Theoretical Mathematics \& Applications, Vol.10, No.2, 2020, 9-13
ISSN: 1792-9687 (print), 1792-9709 (online)
Scientific Press International Limited, 2020

Decomposition of a vector measure

Abalo Douhadji ${ }^{1}$ and Yaovi M. Awussi ${ }^{2}$

Abstract

In this paper we show the vector form of the decomposition of a measure. We consider a bounded vector measure m on $K(G ; E)$ and we prove that it decomposes into two measures, one of which is absolutely continuous with respect to the Haar measure and the other foreign to the Haar measure.

Keywords: Vector measure; Haar measure; singular measures; absolute continuity

1 Introduction

In this article we prove and extend in vector measure case a theorem due to Radon-Nikodym in the single case of positive measure. First we prove a theorem which allow us to get a vector measure at each we have a complex measure and finally we get and prove the decomposition of any vector measure.

[^0]
2 Preliminaries Notes

Definition 2.1. Let G be a locally compact group and $K(G ; E)$ the space of continuous functions with compact support on G in E.
We call a vector measure on G with respect to the Banach spaces E and F; a linear map:

$$
\begin{aligned}
m: \quad K(G ; E) & \rightarrow F \\
f & \mapsto m(f)
\end{aligned}
$$

such as $\forall K$ compact of $G \quad \exists a_{K}>0,\|m(f)\|_{F} \leq a_{K}\|f\|_{\infty}$, where $\|\cdot\|_{F}$ designates the norm on the Banach space F and $\|f\|_{\infty}=\sup \left\{\|f(t)\|_{E}, t \in K\right\}$, the norm on $K(G ; E)$.

Definition 2.2. Let E be a set and \mathfrak{B} a sigma algebra of subsets of E. m a bounded complex or vector measure and μ a positive measure on \mathfrak{B}.
We say that m is absolutely continue with respect to μ if

$$
\forall A \in \mathfrak{B} \quad \text { such as } \mu(A)=0 \quad \text { then } \quad m(A)=0
$$

we note: $m \ll \mu$

Definition 2.3. Two measures ν and μ are foreign (or singular) if there exists a partition $\left(E_{1}, E_{2}\right)$ of E such as

$$
|\mu|\left(E_{1}\right)=0 \quad \text { and } \quad|\nu|\left(E_{2}\right)=0
$$

we note : $\mu \perp \nu$.
Let we see the following theorem called Lebesgue-Radon-Nikodym.
Theorem 2.1. Let μ be a positive measure; any real or complex measure ν can be uniquely written in the form : $\nu=\nu_{a}+\nu_{s}$ where ν_{a} is positive and absolutely continuous with respect to μ and ν_{s} singular; positive and foreign to μ.

The following theorem demonstrated allowed us to make the transition from a complex measure to the vector measure.

Theorem 2.2. E and F two Banach spaces, G a locally compact group Let $\nu \in K(G, E)$ be a complex measure σ-finite, $w \in F$ a vector
The mapping

$$
\begin{aligned}
m: \quad K(G, E) & \rightarrow F \\
f & \mapsto w \nu(f) \text { is a vector measure. }
\end{aligned}
$$

Proof. Show before that $w \nu(f) \in F$.
$\nu(f) \in \mathbb{C}$ is a scalar and $w \in F$ a vector so $w \nu(f) \in F$.
Then m is linear because ν is linear.
ν being a complex Radon measure we have $\forall K$ compact of $G \quad \exists a_{k}$ such as $|\nu(f)| \leqslant a_{k}\|f\|_{\infty}$ we have:

$$
\begin{aligned}
\|m(f)\|_{F} & =\|w \nu(f)\|_{F} \\
& \leqslant\|w\|_{F}|\nu(f)| \\
& \leqslant\|w\|_{F} \times a_{k}\|f\|_{\infty} \\
& \leqslant M_{k}\|f\|_{\infty} \text { with } M_{K}=\|w\| a_{k}
\end{aligned}
$$

hence m is continuous and therefore m is a vector measure.

