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Abstract 
 

This work explores features of the frequency distribution probability function for 

the preset word’s occurrence in a random string. The recurrent formula that 

determines distribution function, which, in turn, depends on the word and the string 

lengths, as well as on the overlap coordinates, has been deduced based on the 

multitudes’ properties and is being presented herewith in the form previously 

unknown. Asymptotic formulas have been drawn for minimum and maximum 

probabilities of the word’s just for once occurrence in a random string. Critical 

distribution parameters have been determined: the word’s critical length, whereby 

probability of its occurrence at least once is close to 0.5, and the lengths’ critical 

interval, whereby probability of the word’s just for once occurrence shifts from the 

value close to one, to the value close to zero. It has been shown, that in the long 

string case the critical interval’s width does not depend on the lengths of either word 

or string, and meanwhile the word’s critical length is linearly dependent on the 

string length’s logarithm. Examples have been offered for the frequency probability 

distribution tabulation in different cases of overlaps and at different line lengths. 

The attached C - language SW application allows tabulation of the frequency 

distribution function at any word and string lengths’ value. 
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1 Introduction

The problem of calculating frequency probabilities’ distribution for the word

occurrence in a random string has a long history, which can be traced back to

the series of works: [1]-[6]. As is known, the function under scrutiny depends

on the lengths of both the word and the string, as well as on the word overlaps’

vector. In the context of the existing problem of such overlaps’ accounting,

major efforts had earlier been directed towards calculation of the probabilities

distribution function in question. Mathematical expectation and variance of

this function had been known as well (Gentleman and Mullin, 1989) [1]. In

the meantime, the function’s extreme properties and its dependence on the

string - word length ratio had not been studied until very recently. Such

a research, however, has been recently initiated in (Ilyevsky, 2019) [7]. This

work produced a recurrent formula for the probability of the just for once word

appearance in a random string. This formula made it possible to lay down and

prove the extreme properties of the corresponding probability. The present

article studies properties of the frequency distribution probability function,

hereinafter referred to as ptn(m), where n and m are, respectively, lengths of

the word and of the string, t - frequency of the word occurrence in a random

string. (Dependence on the overlaps’ vector is not clearly shown).

Purposefulness of the present work is stemming from the following prelim-

inary qualitative evaluations, substantiated by further detailed investigation.

Apparently, at the preset string length n, there exists a certain (critical) word

length value mc, whereby probability that the word will never appear in the

string equals p0n(mc) ∼= 0.5 . It also stands to reason that at m ≥ mc the

frequency distribution function reaches maximum at t = 0. At a sufficiently

large word length, compared to mc, probability that the word will never occur

in the string is close to one (p0n(m) = 1− γ, γ � 1 ). In this case ptn(m)� 1

to all t ≥ 1. In the sector of words with lengths smaller than mc, maximum

value of the distribution function ptn(m) shifts towards larger values of t. At

a sufficiently small word length, probability that the word will never occur in

the string is small (p0n(m) = γ, γ � 1). Provided relevant values of m we shall
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have ptn(m) � 1 to all t ≥ 1 again. It should be expected, that at the preset

string length and the predetermined γ parameter there exists a certain word

lengths’ interval, wherein the word occurrence probabilities ptn(m) are not very

small values (as compared to 0.5) to all t ≥ 1 . Evaluation of this interval and

study of the distribution’s behavior taking overlaps into account is the prin-

cipal objective of this research. In order to meet the target we needed a new

presentation for the recurrent function of the frequency probabilities’ distribu-

tion for the word occurrence in a random string, first obtained by Gentelman

and Mullin (1989) [1] using the combinatorial enumeration method (Gulden

and Jackson, 1983) [8]. The recurrent formula, obtained by Gentelman and

Mullin , have form, whereby it is impossible to identify structural generality

of terms, tied to the existence of overlaps. In the present work the recurrent

formula for the distribution of frequencies of the word occurrence in a random

string has been derived by the original method, exclusively based on the set

operations’ properties (Section 2). The recurrent formula thus obtained has

a crucially new form, wherein all terms, tied to the overlaps, have a com-

mon structure for all overlap positions. From the recurrent formula explicit

asymptotic formulas have been derived for the extreme values of the analyzed

probability in case of at least one occurrence of the word in a random string

(Section 3). In turn, perception of the extreme points makes it possible to

calculate the critical word lengths’ interval, wherein probabilities ptn(m) are

not small to all t ≥ 1 (Section 4). Section 5 offers examples of tabulation of

the frequency distribution probability function of the word occurrence inside

the critical lengths’ interval depending on the word length, overlap coordinates

and string length. The Appendix contains a C - language SW application that

allows tabulation of the frequency distribution function at any string - word

length ratio.
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2 Recurrent formula for distribution of

the frequencies’ probabilities for the

word occurrence in a random string

2.1 Notation and method

Let there be a set of alphabet symbols, hereinafter referred to as W , wherein

the number of symbols equals | W |= k ≥ 2. Let there be given: random

sequence Rn, which length is n symbols of the above mentioned alphabet, and

the m-long preset sequence D. For convenience, we shall hereinafter refer to

sequences D and Rn as the word and the string, respectively. Let us proceed

from the model of equiprobable distribution of all alphabet symbols in the

string Rn. Our objective is to find a probability that word D will occur in the

string Rn t times exactly. Let us examine a set of kn different sequences Rn.

