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Abstract

The average monthly temperature and rainfall time series recorded
between January, 1991 to December, 2016 in five selected African coun-
tries climatic zones (Ghana, Kenya, Namibia, Egypt and Cameroon)
from West Africa, East Africa, Southern Africa, Northern and the Cen-
tral Africa respectively, obtained from the World Bank Group Climate
Change Knowledge Portal, were modeled and fitted. In this study, we
used the Fourier function with seasonal autoregressive integrated mov-
ing average, seasonal autoregressive integrated moving average process,
and natural cubic splines to capture the dynamics of the time series data.
The Fourier function with seasonal autoregressive integrated moving av-
erage; FARIMA approach produce the best fitting models for average
monthly temperature and averagely monthly rainfall for selected study
countries in Africa.
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Modeling of Monthly Meteorological Time Series

1 Introduction

The modeling of the forthcoming progressions of meteorological measures

using past time series data is fundamental for environmental sciences, agricul-

tural and agribusinesses or other natural sciences as well as climate modeling,[1,

2]. These models are used to analyze components in trends, seasonally and

cyclicals in particular times, used in simulating future forecasts of climate

and inputs to crop production models. Accordingly [3], adopted time series

modeling in investigating the relationship between economic growth and envi-

ronmental quality. Also [4, 5] employed similar time series approaches to study

on the amount of rainfall from historical rainfall data to investigate potential

changes in rainfall volumes between 1981 - 2010. Over the period in particu-

lar the used of seasonal autoregressive integrated moving average has gained

grounds as the appropriate method for modeling environmental time series

factors. The Intergovernmental Panel on Climate Changes (IPCC) fourth and

fifth assessment reports, indicated that Global climate has seen an extreme

change during the last century and its expected to continue on this observed

pattern for the future. Consequently, affecting global patterns of climate in-

dicators, such as extreme rainfall, precipitation, humidity, and temperature.

In crop production models the role of climatic and as well as environmental

factors cannot be over emphasized, [6, 7, 8, 9, 10, 11] and as it stated by [1]

meteorological time series models should be considered in climatic modeling.

An increasing temperature couple with decreasing rainfall volumes are funda-

mental contributing factors to severe extreme environmental conditions, such

as food security, drought,flooding and depletion of fish stocks in the water

bodies are partly responsible for global climate change, [12, 13, 14, 15, 16, 17].

Several times series analysis and predictions models relied on past or historical

data. Assuming that the past distributions of the data are capable of model-

ing of the future outcomes. Recently, one of common identifiable time series

model is the seasonal autoregressive integrated moving average (SARIMA)

modeling.Ensuring that the historical data are adequate in forecasting future

development with certainty. A time series is composed of the following com-

ponents,namely; trend, seasonal, cyclical and the irregular components. The

used of these approahes are vast in the literature, [18, 19, 20, 21, 22, 23]. In

addition, regression modeling are enormously considered in modeling climate
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indicators, [12, 13, 14, 24, 25]. In this study, the signal will be fitted with

cubic spline,the trend and the seasonal components will be fitted with Fourier

functions and the SARIMA(p, d, q)(P, D, Q)s. The objective of this paper is

to study statistical properties of the average monthly temperature and rain-

fall taken from Ghana, Kenya, Namibia, Egypt and Cameroon for predictive

purposes.

2 Study Area

Figure 1: The study considered five climatic zones in the African continent,

comprising of Ghana from West Africa, Kenya in Eastern Africa, Namibia from

Southern Africa, Egypt from Northern Africa and Cameroon from Central

Africa. The study zones are marked red on the map of Africa

These climatic zones are chosen in order to represent contrasting climatic

conditions. Ghana’s climate is tropical and strongly influenced by the West

African monsoon. Two main rainfall regimes are identified: (a) the double
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maxima regime occurring south of latitude 8◦308N , with two maximum peri-

ods occurring from May to August and from September to October; and (b)

the single maximum regime found north of latitude 8◦308N , where there is

only one rainy season from May to October, followed by a long dry season

from November to May. In northern Ghana, the wet season occurs between

May and November, when the Inter-Tropical Conversion Zone (ITCZ) is in its

northern position and the prevailing wind is southwesterly, and the dry sea-

son occurs between December and March, when the ”Harmattan” wind blows

northeasterly. The south-eastern coastal strip is dry and different from the

north and the south. The seasonal rainfall in the region varies considerably

on interannual and inter-decadal timescales, due in part to variations in the

movements and intensity of the ITCZ, and variations in timing and intensity of

the West African monsoon. The most predictable cause of these variations is

the El Niño Southern Oscillation (ENSO). El Niño events are associated with

drier than average conditions in West Africa. Seasonal variations in tempera-

ture in Ghana are greatest in the north, with highest temperatures in the hot,

dry season (April, May, and June) at 27 - 30◦C; further south, temperatures

are lower (June, August, September) at 22 - 25◦C.

