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Abstract 
 

In this paper, we consider the following initial-boundary value problem 

 

{
 

 
                          (𝑢𝑚)𝑡 = ∆𝑢 − 𝑎(𝑥)𝑢

−𝑞 in Ω × (0, 𝑇),
𝜕𝑢

𝜕𝜈
= 0 on ∂Ω × (0, 𝑇),

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω̅,

 

 

where 𝛺 is a bounded domain in 𝐼𝑅𝑁 with smooth boundary ∂Ω q>0, m>1, ∆ 

is the Laplacian, 𝜈 is the exterior normal unit vector on 𝜕𝛺, 𝑎 ∈ 𝐶0(�̅�), a(x)>0, 

𝑥 ∈ 𝛺,̅ 𝑢0 ∈ 𝐶
1(�̅�), 𝑢0(𝑥) > 0,  𝑥 ∈ 𝛺.̅ Under some assumptions, we show that 

the solution of the above problem quenches in a finite time and estimate its 

quenching time. We also prove the continuity of the quenching time as a function 

of the initial datum 𝑢0(x) and the potential a. Finally, we give some numerical 

results to illustrate our analysis. 
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1. Introduction  

Let Ω be a bounded domain in 𝐼𝑅𝑁  with smooth boundary 𝜕Ω Consider the 

following initial boundary value problem 

 
(𝑢𝑚)𝑡 = ∆𝑢 − 𝑎(𝑥)𝑢

−𝑞 𝑖𝑛 Ω × (0, 𝑇),                                 (1.1)
𝜕𝑢

𝜕𝜈
= 0 on ∂Ω × (0, 𝑇),                                                           (1.2)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑖𝑛 Ω̅,                                                              (1.3)

 

 

which model flow and heat transfer in porous media. In particular the above 

problem has a lot of applications in the theory of heat transfer in biological tissues. 

The initial datum 𝑢0(𝑥) is continious, q>0, m>1, ∆ is the Laplacian, 𝜈 is the 

exterior normal unit vector on ∂Ω. The potential 𝑎 ∈ 𝐶0(Ω̅), a(x)>0, 𝑥 ∈ Ω,̅ 
and the initial datum 𝑢0 ∈ 𝐶

1(Ω̅) , 𝑢0(𝑥) > 0,  𝑥 ∈ Ω̅  and 𝑢0   satisfies the 

compatibility conditions 
𝜕𝑢0

𝜕𝜈
= 0, 𝑥 ∈ Ω.̅ Here (0,T) is the maximal time interval 

of existence of the solution u. The time T may be finite or infinite. When T is infinite, 

then we say that the solution u exists globally. When T is finite, then the solution u 

develops a singularity in a finite time, namely, 

 

lim
𝑡→𝑇

𝑢𝑚𝑖𝑛(𝑡) = 0, 

 

where 𝑢𝑚𝑖𝑛(t)=min
𝑥∈Ω̅

𝑢(𝑥, 𝑡). In this last case, we say that the solution u quenches 

in a finite time, and the time T is called the quenching time of the solution u. Thus, 

we have u(x,t)>0 in Ω̅ × [0, 𝑇).  

 

The equation (1.1) may be rewritten as  

𝑢𝑡 =
1

𝑚
𝑢1−𝑚∆𝑢 −

𝑎(𝑥)

𝑚
𝑢−𝑞+1−𝑚 inΩ × (0, 𝑇). Setting 𝑐 =

1

𝑚
, 𝛼 = −1 +𝑚 and 

p=q-1+m, the problem (1.1)—(1.3) becomes 

 
𝑢𝑡 = 𝑐𝑢

−𝛼∆𝑢 − 𝑐𝑎(𝑥)𝑢−𝑝 𝑖𝑛 Ω × (0, 𝑇),                                                               (1.4)
𝜕𝑢

𝜕𝜈
= 0 on ∂Ω × (0, 𝑇),                                                                                             (1.5)

𝑢(𝑥, 0) = 𝑢0(𝑥) > 0  𝑖𝑛 Ω̅.                                                                                        (1.6)

 

 

Solutions of nonlinear parabolic equations which quench in a finite time have been 

the subject of investigation of many authors (see [2]— [6], [8]— [10], [15], [18], 

[20], and the references cited therein). By standard methods, it is easy to prove the 

local in time existence and uniqueness of a classical solution (see, for instance [3], 

[19]). In this paper, we are interested in the continuity of the quenching time as a 

function of the initial datum 𝑢0 and the potential a. More precisely, we consider 
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the following initial-boundary value problem: 

𝑣𝑡 = 𝑐𝑣
−𝛼∆𝑣 − 𝑐𝑎(𝑥)𝑣−𝑝 in Ω × (0, 𝑇ℎ

𝑘),                                                              (1.7)

𝜕𝑣

𝜕𝜈
= 0 on ∂Ω × (0, 𝑇ℎ

𝑘),                                                                                            (1.8)

𝑢(𝑥, 0) = 𝑢0
ℎ(𝑥) > 0 in Ω̅,                                                                                          (1.9)

 

 

where 𝑢0
ℎ(𝑥) ∈ 𝐶1(Ω̅), 𝑢0

ℎ(𝑥) ≥ 𝑢0(𝑥), 𝑥 ∈ Ω̅, 
𝜕𝑢0

ℎ

𝜕𝜈
= 0, 𝑥 ∈ ∂Ω, lim

ℎ→0
𝑢0
ℎ = 𝑢0, 

𝑎𝑘 ∈ 𝐶
0(Ω̅), 0 < 𝑎𝑘(𝑥) ≤ 𝑎(𝑥), 𝑥 ∈ Ω̅, lim

𝑘→0
𝑎𝑘 = 𝑎.  