We shall denote this set as Rn. We shall index the symbol positions in strings

Rn right to left. We shall consider all strings of the set Rn equiprobable. Let

us denote as Rt
n a subset of the set Rn, in which word D occurs exactly t

times. Each of the words D may begin in any position of the string Rn - from

n to m. A set, where word D occurs not more than t times, we shall denote as

R0:t
n . The string that belongs to set Rt

n shall be denoted as Rt
n. The number

of sequences in sets Rt
n and R0:t

n we shall denote as St
n and S0:t

n , respectively.

We shall also denote as Dt
n a subset of the set Rt

n, in which there appears word

D, that begins from the left end of the string Rn, i. e. that occupies positions

from n to n − m. (It should be noted that D0
n = ∅). To solve the problem

we shall utilize the following idea, that leads to drawing out of the recursive

formula for St
n. Set R0:t

n may be tied to the set R0:t
n−1 in the following way.

Let us attach to every string of the set R0:t
n−1 - from the left, one by one - all

elements of the alphabet in question. We shall have a set hereinafter referred

to as WR0:t
n−1. Apparently, in this set WR0:t

n−1 there are strings that have t+ 1

words D. In these strings, words D, having appeared in transit from R0:t
n−1 to

WR0:t
n−1, begin with the nth symbol of the string Rn . In order to receive set

R0:t
n from the set WR0:t

n−1 we need to delete from the latter all strings of the

set Dt+1
n . Consequently, taking into account that Dt+1

n ⊆ WR0:t
n−1 , we may
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write down the following formula:

|R0:t
n | = |WR0:t

n−1| − |Dt+1
n |. (2.1)

Formula (2.1) allows us to work out an equation, connecting St
n with St−1

n , St
n−m

and St
n−si

, where si - lengths of periods in the word D , detailed identification

of which can be find in the following section.

2.2 Description of overlaps in the word D

Property of the D’s overlap represents a certain type of the shift symmetry

(see (Lotharie, 2001 ) [2], (Lotharie, 2004 ) [3], (Guibus and Odlyzko, 1981)

[9]). Let us write D down as follows: D = a1a2 . . . am, where aj represents

characters of the given alphabet. Under the string D we shall write down an

identical string, shifted to the right by si characters.

a1a2 . . . asiasi+1 . . . am

a1 . . . am−si . . . am

Provided all symbols in the top and bottom strings, located one under the

other, coincide, we say there is an overlap in position si + 1.

Definition 2.1. Word D involves an overlap position with the coordinate

si + 1, provided there exists such a si in the range of 1 ≤ si ≤ m−1, for which

a1a2 . . . am−si = asi+1asi+2 . . . am. (2.2)

Index i in (2.2) enumerate all overlaps in the word D from left to right. Word

a1a2 . . . asi is being usually referred to as the D period.

Length of the period equals si . Henceforth, we shall assume that word D

may have l nontrivial overlaps that correspond to the value of i in the range

of 1 ≤ i ≤ l. The value s0 = 0 shall correspond to the trivial overlap of the

word with itself. In [1] and [9] overlaps are being described by means of the

overlap binary vector ~Q. For 0 ≤ si ≤ m− 1, the following vector ~Q - overlap

coordinates si + 1 relation exists:{
Qj = 1, j = m− si,
Qj = 0, j 6= m− si.

(2.3)
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2.3 Auxiliary recursion formula for S0:t
n

Lemma 2.2. Let sequence D have l ≥ 1 overlap areas. Overlap positions’

coordinates are designated as follows:

s1 + 1, s2 + 1, . . . , sl + 1,

where 1 ≤ sl ≤ m − 1. Then, there exists the following formula that defines

S0:t
n :

S0
n = kn, 0 ≤ n ≤ m− 1, (2.4)

S0:t
n = kS0:t

n−1 +
l∑

i=1

(kSt
n−si−1 − St

n−si
)− St

n−m, n ≥ m. (2.5)

Proof. Formula (2.4) is obvious. Considering that |WR0:t
n−1| = kS0:t

n−1, in

order to prove the ratio (2.5) by virtue of the formula (2.1) it would suffice to

show that:

St
n−m −

l∑
i=1

(kSt
n−si−1 − St

n−si
) = |Dt+1

n |. (2.6)

Let us consider set Rt
n−si

, presenting it as follows:

Rt
n−si

= Dt
n−si
∪ Gtn−si

, (2.7)

where Gtn−si
is the n− si long strings that have t words D, but lack words D,

beginning from the left end of the string. It is evident, that:

Dt
n−si
∩ Gtn−si

= ∅. (2.8)

Now, let us consider set WRt
n−si−1, that may be presented as follows:

WRt
n−si−1 = Dt+1

n−si
∪ Gtn−si

, (2.9)

Dt+1
n−si
∩ Gtn−si

= ∅. (2.10)

Ratios (2.7)-(2.10) will give us

|WRt
n−si−1| − |Rt

n−si
| = |Dt+1

n−si
| − |Dt

n−si
|. (2.11)

In the particular case of t = 0, equation (2.11) describes the number of strings

with words D, that appeared in transit from R0
n−si−1 to WR0

n−si−1 [7]. Con-

sidering that |WRt
n−si−1| = kSt

n−si−1, |Rt
n−si
| = St

n−si
, from (2.11) we have:

kSt
n−si−1 − St

n−si
= |Dt+1

n−si
| − |Dt

n−si
|. (2.12)
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Let us present word D as a concatenation of words u0, u1, . . . , ul, where u0 is

the beginning of the word D s1 characters long, u1 is the next s2−s1 characters

long word etc., the last word ul has length of m − sl. The first character in

each of the words ui for 1 ≤ i ≤ l matches the i - numbered overlap position.

