progressions 

Let's consider the infinitely many arithmetical progressions  

 

A(n,k,δ) = n + k δ           (2) 

 

where n and k are general integers and δ ≠ 0 is the integer common difference 

between numbers A. Let's add the relation 

 

gcd(n,δ) = 1            (3) 

 

so that not all combinations of n, k and δ are allowed but for the remaining ones 

Dirichlet's theorem applies. We thus can say that each of these remaining infinitely 

many arithmetic progressions contains infinitely many primes.  

Let's now discover the key feature of the proof. Let's build a new polynomial 

function X(A) by applying the polynomial integer function f(n) = polynomial(n) to 

these infinitely many arithmetic progressions, polynomial(n) being any irreducible 

polynomial. We get the polynomial integer function 

 

X(A) = polynomial(A)          (4) 

 

From (2) we then have  

 X(A) = polynomial(n+kδ)  

   = polynomial(n) + (polynomial(n+kδ )-polynomial(n)) 

   = Σd=0,m ad n
d + ( ( Σd=0,m ad (n+kδ)d ) - ( Σd=0,m ad n

d ) )  

 

and, noticing that all terms of polynomial(n) disappear in  

  (polynomial(n+kδ )-polynomial(n)) 

we get 

X(A) = X(n,k,δ) = polynomial(n) + k.δ .h(n,k,δ)     (5) 

 

where h(n,k,δ) is a polynomial. 

Let's illustrate this result with the irreducible polynomial  

 polynomial(n) = 5n2+3n+7 
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This gives 

 X(A) = polynomial(n+kδ ) 

  = polynomial(n) + (polynomial(n+kδ )-polynomial(n)) 

  = (5n2+3n+7)+(5(n+kδ )2+3(n+kδ )+7) - ( 5n2+3n+7)  

  = (5n2+3n+7) +((5(2nkδ +k2δ2)+3kδ))  

  = (5n2+3n+7) + kδ(5(2n+kδ )+3)   

This result allows us to look at function X(A) as if it were an infinite set of arithmetic 

progressions X(n,k,δ) of miscellaneous common differences or moduli. As its 

second term k.δ.h(n,k,δ) is made of three factors, we have several ways to choose a 

modulus μ from it but only μ = δ.h(n,k,δ) leads simply to the proof of Bunyakovsky's 

conjecture. We thus choose to write 

 

 X(A) = X(n,k,δ) = polynomial(n) + k [δ.h(n,k,δ)]    (6) 

 

which settles the equivalence between the function X(A) with the infinite set of 

arithmetic progressions X(n,k,δ). 

 

3.2 Proof of Bunyakovsky’s Conjecture 

According to Dirichlet's theorem, each of the arithmetic progressions of (6) contains 

infinitely many primes when the following condition is verified. 

 

 gcd(polynomial(n), δ.h(n,k,δ)) = 1      (7) 

 

As the second term δ.h(n,k,δ) of this gcd is composite, this condition  is almost 

always verified when its first term polynomial(n) is prime. The word almost is 

justified by the two exceptions that can create constant divisors ≠ 1 by 

 divisor = gcd(polynomial(n), δ) ≠ 1  

or divisor = gcd(polynomial(n), h(n,k,δ)) ≠ 1 )  

Finally, disregarding these two exceptions that do not verify Dirichlet's gcd 

condition, we have to consider two facts: 

 

1. The second term of gcd(polynomial(n), δ.h(n,k,δ)) is never prime; 

2. Dirichlet's theorem always implies by its gcd condition (7) that each of the 

infinitely many arithmetic progressions X(n,k,δ) contains infinitely many primes. 

 

These two facts imply that the first term of the gcd in (7) (any irreducible 

polynomial(n)) has to be infinitely often coprime with the second term δ.h(n,k,δ) in 

order to be in accordance with the infinitely many primes that have to be present in 

each of the infinitely many arithmetic progressions X(n,k,δ) and particularly those 

primes present in the arithmetic progressions X(n,0,δ) that define primes in 

polynomial(n) by (6) with k=0. As infinitely many coprimes of δ.h(n,k,δ) include 

infinitely many primes it solves Bunyakovsky's conjecture.  
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4. Conclusion 

Bunyakovsky's conjecture has been solved and only arithmetic progressions and 

Dirichlet's theorem are necessary to prove it. 
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