 

Here (0, 𝑇ℎ
𝑘) is the maximal time interval on which the solution v of (1.7)—(1.9) 

exists.  

When 𝑇ℎ
𝑘 is finite, then we say that the solution v of (1.7)—(1.9) quenches in a 

finite time, and the time 𝑇ℎ
𝑘 is called the quenching time of the solution v. Due to 

the fact that 0 < 𝑎𝑘(𝑥) ≤ 𝑎(𝑥) and 𝑢0
ℎ(𝑥) ≥ 𝑢0(𝑥), 𝑥 ∈ Ω̅, the problem (1.7)—

(1.9) becomes 
𝑑𝑣

𝑑𝑡
≥ 𝑐𝑣−𝛼∆𝑣 − 𝑐𝑎(𝑥)𝑣−𝑝 in Ω × (0, 𝑇ℎ

𝑘),

       
𝜕𝑣

𝜕𝜈
= 0 on ∂Ω × (0, 𝑇ℎ

𝑘),                                        

          𝑢(𝑥, 0) ≥ 𝑢(𝑥, 0) > 0 in Ω̅.                                       

 

 

It follows from the maximum principle that 𝑣 ≥ 𝑢  as long as all of them are 

defined. We deduce that 𝑇ℎ
𝑘 ≥ 𝑇. In the present paper, we prove that if h and k are 

small enough, then the solution v of (1.7)—(1.9) quenches in a finite time, and its 

quenching time 𝑇ℎ
𝑘 goes to T as h and k go to zero, where T is the quenching time 

of the solution u of (1.1)—(1.3). Recently, in [5], Boni and N’gohisse have done an 

analogous study considering the problem (1.1)—(1.3) in the case where m=1, 

a(x)=1, q>0. Let us notice that in [5], the authors have only studied the continuity 

of the quenching time as a function of the initial datum. Similar results have been 

obtained in [1], [7], [12], [13] where the authors have considered the phenomenon 

of blow-up (we say that a solution blows up in a finite time if it reaches the value 

infinity in a finite time). The rest of the paper is organized as follows. In the next 

section, under some assumptions, we show that the solution v of (1.7)—(1.9) 

quenches in a finite time and estimate its quenching time. In the third section, we 

prove the continuity of the quenching time, and finally, in the last section, we give 

some numerical results to illustrate our analysis. 
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2.  Quenching Time 

In this section, under some assumptions, we show that the solution v of (1.7)—(1.9) 

quenches in a finite time and estimate its quenching time. 

We borrow an idea of Friedman and McLeod in [11] and prove the following result. 

 

Theorem 2.1. Let 𝑝 > 𝛼 . Suppose that there exist constants A ∈ (0,1], β ∈
(0, p − α] such that the initial datum at (1.9) satisfies 

𝑐 (𝑢0
ℎ(𝑥))

−𝛼

∆𝑢0
ℎ(𝑥) − 𝑐𝑎𝑘(𝑥) (𝑢0

ℎ(𝑥))
−𝑝

≤ −𝐴(𝑢0
ℎ(𝑥))

−𝛽

 𝑖𝑛  Ω.                 (2.1) 

Then, the solution v of (1.7)— (1.9) quenches in a finite time Th
k which obeys the 

following estimate 

𝑇ℎ
𝑘 ≤

(𝑢0𝑚𝑖𝑛
ℎ )

𝛽+1

𝐴(𝛽 + 1)
, 

where 𝑢0𝑚𝑖𝑛
ℎ = min

𝑥∈Ω̅
𝑢0
ℎ(𝑥). 

PROOF. Since (0, 𝑇ℎ
𝑘) is the maximal time interval of existence of the solution v, 

our aim is to show that 𝑇ℎ
𝑘 is finite and satisfies the above inequality. Introduce the 

function J(x,t) defined as follows 

 

𝐽(𝑥, 𝑡) = 𝑣𝑡(𝑥, 𝑡) + 𝐴𝑣
−𝛽(𝑥, 𝑡)      in Ω̅ × [0, 𝑇ℎ

𝑘). 