As is known (Lotharie, 2001) [2], |ui+1| ≤ |ui|. Because of overlaps, for each

of the 1 ≤ i ≤ l word D may also be presented in the following way:

D = gif
i, (2.13)

gi = uiui+1 . . . ul, (2.14)

where f i is the corresponding si - long suffix. Let F t,(i)
n−m for 1 ≤ i ≤ l denote

a subset of the set Rt
n−m, strings of which have prefix f i, but lack longer

prefixes f i+1, . . . f l. Let F t,(0)
n−m denote a subset of all strings of the set Rt

n−m,

having no of any f i prefix. (Provided strings Rt
n−m are sufficiently short, sets

F t,(i)
n−m for predetermined i and t will be empty.) Now let us consider strings

of the DF t,(i)
n−m type, where each of the strings in the set F t,(i)

n−m has word D

attached from the left. For example, let D = 1121122112112211211, where,

in accordance with the overlaps’ coordinates, we have: u0 = u1 = 1121122,

u2 = 112, u3 = u4 = 1. In this case, strings DF t,(i)
n−m have the following form:

DF t,(0)
n−m = 1121122112112211211...

DF t,(1)
n−m = 11211221̂121122112112211211...

DF t,(2)
n−m = 11211221̂1211221̂121122112112211211...

DF t,(3)
n−m = 112112211211221121̂121122112112211211...

DF t,(4)
n−m = 1121122112112211211̂121122112112211211...

Selected here are beginnings of words D that appear because of overlaps. Dots

denote string continuation. For the set of strings DRt
n−m, in which every string

of the set Rt
n−m has word D attached from the left, we have:

DRt
n−m =

l⋃
i=0

DF t,(i)
n−m, (2.15)

at that for i 6= j:

DF t,(i)
n−m ∩DF

t,(j)
n−m = ∅. (2.16)

Having attached to each of the strings in the sets Dt+1
n−si and Dt

n−si
word

u0u1 . . . ui−1 and making use of the formulas (2.12) and (2.15), let us write
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the left part of the equation (2.6) down as follows:

l∑
i=0

|DF t,(i)
n−m|+

l∑
i=1

(|u0u1 . . . ui−1Dt
n−si
| − |u0u1 . . . ui−1Dt+1

n−si
|). (2.17)

Let word D have r+ 1 complete periods, that is for 0 ≤ i ≤ r we have u0 = ui,

whereas for i > r we have u0 > ui. Let us consider two cases.

a. Let 1 ≤ i ≤ r. Note that in this case due to overlaps, all strings in

the sets u0 . . . uiDt
n−si+1

and u0 . . . ui−1Dt+1
n−si have the same number of

D words and all of them begin with the word D. Then, starting from

position n − m, suffixes of strings u0 . . . uiDt
n−si+1

and u0 . . . ui−1Dt+1
n−si

may match; hence we have

u0 . . . uiDt
n−si+1

⊆ u0 . . . ui−1Dt+1
n−si

. (2.18)

Obviously the strings of set u0 . . . ui−1Dt+1
n−si\u0 . . . uiDt

n−si+1
have word

f i, that begins in position n − m, but lack longer words f i+1, . . . f l,

beginning in this position. Therefor, by definition of F t,(i)
n−m in this case

under review we have:

|u0 . . . ui−1Dt+1
n−si
| − |u0 . . . uiDt

n−si+1
| = |DF t,(i)

n−m|. (2.19)

b. Let r ≥ 0 and i > r, then, starting from position n−m, suffixes of strings

u0 . . . uiDt
n−si+1

and u0 . . . ui−1Dt+1
n−si cannot match. Indeed, should we

admit that suffixes match, it would appear that the minimal period in

the word D is less than u0. Hence, in this case we have:

u0 . . . uiDt
n−si+1

∩ u0 . . . ui−1Dt+1
n−si

= ∅. (2.20)

Because of i > r, in the first D word of strings u0 . . . uiDt
n−si+1

word D

cannot begin in any of the overlap positions sj (1 ≤ j ≤ l). Therefore,

each of the strings in the set u0 . . . uiDt
n−si+1

has exactly t+ 1 words D.

Besides, by virtue of the condition (2.20), we have:

|u0 . . . ui−1Dt+1
n−si
| = |DF t,(i)

n−m|. (2.21)

Now let us apply results of both a. and b. cases to the expression (2.17).