Kenya’s climate ranges from tropical (along the coast) to arid (in the moun-

tain regions). Kenya’s climate is impacted by the El Nino Southern Oscilla-

tion (ENSO), as well as the movement of the Inter-Tropical Convergence Zone

(ITCZ). The rainy season in Kenya usually begins in March and decreases in

May to June. The second wet season begins around September/October and

shows a decreasing trend in December. The windiest time of the year occurs

during the southeast monsoon, which extends from May to September. Kenya

normally experienced it dry season between June to October. During the

dry season daytime temperatures are usually around 23◦C at higher altitudes,

such as the Masai Mara, and 28◦C at lower altitudes, such as the coastal

areas. From June to October, the country experienced its coldest months.

Whereas the wet season is from November to May. The wet season daytime

temperatures are between 24◦C and 27◦C at higher altitudes. At lower alti-

tudes daytime temperatures are more consistent and hover around 30◦C. A

period of unpredictable, short rains between November and December that

lasts about a month. A dry spell in the rainy season occurs between January

and February with less rainfall. From March to May the country get the most
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rain.

Namibia has a sub-tropical climate, desert along the coast and in the south,

and arid, but with a rainy season from November to March, in inland north-

central areas and in the north-east. The driest region is the coastal area, where

the Namib Desert is located, as well as the south, where the Kalahari Desert

is found. The latter is slightly rainier and the rainiest area of Namibia is the

north-east, where rainfall ranges from 500 to 600 millimeters per year. Win-

ter is dry everywhere, while in non-desert regions (north and east) it rains in

summer, from November to March, usually in the form of showers or thun-

derstorms in the afternoon. The peak of the rainy season is from January to

March.

Egypt annual average temperatures increase from about 20◦C on the Mediter-

ranean coastline to around 24◦C on the Red Sea coastline, 25◦C at Cairo, and

26◦C further south at Aswan. Typical daytime maximum temperatures in

midsummer range from 30◦C at Alexandria southward to 41◦C at Aswan;

while the corresponding north-south range in midwinter daytime maximum

temperatures is 18-23◦C. There have been widespread warming trends over

Egypt since 1960 with greater warming in summer (0.31◦C per decade) than

during winter (0.07◦C per decade); statistical confidence is higher for the sum-

mer warming trend. Between 1960 and 2003, there has been an increase in

the frequency of warm nights and a decrease in the frequency of cool nights,

and a general increase in average summer temperatures. Nighttime temper-

atures (daily minimum) show a widespread positive shift in the distribution

with fewer cool nights and more warm nights. Confidence is high through-

out. Rainfall variability within Egypt is almost inconsequential, given that

the country receives very little rainfall, as well as the fact that its agriculture

is irrigated and not rain-fed. Variability in Nile flows are moderated by the

High Aswan Dam. The dam has one years worth of storage capacity, to help in

handling periodic droughts, although Egypt remains vulnerable to multiyear

droughts

Cameroon has one main rainy reason that lasts from May-November when

the West African Monsoon brings moist air over the country from the Atlantic

Ocean. The peak rainy months correspond with the lowest average tempera-

tures of the year. The Southern Plateaus experience two shorter rainy seasons

during May-June and October-November. Cameroons dry season lasts from
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December-April and corresponds with the highest average temperatures of the

year during the latter part of the season in the months of February-April. The

southern part of the country is characterized as humid and equatorial with

temperatures ranging from 20-25◦C (depending on altitude) and the wettest

regions receiving more than 400 mm of rainfall per month. Northern Cameroon

(north of 6◦) is semi-arid and dry with temperatures ranging from 25-30 ◦C.

This portion of the country receives less than 100 mm of rainfall per month.

The meteorological time series variables were obtained from World Bank Cli-

mate Change Knowledge Portal (CCKP), an online tool that provides access to

comprehensive global and country data information related to climate change

and development on monthly average temperature and rainfall of the five se-

lected countries in the African continent for period 1991 to 2016. The open R

source is employed in analyzing the data.