A direct calculation reveals that 

 

𝐽𝑡 − 𝑐𝑣
−𝛼∆𝐽 = (𝑣𝑡 − 𝑐𝑣

−𝛼∆𝑣)𝑡 − 𝐴𝛽𝑣
−𝛽−1𝑣𝑡 − 𝐴𝑐𝑣

−𝛼∆𝑣−𝛽

− 𝑐𝛼𝑣−𝛼−1𝑣𝑡∆𝑣  in Ω × (0, 𝑇ℎ
𝑘).                                                     (2.2) 

A straightforward computation shows that 

 

∆𝑣−𝛽 = 𝛽(𝛽 + 1)𝑣−𝛽−2|∇𝑣|2 − 𝛽𝑣−𝛽−1∆𝑣   in Ω × (0, 𝑇ℎ
𝑘).  

which implies that 

 

∆𝑣−𝛽 ≥ −𝛽𝑣−𝛽−1∆𝑣 𝑖𝑛  Ω × (0, 𝑇ℎ
𝑘).                                                                       (2.3) 

 

On the other hand, multiply both sides of (1.7) by 𝑣𝑡 to obtain 

 

𝑣𝑡
2 = 𝑐𝑣−𝛼𝑣𝑡∆𝑣 − 𝑐𝑎𝑘(𝑥)𝑣

−𝑝𝑣𝑡  in  Ω × [0, 𝑇ℎ
𝑘). 

 

Since 𝑣𝑡
2 is nonnegative in Ω × (0, 𝑇ℎ

𝑘), we see that 

 

𝑐𝑣−𝛼−1𝑣𝑡∆𝑣 ≥ 𝑐𝑎𝑘(𝑥)𝑣
−𝑝−1𝑣𝑡   in  Ω × (0, 𝑇ℎ

𝑘). 
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It follows from (2.2)—(2.3) that 

 

𝐽𝑡 − 𝑐𝑣
−𝛼∆𝐽 ≤ (𝑣𝑡 − 𝑐𝑣

−𝛼∆𝑣)𝑡 − 𝐴𝛽𝑣
−𝛽−1(𝑣𝑡 − 𝑐𝑣

−𝛼∆𝑣
− 𝑐𝑎𝑘(𝑥)𝛼𝑣

−𝑝−1𝑣𝑡   in Ω × (0, 𝑇ℎ
𝑘).                             

Taking into account (1.7), we arrive at 

 

𝐽𝑡 − 𝑐𝑣
−𝛼∆𝐽 ≤ 𝑐𝑝𝑎𝑘(𝑥)𝑣

−𝑝−1𝑣𝑡 + 𝑐𝑎𝑘(𝑥)𝐴𝛽𝑣
−𝛽−1𝑣−𝑝

− 𝑐𝑎𝑘(𝑥)𝛼𝑣
−𝑝−1𝑣𝑡  in Ω × (0, 𝑇ℎ

𝑘).                

 

Since 𝛽 ≤ 𝑝 − 𝛼, we deduce that 

 

𝐽𝑡 − 𝑐𝑣
−𝛼∆𝐽 ≤ 𝑐𝑎𝑘(𝑥)(𝑝 − 𝛼)𝑣

−𝑝−1(𝑣𝑡 + 𝐴𝑣
−𝛽)  in Ω × (0, 𝑇ℎ

𝑘).           

 

Taking into account the expression of J, we find that 

 

𝐽𝑡 − 𝑐𝑣
−𝛼∆𝐽 ≤ 𝑐𝑎𝑘(𝑥)(𝑝 − 𝛼)𝑣

−𝑝−1𝐽  in Ω × (0, 𝑇ℎ
𝑘).           

 

According to (1.8), we also see 

 
𝜕𝐽

𝜕𝜈
= (

𝜕𝑣

𝜕𝜈
)
𝑡
− 𝐴𝛽𝑣−𝛽−1

𝜕𝑣

𝜕𝜈
= 0 on 𝜕Ω × (0, 𝑇ℎ

𝑘), 

 

and due to (2.1), we discover that 

 

𝐽(𝑥, 0) = 𝑐(𝑢0
ℎ)
−𝛼
∆𝑢0

ℎ − 𝑐𝑎𝑘(𝑥)(𝑢0
ℎ)
−𝑝
+ 𝐴(𝑢0

ℎ)
−𝛽
≤ 0  in  Ω̅. 

 

Apply the maximum principle to get 

 

𝐽(𝑥, 𝑡) ≤ 0  in  Ω̅ × (0, 𝑇ℎ
𝑘),  

or equivalently 

𝑣𝑡(𝑥, 𝑡) + 𝐴𝑣
−𝛽(𝑥, 𝑡) ≤ 0  in  Ω̅ × (0, 𝑇ℎ

𝑘). 
 

This estimate may be rewritten as follows 

 

𝑣𝛽𝑑𝑣 ≤ −𝐴𝑑𝑡   in  Ω̅ × (0, 𝑇ℎ
𝑘).                                                                                (2.4)  
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Integrating the above inequality over (0, 𝑇ℎ
𝑘), we find that 

 

𝑇ℎ
𝑘 ≤

(𝑣(𝑥, 0))
𝛽+1

𝐴(𝛽 + 1)
   for 𝑥 ∈  Ω̅, 

which implies that 

𝑇ℎ
𝑘 ≤

(𝑢0𝑚𝑖𝑛
ℎ )

𝛽+1

𝐴(𝛽 + 1)
. 