By virtue of the equations (2.19) and (2.21), identical summands in (2.17) are
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reduced. As a result, the left part of the equation (2.6) preserves only terms

that describe the number of all possible strings, having exactly t + 1 words

D (these include all DF t,(0)
n−m and u0Dt

n−si
type strings). Consequently, the

equation (2.6) is valid. Provided no overlaps exist (l = 0), a corresponding

sum shall be eliminated from the equation (2.6). In this case, validity of

the equation (2.6) is clear. Therefore, Lemma 2.2 has been proven. In the

particular case of t = 0, we have the result earlier received in (Ilyevsky 2019)

[7]:

S0
n = kn, 0 ≤ n ≤ m− 1, (2.22)

S0
n = kS0

n−1 +
l∑

i=1

(kS0
n−si−1 − S0

n−si
)− S0

n−m, n ≥ m. (2.23)

2.4 Recursion formula for ptn

Theorem 2.3. Probability ptn that word D would occur in a random string

Rn exactly t times is being determined by the following recurrent formula:

ptn = ptn−1 +
l∑

i=1

k−si [ptn−si−1 − pt−1
n−si−1 − ptn−si

+ pt−1
n−si

]−

− k−m(ptn−m − pt−1
n−m). (2.24)

In the formula (2.24) t ≥ 1, n ≥ m. The boundary condition for the formula

(2.24) is the result for p0n, obtained in [7] also in the form of the recursion

formula, resultant from (2.23):

p0n = 1, 0 ≤ n ≤ m− 1. (2.25)

p0n = p0n−1 +
l∑

i=1

k−si(p0n−si−1 − p0n−si
)− k−mp0n−m, n ≥ m. (2.26)

Proof. Let us write down formula (2.5) for S0:t−1
n .

S0:t−1
n = kS0:t−1

n−1 +
l∑

i=1

(kSt−1
n−si−1 − St−1

n−si
)− St−1

n−m, n ≥ m, t ≥ 1. (2.27)

Subtracting term by term (2.27) from (2.5), and taking into account that

S0:t
n − S0:t−1

n = St
n, we have:

St
n = kSt

n−1 +
l∑

i=1

[k(St
n−si−1 − St−1

n−si−1)− St
n−si

+ St−1
n−si

]−

− St
n−m + St−1

n−m. (2.28)
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Having divided term by term formula (2.28) by kn, we shall obtain the required

ratio (2.24). In contrast to the recurrent formula, obtained in (Gentleman and

Mullin, 1989)[1], equation (2.24) has a canonical form, in which the overlap

positions’ coordinates occur in the identical way.

3 Asymptotic for p0
n in two extreme cases

3.1 Asymptotic for p0
n in the case of zero overlaps

From the formula (2.23) in the case of zero overlaps we have:

S0
n = kn, 0 ≤ n ≤ m− 1, (3.1)

S0
n = kS0

n−1 − S0
n−m, n ≥ m. (3.2)

Equation (3.2) represents the order m recursion. As is known, given the initial

data (3.1), it is theoretically possible to define S0
n clearly. Solution will be

expressed through the roots of the characteristic equation, having the following

form for the recursion (3.2):

rm − krm−1 + 1 = 0. (3.3)

In case of m/km � 1 we are interested in, the task of finding the clear ap-

proximation for S0
n , being defined by equations (3.1) and (3.2), simplifies

essentially.

Theorem 3.1. Let r be the real root of the characteristic equation (3.3),

close to k , so that the following inequality holds true:

(k − r)
r

� 1. (3.4)

Let us define function Ŝ0
n in the following way:

Ŝ0
n = S0

n = kn, 0 ≤ n ≤ m− 1, (3.5)

Ŝ0
n = (km − 1)rn−m, n ≥ m. (3.6)

Then, function Ŝ0
n gives the asymptotic approximation S0

n on the small pa-

rameter m/km at n ≥ 2m and m ≥ 3. Correspondingly, provided the same

conditions, the asymptotic approximation for p0n has the following form:

p̂0n = (km − 1)
rn−m

kn
. (3.7)
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At that, calculation error of S0
n by formula (3.6) is of the order kn(m/km)2 :

0 < S0
n − Ŝ0

n ≤
(

1 +
m(m− 3)

2

)
kn−2m. (3.8)

Let us note, that (3.6) exactly satisfies the recurrent formula (3.2), and besides

that

Ŝ0
m = S0

m = km − 1. (3.9)

Proof. To begin with, let us show there exists a sought-after root of the

characteristic polynomial and evaluate it approximately. Taking into account

condition m/km � 1, we shall look for the relevant root of the equation (3.3)

in the following form:

r = (km −mα)
1
m . (3.10)

where α is the parameter subject to definition. Then, we shall find that α

satisfies to the following equation:

km −mα = k(km −mα)
m−1
m − 1. (3.11)

We shall write equation (3.11) down in the following way:

α = h(α), (3.12)

h(α) = α− (km −mα)
[(

1− mα

km

)− 1
m − 1

]
+ 1. (3.13)

In order to calculate parameter α in (3.12, 3.13), method of simple iterations

can be utilized. Performing analysis in (3.13) by the small parameter m/km,

it is easy to make sure that in zero order approximation α = 1. In the vicinity

of point α = 1 we have |h′(α)| ∼= m/km � 1 . Therefore, the iteration process

converges. At that, in expansion α on the small parameter, linear on m/km

term remains unchanged in all iterations. To the accuracy of order m/km

terms we shall have:

α ∼= 1 +
m− 1

2km
, (3.14)

rm ∼= km −m
(

1 +
m− 1

2km

)
. (3.15)

Considering r and rm ties, that emerge from equation (3.3), we shall find as

follows:

r = k
(

1− 1

1 + rm

)
≈ k − 1

km−1
+

1−m
k2m−1

+ . . . . (3.16)
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(Real root r of the characteristic equation may be calculated from (3.3) with

any required accuracy by means of the Newton’s method). Making use of

formulas (3.6) and (3.15), we shall obtain an expression for Ŝ0
2m:

Ŝ0
2m = (km − 1)rm ∼= (km − 1)

[
km −m

(
1 +

m− 1

2km

)]
. (3.17)

Omitting terms that are small by parameter m/km , we shall have:

Ŝ0
2m = k2m − (m+ 1)km − 0.5m(m− 3). (3.18)

Alternatively, from the recurrent equations (3.1) and (3.2) the accurate ex-

pression for S0
2m is readily available.