3 Main Result

Theorem 3.1. Any vector measure m on $K(G, E)$ decomposes uniquely into

$$
m=m_{a}+m_{s} \quad \text { with } \quad m_{a} \ll \mu \quad \text { and } \quad m_{s} \perp \mu
$$

Proof. The uniqueness.
Suppose there exists m_{a}^{\prime} et m_{s}^{\prime} such as $m=m_{a}^{\prime}+m_{s}^{\prime}=m_{a}+m_{s}$ with $m_{a} \ll$ μ and $m_{s} \perp \mu$ on one hand and $m_{a}^{\prime} \ll \mu a n d m_{s}^{\prime} \perp \mu$ on the second.
which equals $m_{a}^{\prime}-m_{a}=m_{s}-m_{s}^{\prime}$
Like $m_{s} \perp \mu$ then there exists $G_{1} \subset G$ such as $\mu\left(G_{1}\right)=0$ and $m_{s}\left(\bar{G}_{1}\right)=0$
Like $m_{s}^{\prime} \perp \mu$ then there exists $G_{2} \subset G$ such as $\mu\left(G_{2}\right)=0$ and $m_{s}^{\prime}\left(\bar{G}_{2}\right)=0$ $\left(m_{s}-m_{s}^{\prime}\right)\left(\bar{G}_{1} \cap \bar{G}_{2}\right)=0$
$\mu\left(G_{1} \cup G_{2}\right)=\mu\left(G_{1}\right)+\mu\left(G_{2}\right)=0$
Since $m_{a} \ll \mu$ and $m_{a}^{\prime} \ll \mu$ then $m_{a}\left(G_{1} \cup G_{2}\right)=0$ and $m_{a}^{\prime}\left(G_{1} \cup G_{2}\right)=0$

$$
\begin{aligned}
\left(m_{a}^{\prime}-m_{a}\right)\left(G_{1} \cup G_{2}\right) & =m_{a}^{\prime}\left(G_{1} \cup G_{2}\right)-m_{a}\left(G_{1} \cup G_{2}\right) \\
& =0 \text { hence } \\
m_{a}^{\prime}-m_{a} & =0 \Rightarrow m_{a}^{\prime}=m_{a} .
\end{aligned}
$$

We got $m_{a}^{\prime}-m_{a} \ll \mu$ so $m_{s}-m_{s}^{\prime}=0$ on $G \Rightarrow m_{s}=m_{s}^{\prime}$, hence the uniqueness. Existence.
Let ν be a complex measure on $K(G ; E)$, according to Theorem 2.1;
there exists $\nu_{a} \ll \mu$ and $\nu_{s} \perp \mu$ such as $\nu=\nu_{a}+\nu_{s}$.

$$
\begin{aligned}
& \forall f \in K(G, E) \quad \forall w \neq 0 \in F, w \nu(f)=w \nu_{a}(f)+w \nu_{s}(f) \\
& \qquad \begin{aligned}
\nu_{a} \ll \mu \Leftrightarrow \mu(A)=0 & \Rightarrow \nu(A)=0 \quad \forall A \subset G . \\
& \Rightarrow w \nu(A)=0 \quad \forall w \neq 0 \\
& \text { so } \quad w \nu_{a} \ll \mu
\end{aligned} \\
& \begin{aligned}
& \nu_{s} \perp \mu \Leftrightarrow \mu(A)=0 \quad \text { and } \quad \nu_{s}(\bar{A})=0 \quad \forall A \subset G \\
& \text { and } w \nu_{s}(\bar{A})=0 \quad \forall w \neq 0 \\
& \text { so } \quad w \nu_{s} \perp \mu
\end{aligned}
\end{aligned}
$$

According to Theorem 2.2; $w \nu_{a}(f)$ and $w \nu_{s}(f)$ are the vectors measures belonging to F Banach space, from which we put:

$$
\begin{aligned}
& m_{a}(f)=w \nu_{a}(f) \\
& m_{s}(f)=w \nu_{s}(f)
\end{aligned}
$$

thus giving $m(f)=m_{a}(f)+m_{s}(f)$ and consequently $m=m_{a}+m_{s}$.

References

[1] Y. Awussi, On the absolute continuity of vector measure, Theoretical Mathematics and Applications, 3(4), (2013), 41-45.
[2] Y. Mensah, Facts about the Fourier-Stieljes transform of vector measures on compact groups, International Journal of Analysis and Applications, 2(1), (2013), 19-25.
[3] A. Douhadji et Y. Awussi, Absolute continuity of vector measure on compact Lie group, submitted.
[4] Y. Mensah, $S_{p}(\Sigma, A)$ des transformés de Fourier-Stieltjes des mesures vectorielles définies sur un groupe compact, Doctoral thesis, p. 13-14, 2008.
[5] N. Dinculeanu, Integration on locally spaces, Noorhoff International Publishing, Leyden, 1974.
[6] J.Genet, Measure and intégration, course and exercises; Vuibert Library, 1976.
[7] W.Rudin, Real and complex analysis, course; Masson 1980.

[^0]: ${ }^{1}$ Departement of Mathematics, University of Lomé, P.B 1515, Lomé, Togo.
 ${ }^{2}$ Departement of Mathematics, University of Lomé, P.B 1515, Lomé, Togo.