 

Consequently, we deduce that v quenches at the time 𝑇ℎ
𝑘 because of the quantity 

on the right-hand side of the above inequality is finite. This ends the proof. 

 

Remark 2.1. Let 𝑡0 ∈ (0, 𝑇ℎ
𝑘). Integrating the inequality in (2.4) from 

𝑡0 to 𝑇ℎ
𝑘 we get  

𝑇ℎ
𝑘 − 𝑡0 ≤

(𝑣(𝑥, 𝑡0))
𝛽+1

𝐴(𝛽 + 1)
   𝑓𝑜𝑟 𝑥 ∈  �̅�. 

We deduce that 

𝑇ℎ
𝑘 − 𝑡0 ≤

(𝑣𝑚𝑖𝑛(𝑡0))
𝛽+1

𝐴(𝛽 + 1)
. 

 

3. Continuity of the Quenching Time  

In this section, under some assumptions, we show that the solution v of (1.7)—(1.9) 

quenches in a finite time and its quenching time goes to that of the solution u of 

(1.1)—(1.3) when h and k go to zero. 

Firstly, we show that the solution v approaches the solution u in Ω̅ × [0, 𝑇 − 𝜏] 
with 𝜏 ∈ (0, 𝑇) when h and k tend to zero. This result is stated in the following 

theorem. 

 

Theorem 3.1. Let u be the solution of (1.1)—(1.3). Suppose that 𝑢 ∈
𝐶2,1(�̅� × [0, 𝑇 − 𝜏])  and 𝑚𝑖𝑛

𝑡∈[0,𝑇−𝜏]
𝑢𝑚𝑖𝑛(𝑡) = 𝜌 > 0 with 𝜏 ∈ (0, 𝑇). 

 

Assume that the potential at (1.7) and the initial datum at (1.9) satisfy 
‖𝑎𝑘 − 𝑎‖∞ = 𝑜(1)  𝑎𝑠 𝑘 → 0,                                                                                     (3.1) 
 

‖𝑢0
ℎ − 𝑢0‖∞ = 𝑜(1)  𝑎𝑠 ℎ → 0,                                                                                   (3.2) 

 

respectively.  

 

Then, the problem (1.7)—(1.9) admits a unique solution  

𝑣 ∈ 𝐶2,1 (�̅� × [0, 𝑇ℎ
𝑘)),  and the following relation holds: 
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𝑠𝑢𝑝
𝑡∈[0,𝑇−𝜏]

‖𝑣(. , 𝑡) − 𝑢(. , 𝑡)‖∞ = 𝑂( ‖𝑎𝑘 − 𝑎‖∞ + ‖𝑢0
ℎ − 𝑢0‖∞)  𝑎𝑠 

(ℎ, 𝑘) → (0,0). 

 

PROOF. The problem (1.7)—(1.9) has for each (h, k) a unique solution 𝑣 ∈

𝐶2,1 (�̅� × [0, 𝑇ℎ
𝑘)).  

In the introduction of the paper, we have seen  that 𝑇ℎ
𝑘 ≥ 𝑇. Let 𝑡(ℎ, 𝑘) ≤ 𝑇 − 𝜏 

the greatest value of t>0 such that 

 

‖𝑣(. , 𝑡) − 𝑢(. , 𝑡)‖∞ ≤
𝜌

2
  𝑓𝑜𝑟     𝑡 ∈ (0, 𝑡(ℎ, 𝑘)).                                                   (3.3) 

 

By a direct calculation, we see that 

 

‖𝑣(. ,0) − 𝑢(. ,0)‖∞ = ‖𝑢0
ℎ − 𝑢0‖∞,  which implies that ‖𝑣(. ,0) − 𝑢(. ,0)‖∞ 

tends to zero as h goes to zero because of (3.2). Due to this fact, we deduce that 

t(h,k)>0 for h sufficiently small. Invoking the triangle inequality, we obtain 

𝑣𝑚𝑖𝑛(𝑡) ≥ 𝑢𝑚𝑖𝑛(𝑡) − ‖𝑣(. , 𝑡) − 𝑢(. , 𝑡)‖∞  for    𝑡 ∈ (0, 𝑡(ℎ, 𝑘)),  

 

which leads us to 

𝑣𝑚𝑖𝑛(𝑡) ≥ 𝜌 −
𝜌

2
=
𝜌

2
 𝑓𝑜𝑟    𝑡 ∈ (0, 𝑡(ℎ, 𝑘)). 

 

Introduce the function e(x,t) defined as follows 

 

𝑒(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)   in  �̅� × [0, 𝑡(ℎ, 𝑘)) . 
 