S0
2m = k2m −mkm − km + 1. (3.19)

From (3.18) and (3.19) we have:

S0
2m − Ŝ0

2m
∼= 1 + 0.5m(m− 3) = δ. (3.20)

At m ≥ 3 we have δ > 0. To begin with, by the mathematical induction

method we shall prove that for m ≥ 3 the following holds true:

S0
n − Ŝ0

n ≥ S0
n−1 − Ŝ0

n−1 ≥ 0. (3.21)

For n ≤ m+ 1 conclusion (3.21) is valid, because

S0
n − Ŝ0

n = 0, n ≤ m, (3.22)

S0
m+1 − Ŝ0

m+1 = (km+1 − 2k)− (km − 1)r ∼=
m− 2

km−1
> 0. (3.23)

Further, let us assume that (3.21) also holds true for n, n − 1, . . . ,m + 2 and

prove its correctness for n + 1. As soon as both S0
n+1 and Ŝ0

n+1 satisfy the

recurrent equation (3.2), we have:

S0
n+1 − Ŝ0

n+1 = (k − 1)(S0
n − Ŝ0

n) + (S0
n − Ŝ0

n)− (S0
n+1−m − Ŝ0

n+1−m). (3.24)

From the inductive hypothesis (3.21) and definition (3.5), as well as taking

into account that k ≥ 2 and m ≥ 3, from (3.24) we get S0
n+1− Ŝ0

n+1 ≥ S0
n− Ŝ0

n,

that proves the required condition (3.21).

Now let us prove that at n ≥ 2m

S0
n − Ŝ0

n ≤ δkn−2m. (3.25)
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At n = 2m, as it follows from (3.20), the conclusion is valid. Now let us assume

conclusion (3.25) holds true for n, n − 1, . . . , 2m + 1. Then, for n + 1, taking

into account both (3.21) and (3.25), just as required, we get:

S0
n+1 − Ŝ0

n+1 = k(S0
n − Ŝ0

n)− (S0
n+1−m − Ŝ0

n+1−m) ≤ δkn+1−2m. (3.26)

Therefore, the Theorem 3.1 has been proven. For probability we have the

asymptotic formula (3.7). At that, calculation error by formula (3.7) does not

exceed the shown value:

δk−2m = (1 + 0.5m(m− 3))k−2m. (3.27)

Formula (3.7) offers sufficiently accurate results already at m = 5. For exam-

ple, with k = 2, n = 50,m = 5 by the recursion formula (2.26) at zero overlaps

we get p0n = 0.186, whereas by formula (3.7), in which root r had been found

by the Newton’s method, we shall have p̂0n = 0.184. Calculation error does not

exceed expression (3.27):

p0n − p̂0n = 2 · 10−3 < δ · 2−10 = 5.6 · 10−3

3.2 Asymptotic for p0
n in case of maximum number of

overlaps

At the maximum number of overlaps we have si = i for all 1 ≤ i ≤ m− 1. In

this case, from (2.23) we get:

S0
n = (k − 1)

m∑
i=1

S0
n−i, n ≥ m. (3.28)

p0n = (k − 1)
m∑
i=1

p0n−i

ki
, n ≥ m. (3.29)

Characteristic equation, that corresponds to the recursion equation (3.28),

have the following form:

rm+1 = krm − k + 1. (3.30)

Theorem 3.2. Let r be the real root of the characteristic equation (3.30),

close to k according to inequality (3.4). Then, at the maximum number of
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overlaps, function Ŝ0
n defined by formulas (3.5) and (3.6), gives an asymptotic

approximation for S0
n on the small parameter m/km � 1 at n ≥ 2m and

m > (k + 1)/(k − 1). For the probability calculation error on the asymptotic

formula (3.7), we have the evaluation as follows:

0 < p0n − p̂0n ≤ βk−2m, (3.31)

where at large m we have β ∼ m2.