A routine computation reveals that 

 

𝑒𝑡 − 𝑐𝑣
−𝛼∆𝑒 = (𝑐𝛼𝜂−𝛼−1∆𝑢 − 𝑐𝑎𝑘𝑝𝜃

−𝑝−1)𝑒 

 

+𝑐(𝑎 − 𝑎𝑘)𝑢
−𝑝     in    Ω × (0, 𝑡(ℎ, 𝑘)), 

 
𝜕𝑒

𝜕𝜈
= 0 on ∂Ω × (0, 𝑡(ℎ, 𝑘)), 

 

𝑒(𝑥, 0) = 𝑢0
ℎ(𝑥) − 𝑢0(𝑥) > 0 in   Ω̅, 

 

where 𝜃 and 𝜂 are intermediate values between u and v.  
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Let M be such that 𝑐 (
𝜌

2
)
−𝑝

≤ 𝑀 and |∆𝑢| ≤ 𝑀  for (𝑥, 𝑡) ∈ 𝛺 × (0, 𝑡(ℎ, 𝑘)).  

We deduce that 

𝑒𝑡 − 𝑐𝑣
−𝛼∆𝑒 ≤ (𝑐𝛼𝜂−𝛼−1𝑀− 𝑐𝑎𝑘𝑝𝜃

−𝑝−1)𝑒 + (𝑎 − 𝑎𝑘)𝑀  in  𝛺 × (0, 𝑡(ℎ, 𝑘)), 

 
𝜕𝑒

𝜕𝜈
= 0 on ∂Ω × (0, 𝑡(ℎ, 𝑘)), 

 

𝑒(𝑥, 0) ≥ 𝑢0
ℎ(𝑥) − 𝑢0(𝑥) > 0 in   Ω̅. 

 

Let L be such that 𝐿 = 𝑐‖𝑎𝑘‖𝑝 (
𝜌

2
)
−𝑝−1

+ 𝑐𝛼𝑀 (
𝜌

2
)
−𝑝−1

.  

It is not hard to see that 

𝐿 ≥ 𝑐𝛼𝜂−𝛼−1𝑀− 𝑐𝑎𝑘𝑝𝜃
−𝑝−1  for (𝑥, 𝑡)  Ω × (0, 𝑡(ℎ, 𝑘)).  

Set  

𝑧(𝑥, 𝑡) = 𝑒(𝐿+𝑀)𝑡 (‖𝑎𝑘 − 𝑎‖∞ + ‖𝑢0
ℎ − 𝑢0‖∞)  in Ω̅ ×

[0, 𝑇]. 

 

Thanks to this observation, a straightforward calculation yield 

𝑧𝑡 − 𝑐𝑣
−𝛼∆𝑧 ≥ (𝑐𝑎𝑘𝑝𝜃

−𝑝−1 − 𝑐𝛼𝜂−𝛼−1∆𝑢)𝑧 

 

+‖𝑎𝑘 − 𝑎‖∞𝑀  in  Ω × (0, 𝑡(ℎ, 𝑘)), 

 
𝜕𝑧

𝜕𝜈
= 0 on ∂Ω × (0, 𝑡(ℎ, 𝑘)), 

 

𝑧(𝑥, 0) ≥ 𝑒(𝑥, 0)           in   Ω̅. 
 

It follows from the maximum principle that 

𝑧(𝑥, 𝑡) ≥ 𝑒(𝑥, 𝑡)    in  Ω × (0, 𝑡(ℎ, 𝑘)). 

In the same way, we also prove that 

𝑧(𝑥, 𝑡) ≥ −𝑒(𝑥, 𝑡)    in  Ω × (0, 𝑡(ℎ, 𝑘)), 
which implies that 

‖𝑒(. , 𝑡)‖∞ ≤ 𝑒
(𝐿+𝑀)𝑡 (‖𝑎𝑘 − 𝑎‖∞ + ‖𝑢0

ℎ − 𝑢0‖∞)  for 𝑡 ∈ (0, 𝑡
(ℎ, 𝑘)) . 

Let us show that t(h,k)=T-𝜏. Suppose that t(h,k)<T-𝜏. From (3.3),  

 

we obtain 
𝜌

2
= ‖𝑣(. , 𝑡(ℎ, 𝑘)) − 𝑢(. , 𝑡(ℎ, 𝑘))‖

∞ 
≤ 𝑒(𝐿+𝑀)𝑇 (‖𝑎𝑘 − 𝑎‖∞ + ‖𝑢0

ℎ − 𝑢0‖∞). 

 

Since the term on the right-hand side of the above inequality goes to zero as h and 

k go to zero, we deduce that 
𝜌

2
≤ 0, which is impossible. Consequently, t(h,k)=T-

𝜏 and the proof is complete. 
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Now, we are in a position to prove the main result of the paper. 