The proof is similar to the zero overlaps case. We shall cite it in the

abridged version. We shall be looking for the real root of equation (3.30),

close to k, same as earlier in the form of (3.10). We shall have:

rm ∼= km −m+
m

k
−
m(1 +m)

(
1− 1

k

)2
2km

, (3.32)

r ∼= k − k − 1

km
− m(k − 1)2

k2m+1
(3.33)

Omitting terms of a higher order of smallness than m/km, from (3.6) and

(3.32) we shall obtain an expression for Ŝ0
2m :

Ŝ0
2m
∼= (km − 1)

[
km −m+

m

k
−
m(1 +m)

(
1− 1

k

)2
2km

]
(3.34)

The exact expression for S0
2m has the following form:

S0
2m = k2m − (m+ 1)km +mkm−1. (3.35)

Omitting terms that are small by parameter m/km, we shall have:

S0
2m − Ŝ0

2m
∼=
m(1 +m)

(
1− 1

k

)2
2

−m+
m

k
= β. (3.36)

By virtue of condition m > (k + 1)/(k − 1), in (3.36) we have β > 0. Also, at

these values of m, the next difference is positive:

S0
m+1 − Ŝ0

m+1 = km+1 − 2k + 1− (km − 1)r ∼=
k − 1

km+1
(m(k − 1)− k). (3.37)

Further, carrying out stages of the proof, found in section 3.1, we make sure

that at n ≥ m we have S0
n − Ŝ0

n > 0 ; then we prove that at n ≥ 2m the

following inequality takes place:

S0
2m − Ŝ0

2m ≤ βkn−2m. (3.38)
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From (3.38) instantly follows conclusion (3.31). As an example, we hereby

offer calculations for m = 8, n = 100, k = 2:

p0n = 0.829792, p̂0n = 0.829725, p0n − p̂0n ≈ 5 · 10−5,

β · 2−16 = 5 · 2−16 = 7.6 · 10−5.

4 Word - string lengths’ critical ratio

We shall call ratio between lengths of the word m and the string n critical,

provided length of the string for the given γ � 1 is within mε[m1,m2] interval,

where

p0n(m1 − 1) < γ, p0n(m1) ≥ γ, (4.1)

p0n(m2) ≤ 1− γ, p0n(m2 + 1) > 1− γ. (4.2)

We shall determine the critical length of the word mc for the given n from the

formula below:

p0n(mc) < 0.5, p0n(mc + 1) > 0.5. (4.3)

As soon as probability p0n depends on overlaps, we shall evaluate critical inter-

vals in two extreme cases. The first corresponds to zero overlaps, whereas the

second one - to their maximum number. In both cases, as has been demon-

strated in (Ilyevsky 2019) [7], we have minimum and maximum p0n values,

respectively. Union of relevant critical intervals will give us evaluation of the

critical interval in the general case. The critical ratio of m and n lengths may

be recognized by tabulation of the recurrently found function p0n. Neverthe-

less, asymptotic expressions for p0n, received as above at m/km � 1, simplify

detection of the critical interval and the critical length for the word D.

4.1 String length as the p0
n probability function

Let us express n through p0n at n� m and m/km � 1. From the asymptotic

formula (3.7), taking into account that k − r � k, we shall get:

n ∼=
k

r − k
ln p0n. (4.4)
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4.2 Critical parameters in the zero overlaps case

Being confined in asymptotic expression (3.16) by the first two terms and

inserting r into (4.4), we shall get relation between p0n, m and n:

p0n
∼= e−

n
km . (4.5)

m ∼=
1

ln k

( n

− ln p0n

)
. (4.6)

From (4.6) and definitions (4.1),(4.2) we shell get:

a ≤ m1 < a+ 1, b− 1 < m2 ≤ b, (4.7)

a =
1

ln k
ln
( n

− ln γ

)
, b =

1

ln k
ln
( n

− ln(1− γ)

)
. (4.8)

Consequently for the critical interval we have:

[m1,m2] = [dae, bbc] (4.9)

For the critical interval length we shall have evaluation as follows:

db− ae =
⌈ 1

ln k
ln
( ln γ

ln(1− γ)

)⌉
. (4.10)

For the critical word length from (4.3) and 4.6 we get:

mc =
⌊ 1

ln k
ln
( n

ln 2

)⌋
. (4.11)

4.3 Critical parameters at maximum

number of overlaps

Being confined in asymptotic expression (3.33) by the first two terms and

inserting r into (4.4), we shall get expression for p0n through m and n:

p0n
∼= e−

n(k−1)

km+1 . (4.12)

From the expression (4.12) and definitions (4.1), (4.2) we get:

g − 1 ≤ m1 < g, h− 2 < m2 ≤ h− 1, (4.13)

g =
1

ln k
ln
(n(k − 1)

− ln γ

)
, h =

1

ln k
ln
( n(k − 1)

− ln(1− γ)

)
. (4.14)



Distribution  of  Frequencies  of  the  Word  Occurrence  in  a  Random  String... 17

Consequently for critical interval we have:

[m1,m2] = [dg − 1e, bh− 1c] (4.15)

For length of critical interval we shell have next evaluation:

dh− ge =
⌈ 1

ln k
ln
( ln γ

ln(1− γ)

)⌉
. (4.16)

In this way, the critical interval length is independent of n and remains iden-

tical in both extreme cases (4.10) and (4.16) having been studied. However,

boundaries of the critical interval fundamentally depend on both n and the

overlaps’ nature. For the critical word length at maximum number of overlaps

we receive from (4.3):

mc =
⌊ 1

ln k
ln
(n(k − 1)

ln 2

)
− 1
⌋
. (4.17)

4.4 Expansion of the critical interval in the case of an

arbitrary number of overlaps

In the general case, at arbitrary number of overlaps, it would be natural to

expand the critical interval [m1,m2] by union of relevant intervals (4.9), (4.15).