 

Theorem 3.2. Suppose that the problem (1.1)—(1.3) has a solution u which 

quenches at the time T and 𝑢 ∈ 𝐶2,1(�̅� × [0, 𝑇)). Assume that the potential at (1.7) 

and the initial datum at (1.9) obey the conditions (3.1) and (3.2), respectively. Under 

the assumptions of Theorem 2.1, the problem (1.7)—(1.9) has a unique solution v 

which quenches in a finite time 𝑇ℎ
𝑘, and the following relation holds 

 

𝑙𝑖𝑚
(ℎ,𝑘)→(0,0)

𝑇ℎ
𝑘 = 𝑇. 

 

PROOF. Let 𝜀 ∈ (0,
𝑇

2
). There exists 𝜌 > 0 such that 

𝑦𝛽+1

𝐴(𝛽 + 1)
≤
𝜀

2
, 0 ≤ 𝑦 ≤ 𝜌.                                                                                  (3.4) 

Since u quenches in a finite time T, there exists 𝑇0 ∈ (𝑇 −
𝜀

2
, 𝑇) such that 

0 < 𝑢𝑚𝑖𝑛(𝑡) <
𝜌

2
    for   𝑡 ∈ [𝑇0, 𝑇). 

Set  𝑇1 =
𝑇0+𝑇

2
.  It is not hard to see that 

0 < 𝑢𝑚𝑖𝑛(𝑡) <
𝜌

2
    for   𝑡 ∈ [𝑇0, 𝑇1]. 

Making use of Theorem 3.1, we see that the problem (1.7)—(1.9) has a 

unique solution v, and the following estimate holds 

‖𝑣(. , 𝑡) − 𝑢(. , 𝑡)‖∞ ≤
𝜌

2
  for     𝑡 ∈ [0, 𝑇1],     

which implies that ‖𝑣(. , 𝑇1) − 𝑢(. , 𝑇1)‖∞ ≤
𝜌

2
.  

An application of the triangle inequality leads us to 

𝑣𝑚𝑖𝑛(𝑇1) ≤ ‖𝑣(. , 𝑇1) − 𝑢(. , 𝑇1)‖∞ + 𝑢𝑚𝑖𝑛(𝑇1) ≤
𝜌

2
+
𝜌

2
= 𝜌. 

Invoking Theorem 2.1, we discover that v quenches at the time 𝑇ℎ
𝑘. On the other 

hand, in the introduction of the paper, we have shown that 𝑇ℎ
𝑘 ≥ 𝑇.  

We infer from Remark 2.1 and (3.4) that 

0 ≤ 𝑇ℎ
𝑘 − 𝑇 = |𝑇ℎ

𝑘 − 𝑇1| + |𝑇1 − 𝑇| ≤
(𝑣𝑚𝑖𝑛(𝑇1))

𝛽+1

𝐴(𝛽 + 1)
+
𝜀

2
≤ 𝜀, 

and the proof is complete. 
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4. Numerical Results 

In this section, we give some computational experiments to confirm the theory given 

in the previous section. We consider the radial symmetric solution of the following 

initial-boundary value problem 
𝑢𝑡 = 𝑐𝑢

−𝛼∆𝑢 − 𝑐𝑎(𝑥)𝑢−𝑝 in B × (0, 𝑇),
𝜕𝑢

𝜕𝜈
= 0 on S × (0, 𝑇),                                

𝑢(𝑥, 0) = 𝑢0(𝑥) > 0 in B̅,                     

 

 

where 𝐵 = {𝑥 ∈ 𝐼𝑅𝑁, ‖𝑥‖ < 1}, 𝑆 = {𝑥 ∈ 𝐼𝑅𝑁 , ‖𝑥‖ = 1}, 𝛼 = 1, 𝑝 = 2, 𝑐 = 1/2.  

If we look at the original problem, the choice of 𝛼, 𝑝 𝑎𝑛𝑑 𝑐 corresponds to the case  

where m=2 and q=1. The above problem may be rewritten in the following form 

 

𝑢𝑡 = 𝑐𝑢−𝛼 (𝑢𝑟𝑟 +
𝑁 − 1

𝑟
𝑢𝑟) − 𝑐𝑎(𝑟)𝑢

−𝑝, 𝑟 ∈ (0,1), t ∈ (0, 𝑇),             (4.1)

𝑢𝑟(0, 𝑡) = 0,   𝑢𝑟(1, 𝑡) = 0,        t ∈ (0, 𝑇),                                                                    (4.2)

𝑢(𝑟, 0) = 𝜑(𝑟),   r ∈ [0,1].                                                                                                (4.3)

 

 

Here, we take 𝜑(𝑟) =
2+𝜀cos (𝜋𝑟)

4
, 𝑎(𝑟) = 2 − 𝜀 sin(𝜋𝑟),where 𝜀 ∈ [0,1]. We start 

by the construction of an adaptive scheme as follows. Let I be a positive integer and 

let h=1/I. Define the grid 𝑥𝑖 = 𝑖ℎ, 0 ≤ 𝑖 ≤ 𝐼, and approximate the solution u of 

(4.1)—(4.3) by the solution 𝑈ℎ
(𝑛)

= (𝑈0
(𝑛)
, … , 𝑈𝐼

(𝑛)
)
𝑇

 of the following explicit 

scheme 

𝑈0
(𝑛+1)

− 𝑈0
(𝑛)

∆𝑡𝑛
= 𝑁𝑐(𝑈0

(𝑛)
)
−𝛼
(
2𝑈1

(𝑛)
− 2𝑈0

(𝑛)

ℎ2
) − 𝑐𝑎(𝑥0)(𝑈0

(𝑛))
−𝑝

, 

 

𝑈𝑖
(𝑛+1) − 𝑈𝑖

(𝑛)

∆𝑡𝑛
= 𝑐(𝑈𝑖

(𝑛))
−𝛼
(
𝑈𝑖+1
(𝑛) − 2𝑈𝑖

(𝑛) + 𝑈𝑖−1
(𝑛)

ℎ2
+
(𝑁 − 1)

𝑖ℎ

𝑈𝑖+1
(𝑛) − 𝑈𝑖−1

(𝑛)

2ℎ
)

− 𝑐𝑎(𝑥𝑖)(𝑈𝑖
(𝑛))

−𝑝

, 1 ≤ 𝑖 ≤ 𝐼 − 1, 

 

𝑈𝐼
(𝑛+1)

− 𝑈𝐼
(𝑛)

∆𝑡𝑛
= 𝑐(𝑈𝐼

(𝑛)
)
−𝛼
(
2𝑈𝐼−1

(𝑛)
− 2𝑈𝐼

(𝑛)

ℎ2
) − 𝑐𝑎(𝑥𝐼)(𝑈𝐼

(𝑛))
−𝑝

, 

𝑈𝑖
(0)
= 𝜑𝑖 ,       0 ≤ 𝑖 ≤ 𝐼, 

 

where 𝑛 ≥ 0, 𝜑𝑖 =
2+𝜀cos (𝑖𝜋ℎ)

4
, 𝑎(𝑥𝑖) = 2 − 𝜀 sin(𝜋𝑖ℎ).  
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In order to permit the discrete solution to reproduce the properties of the continuous 

one when the time t approaches the quenching time T, we need to adapt the size of 

the time step so that we take 

∆𝑡𝑛 = 𝑚𝑖𝑛 {
(1 − ℎ2)ℎ2(𝑈ℎ𝑚𝑖𝑛

(𝑛) )
𝛼

2𝑁𝑐
, ℎ2𝑐(𝑈ℎ𝑚𝑖𝑛

(𝑛) )
𝑝+1

} 

with 𝑈ℎ𝑚𝑖𝑛
(𝑛) = min

0≤𝑖≤𝐼
𝑈𝑖
(𝑛). Let us notice that the restriction on the time 

step ensures the positivity of the discrete solution. We also approximate the solution 

(4.1)--(4.3) by the solution 𝑈ℎ
(𝑛)

 of the implicit scheme below 

𝑈0
(𝑛+1)

− 𝑈0
(𝑛)

∆𝑡𝑛
= 𝑁𝑐(𝑈0

(𝑛)
)
−𝛼
(
2𝑈1

(𝑛+1)
− 2𝑈0

(𝑛+1)

ℎ2
) − 𝑐𝑎(𝑥0)(𝑈0

(𝑛))
−𝑝−1

𝑈0
(𝑛+1), 

𝑈𝑖
(𝑛+1)

− 𝑈𝑖
(𝑛)

∆𝑡𝑛
= 𝑐(𝑈𝑖

(𝑛)
)
−𝛼
(
𝑈𝑖+1
(𝑛+1)

− 2𝑈𝑖
(𝑛+1) + 𝑈𝑖−1

(𝑛+1)

ℎ2

+
(𝑁 − 1)

𝑖ℎ

𝑈𝑖+1
(𝑛+1)

− 𝑈𝑖−1
(𝑛+1)

2ℎ
) − 𝑐𝑎(𝑥𝑖)(𝑈𝑖

(𝑛))
−𝑝−1

𝑈𝑖
(𝑛+1),

1 ≤ 𝑖 ≤ 𝐼 − 1, 

𝑈𝐼
(𝑛+1)

− 𝑈𝐼
(𝑛)

∆𝑡𝑛
= 𝑐(𝑈𝐼

(𝑛)
)
−𝛼
(
2𝑈𝐼−1

(𝑛+1)
− 2𝑈𝐼

(𝑛+1)

ℎ2
) − 𝑐𝑎(𝑥𝐼)(𝑈𝐼

(𝑛))
−𝑝−1

𝑈𝐼
(𝑛+1), 

𝑈𝑖
(0)
= 𝜑𝑖 ,       0 ≤ 𝑖 ≤ 𝐼, 

 

where ∆𝑡𝑛 = ℎ
2𝑐(𝑈ℎ𝑚𝑖𝑛

(𝑛) )
𝑝+1

. 