We shall have:

[m1,m2] = [dg − 1e, bbc] (4.18)

5 Distribution of probabilities in the

vicinity of critical ratio

By calculating the critical interval through formulas (4.18), (4.14) and (4.8),

as well as by using recurrent formulas (3.2) and (3.29), one might easily tab-

ulate dependence p0n(m) for any n value. As an example, such dependence

is presented for n = 100 and n = 104 in Tables 1 and 2. In order to tabu-

late distribution of probabilities ptn (2.24), one should determine the interval

that corresponds to the critical intervals’ union both in case of zero overlaps

and in case of their maximum number. Table 3 shows relevant calculations

for high-symmetry binary words (k = 2, n = 100, γ = 0.01) . Table 4 shows

distribution of probabilities for words with different periods in the immediate

vicinity of the critical word - string lengths’ ratio (k = 4, n = 106,mc = 10).
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Table 1: Probability that the word will never appear in the binary n = 100

long string, depending on the word length m in case of maximum number of

overlaps (mc = 6) and in case of their nonexistence (mc = 7 ). Given γ = 0.01.

In case of zero overlaps [m1,m2] = [5, 13], in case of their maximum number

[m1,m2] = [4, 12].

m p0100 p0100
Maximum overlaps Zero overlapsd

3 0.0003 0.0000

4 0.0273 0.0003

5 0.1899 0.0294

6 0.4539 0.1969

7 0.6825 0.4615

8 0.8298 0.6880

9 0.9124 0.8331

10 0.9559 0.9142

11 0.9780 0.9568

12 0.9891 0.9784

13 0.9946 0.9893

14 0.9973 0.9947
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Table 2: Probability that the word will never appear in the binary n = 10000

long string, depending on the word length m in case of maximum number

of overlaps ( mc = 12, [m1,m2] = [11, 18] ) and in case of their nonexistence

(mc = 13, [m1,m2] = [12, 19], γ = 0.01).

m p010000 p010000
Maximum overlaps Zero overlapsd

10 0.0074 5.28 · 10−5

11 0.0867 0.0074

12 0.2948 0.0867

13 0.5436 0.2949

14 0.7372 0.5433

15 0.8586 0.7372

16 0.9266 0.8586

17 0.9626 0.9266

18 0.9811 0.9626

19 0.9905 0.9811

20 0.9952 0.9905

Table 3: Distribution of probabilities pt100 for periodic binary words (k = 2), in

which the number of ones and zeroes differs by one at most. Critical interval

is [m1,m2] = [4, 13].

D/t 1010 10101 101010 10101010 101010101 1010101010101

0 0.0029 0.0785 0.2985 0.7551 0.8716 0.9919

1 0.0162 0.1677 0.2924 0.1638 0.0915 0.0061

2 0.0461 0.2076 0.2000 0.0553 0.0265 0.0015

3 0.0889 0.1917 0.1124 0.0179 0.0075 0.0004

4 0.1305 0.1458 0.0554 0.0056 0.0021 0.0001

5 0.1552 0.0959 0.0248 0.0017 0.0006 0.0000

6 0.1556 0.0563 0.0103 0.0005 0.0002 0.0000

7 0.1352 0.0300 0.0040 0.0001 0.0000 0.0000

8 0.1037 0.0148 0.0015 0.0000 0.0000 0.0000

9 0.0713 0.0068 0.0005 0.0000 0.0000 0.0000

10 0.0444 0.0029 0.0002 0.0000 0.0000 0.0000



20 V.I.  Ilyevsky

Table 4: Distribution of probabilities pt106 for words with different periods at

the critical word - string lengths’ ratio (k = 4, n = 106,mc = 10).

D/t 1111111111 1212121212 1243312433 1243312433 1111111112

0 0.4891 0.4090 0.3868 0.3857 0.3853

1 0.2624 0.3428 0.3660 0.3671 0.3675

2 0.1360 0.1651 0.1746 0.1751 0.1752

3 0.0642 0.0594 0.0560 0.0558 0.0557

4 0.0284 0.0177 0.0136 0.0134 0.0133

5 0.0120 0.0046 0.0027 0.0026 0.0025

6 0.0049 0.0011 0.0004 0.0004 0.0004

7 0.0019 0.0002 0.0001 0.0001 0.0001

8 0.0007 0.0000 0.0000 0.0000 0.0000

9 0.0003 0.0000 0.0000 0.0000 0.0000

10 0.0001 0.0000 0.0000 0.0000 0.0000

6 Conclusion

New derivation of the recurrent formula for ptn(m) and elaboration of the ex-

treme p0n(m) properties substantially add to the already known results on the

problem under scrutiny. As a result of this research, the problem of calcula-

tion of the frequency distribution for the word occurrence in a random string

becomes simple and accessible for the general user.

7 Appendix. C-language application to

calculate distribution of probabilities ptn

The software provided herewith prompts for the alphabet size k, length of a

random string n, parameter γ, that determines the critical interval, maximum

frequency t and word D. Following input of n and γ , application informs

of the critical interval boundaries. It is natural to input the word, length of

which is within the critical interval. Otherwise, the calculation result for t ≥ 1

will be a column of zeros or extremely small numbers. It shall be emphasise

that critical interval is reliable only if n � 1, n > 2m and m/km � 1. Oth-
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erwise, ignore critical interval message. Maximum length of the input word is

40 symbols. This length, provided alphabet length k = 2 , corresponds to the

string’s critical length of 7.6 · 1011 symbols.