 

Let us again remark that for the above implicit scheme, the existence and positivity 

of the discrete solution are also guaranteed using standard methods (see, for instance 

[2]). It is not hard to see that 𝑢𝑟𝑟(0, 𝑡) = lim
𝑟→0

𝑢𝑟(𝑟,𝑡)

𝑟
. Hence, if r=0 and r=1, 

 then we see that 

𝑢𝑟(0, 𝑡) = 𝑐𝑁𝑢−𝛼(0, 𝑡)𝑢𝑟𝑟(0, t) − 𝑐𝑎(0)𝑢
−𝑝(0, 𝑡),   t ∈ (0, 𝑇), 

 

𝑢𝑟(1, 𝑡) = 𝑐𝑢−𝛼(1, 𝑡)𝑢𝑟𝑟(1, t) − 𝑐𝑎(1)𝑢
−𝑝(1, 𝑡),   t ∈ (0, 𝑇). 

 

These observations have been taken into account in the construction of our schemes  

at the first and last nodes. We need the following definition. 
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Definition 4.1. We say that the discrete solution 𝑈ℎ
(𝑛)

 of the explicit scheme  

or the implicit scheme quenches in a finite time if 𝑙𝑖𝑚
𝑛→∞

𝑈ℎ
(𝑛) = 0, and the series  

∑ ∆𝑡𝑛
∞
𝑛=0  converges. The quantity ∑ ∆𝑡𝑛

∞
𝑛=0  is called the numerical quenching  

time of the discrete solution 𝑈ℎ
(𝑛)

. 

In the following tables, in rows, we present the numerical quenching times, the  

numbers of iterations, the CPU times and the orders of the approximations 

corresponding to meshes of 16, 32, 64, 128. We take for the numerical quenching 

time 𝑇𝑛 = ∑ ∆𝑡𝑗
n−1
𝑗=0  which is computed at the first time when ∆𝑡𝑛 = |𝑇𝑛−1 −

𝑇𝑛|  ≤ 10−16.  

The order(s) of the method is computed from 

 

𝑠 =
log ((𝑇4ℎ − 𝑇2ℎ)/(𝑇2ℎ − 𝑇ℎ))

log (2)
 

 

Numerical experiments for 𝛼=1, p=2, N=2. 

 

First case: 𝜀=1 

 
Table 1: Numerical quenching times, numbers of iterations, CPU times (seconds) 

and orders of the approximations obtained with the explicit Euler method 

I 𝑻𝒏 n CPUt n 

16 0.009192 3760 10 - 

32 0.009302 15458 80 - 

64 0.009326 62004 649 2.20 

128 0.009332 248015 5023 2.00 

 
Table 2: Numerical quenching times, numbers of iterations, CPU times (seconds) 

and orders of the approximations obtained with the implicit Euler method 

I 𝑻𝒏 n CPUt n 

16 0.009201 3759 12 - 

32 0.009307 15458 67 - 

64 0.009327 62003 738 2.20 

128 0.009332 248015 7425 2.00 
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Second case: 𝜀 = 1/100 

 
Table 3: Numerical quenching times, numbers of iterations, CPU times (seconds) 

and orders of the approximations obtained with the explicit Euler method 

I 𝑻𝒏 n CPUt n 

16 0.041445 2971 8 - 

32 0.041368 11050 58 - 

64 0.041371 40609 410 1.98 

128 0.041367 149197 2911 1.91 

 
Table 4: Numerical quenching times, numbers of iterations, CPU times (seconds) 

and orders of the approximations obtained with the implicit Euler method 

I 𝑻𝒏 n CPUt n 

16 0.041445 2971 9 - 

32 0.041386 11050 47 - 

64 0.041371 40609 537 1.98 

128 0.041367 149197 3813 1.91 

 

Third case: 𝜀 = 1/10000 

 
Table 5: Numerical quenching times, numbers of iterations, CPU times (seconds) 

and orders of the approximations obtained with the explicit Euler method 

I 𝑻𝒏 n CPUt n 

16 0.041741 2903 7 - 

32 0.041684 10675 85 - 

64 0.041669 38907 661 2.02 

128 0.041665 125386 5087 1.90 

 
Table 6: Numerical quenching times, numbers of iterations, CPU times (seconds) 

and orders of the approximations obtained with the implicit Euler method 

I 𝑻𝒏 n CPUt n 

16 0.041745 2903 9 - 

32 0.041684 10675 46 - 

64 0.041669 38907 478 2.02 

128 0.041665 125386 5124 1.90 
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Remark 4.1.  If we consider the problem (4.1)— (4.3) in the case where 

𝜀 = 0, it is well known that, theoretically, the quenching time of the solution u of 

(4.1)— (4.3) is the same as the one of the solutions 𝛽(t) of the following ordinary  

differential equation 𝛽′(𝑡) = −2𝛽−𝑝(𝑡) t>0, 𝛽(0) =
1

2
. A simple calculation  

shows that the quenching time of 𝛽(𝑡) is 0.041666. We observe from Tables 1 

to 6 that if 𝜀 diminishes, then the numerical quenching time goes to 0.041666. This  

result confirms the theory established in the previous section. 
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