1 #include < stdio.h >

2 #include < string.h >

3 #include < conio.h >

4 #include < malloc.h >

5 #include < math.h >

6 // Function to calculate the integer power of k:

7 int kpower(int x, int y)

8 { int z, i;

10 z = 1;

11 if(y >= 1)

12 {
13 for(i = 1; i <= y; i+ +)

14 {
15 z = z ∗ x;

16 };
17 }
18 return(z);

19 }
20 intmain()

21 {
22 int n, k, i, j, j1, j2,m,m1,m2, t, tmax,mmax, si,NumOverl, OverlapK[40];

23 doubleGamma;

24 float g, b;

25 double S;

26 double ∗ ∗p t;
27 /*Word[40] -We look for the overlaps’ coordinates in this word.

28 Its length does not exceed 40 symbols.

29 j-projected overlaps’ coordinate;

30 m - word length;

31 k - alphabet size;

32 NumOverl - Number of nontrivial overlaps.

33 OverlapK[40]-array, where we write the overlaps’ coordinates to;



22 V.I.  Ilyevsky

34 n - random string length.*/

35 charWord[40];

36 printf(”Enter alphabet size\n”);

37 scanf s(”%d”,&k);

38 printf(”Enter randomstring size\n”);

39 scanf s(”%d”,&n);

40 printf(”Enter small parameter describing proximity of probability to one\n”);

41 scanf s(”%lf”,&Gamma);//Calculation of critical interval boundaries:

42 g = ((log(n ∗ (1.0− k)/log(Gamma)))/log(k))− 1.0;

43 b = (log(−n/log(1.0−Gamma)))/log(k);

44 g = ceil(g); b = floor(b);

45 printf(”Critical interval boundaries : \n”);

46 printf(”m1 = %.0f,m2 = %.0f\n”, g, b);

47 mmax = b;

48 printf(”Entermaximumfrequency\n”);

49 scanf s(”%d”,&tmax);

50 getchar();

51 printf(”EnterWord\n”);

52 gets(Word);

53 m = strlen(Word); //We get length of word.

54 p t = (double ∗ ∗)malloc(mmax ∗ sizeof(double∗));
55 NumOverl = 0; //Initialization of the variable describing the number of

overlaps.

56 //We check if any overlaps in j position exist.

57 for(j = 0; j <= m− 1; j + +)

58 {
59 for(i = 0;Word[i] == Word[i+ j]&&i+ j <= m− 1; i+ +)

60 {
61 if (i + j == m - 1)

62 {
63 //We write overlaps’ coordinates to the OverlapK array:

64 OverlapK[NumOverl] = j;

65 //We increase array index by 1 to write the next overlap coordinate:

66 NumOverl + +;

67 };
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68 }
69 }
70 //Upon loop exit NumOverl variable equals the number of overlaps.

71 //Calculation of P t
n on the recurrent formula:

72 for(j = 0; j <= m; j + +)

73 { //Here, j variable is the gradually growing string length.

74 p t[j] = (double∗)malloc(tmax ∗ sizeof(double));

75 for(t = 0; t <= tmax; t+ +)

76 {
77 if (t == 0) {
78 p t[j][t] = 1.;

79 }
80 else { p t[j][t] = 0.; }
81 }
82   }
83 for(j = m; j <= n; j + +)

84 {
85 for(t = 0; t <= tmax; t+ +)

86 {
87 j1 = m;

88 p t[j1][t] = 0.;

89 for(i = 1; i <= NumOverl − 1; i+ +)

90 {
91 si = OverlapK[i];

92 if(t == 0){
93 p t[j1][t] = p t[j1][t] + (p t[j1− si− 1][t]− p t[j1− si][t])/kpower(k, si);
94 }
95 else {
96 p t[j1][t] = p t[j1][t] + (p t[j1− si− 1][t]− p t[j1− si− 1][t− 1]−
97 p t[j1− si][t] + p t[j1− si][t− 1])/kpower(k, si);

98 }
99 } //Adding first and last term of the recurrent formula for ptn:

100 if(t == 0){
101 p t[j1][t] = p t[j1− 1][t] + p t[j1][t]− (p t[j1−m][t])/kpower(k,m);

102 }
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103 else{
104  p t[j1][t] = p t[j1][t] + p t[j1− 1][t] + (p t[j1−m][t− 1]−
105  p t[j1−m][t])/kpower(k,m);
106 }
107 }
108   if(j<n){
109 for(t = 0; t <= tmax; t+ +)

110 {
111 for(j2 = 1; j2 <= m; j2 + +)

112 {
113 p t[j2− 1][t] = p t[j2][t];

114 }//Probability calculation results for lengths from n-m+1 to n

115 }//are stored in the array cells from 0 to m-1

116 }
117   }
118 for(t = 0; t <= tmax; t+ +){ //Distribution function print out

119 printf(”t = %d, p t = %f\n”, t, p t[m][t]);

120 }
121 S = 0; //Check. Probabilities’ sum should equal one.

122 for(t = 0; t <= tmax; t+ +)

123 {
124 S = S + p t[m][t];

125 }
126 printf(”S = %f”, S);

127 free(p t); }
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