Table 1: Descriptive statistics of the monthly average (1991-2016) meteorolog-

ical time series variables from five African countries

Meteorological Variables Country Mean Min Max Stds Median Skewness Kurtosis

Temperature(0 C)

Ghana(GHA) 27.63 24.99 31.08 1.48 27.35 0.41 2.10

Kenya(KEN) 25.12 22.78 27.75 1.08 25.16 0.04 2.40

Namibia(NAM) 21.00 13.09 26.86 3.66 22.23 -0.44 1.78

Egypt(EGY) 23.06 11.85 32.03 6.24 24.20 -0.24 1.57

Cameroon(CMR) 24.93 22.95 27.96 1.17 24.60 0.61 2.25

Rainfall(MM)

Ghana(GHA) 96.06 0.00 243.27 64.30 107.47 0.02 1.76

Kenya(KEN) 54.80 1.16 247.08 39.56 43.82 1.46 5.53

Namibia(NAM) 22.70 0.03 180.70 29.25 7.98 1.71 6.50

Egypt(EGY) 2.49 0.14 20.20 2.29 1.78 2.75 15.89

Cameroon(CMR) 131.52 3.52 387.33 90.35 134.32 0.26 2.06

Descriptive statistics of these variables on the various countries are pre-

sented on Table 1, it indicates that, the highest mean and median temperature

under consideration were recorded in Ghana and the least in Namibia. The

temperature variables are characterized by positive and negative skewness and

small kurtosis observed in Table 1, an indication of a skewed distributions.

However, an entirely seperate distribution is observed for rainfall under con-

sideration. With positive skewness and high kurtosis except that of Ghana

and Cameroon, indicating a right skewned perked distributions.
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3 Methods

A time series signal is normally generated by ordered sequence of values

with time, usually a stationary process or a nonstationary process, that is,

either a white noise, an autoregressive, a moving average, an ARMA process

or a mixed integrated processes. Environmental Time series modeling is aimed

at developing a suitable model to describe and explain inherent structure of

the series, purposely for prediction, monitoring, and controlling or guiding

to facilitate a codified decision making. These models were propagated by

[26, 27, 28, 29].

Definition 3.1. Moving Average processes: A Moving Average model is

that constructed by simple linear combination of lagged elements of purely

random process εt with E (εt) = 0. A moving average process, (Xt) of order q

is defined by:

Xt = β0εt + β1εt−1 + ... + βqεt−q =

q∑
i=0

βiεt−i (1)

denoted as MA(q)

Definition 3.2. Autoregessive Processes:

Supposed that {εt} is a purely a random process with mean zero and vari-

ance σ2
ε . Then the process {Xt} is said to be an autoregressive process of order

p, denoted as AR(p) and defined as:

Xt = α1Xt−1 + α2Xt−2 + ... + αpXt−p + εt (2)

Definition 3.3. Autoregressive moving average (ARMA) process:

The general autoregressive moving average process with AR order p and

MA order q denoted as ARMA(p, q), processes can be written as

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + εt + β1εt−1 + · · ·+ βqεt−q (3)

Using the backward shift operator β, equ.(3) may be written in the form

φ (β) Xt = θ (β) εt (4)
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where φ (β), θ (β) are polynomials of order, p, q, respectively, such that

φ (β) = 1− α1β − α2β
2 − · · · − αpβ

p (5)

θ (β) = 1 + β1β + β2β
2 + · · ·+ βqβ

q (6)

Accordingly for an AR process, the values {αi}, which make the process sta-

tionary are such that the roots of φ (β) = 0, lie outside the unit circle, while

for an MA process, the values of {βi},which makes the process invertible are

such that the roots of θ (β) = 0, lie outside the unit circle.

Definition 3.4. Seasonal Integrated Autoregressive moving average

(SARIMA) process:

A stationary time series {Xt} is defined as a seasonal ARIMA as

ΦP (Bs)φ(B)∇D
s ∇dXt = α + ΘQ(Bs)θ(B)εt (7)

with εt as Gaussian white-noise process, φ(B) and θ(B) as the ordinary au-

toregressive (AR) and moving average (MA) operators of order p and q re-

spectively; ΦP (Bs) and ΘQ(Bs) as seasonal autoregressive (AR) and moving

average (MA) operators of order P and Q respectively, with seasonal period s.

To define an appropriate model for a particular time series data, it is essen-

tial to obtain the sample autocorrelation function (ACF) and sample partial

autocorrelation function (PACF) for examination, which mirror how the ob-

servations in a time series are correlated. The plot of ACF helps to determine

the order of MA process, and the plot of PACF helps to find order AR process.

For SARIMA modeling, the focal point is deciding on an appropriate ideal

order; thus, values p, q, P, Q, D, d. If d and D are identified, we can choice

the orders p, q, P and Q via one of the forecast measure error: the root mean

squared error (RMSE), and mean absolute error (MAE).

3.1 Model Comparisons/ discrimination

To discriminate among the models, the forecast performance of each of the

models will be compared using forecasting accuracies statistical measures.The

Mean Absolute Error(MAE), Root Mean Square Error (RMSE) and the Mean

Absolute Percentage Error (MASE). Where lower values of the forecasting
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accuracies statistical measures imply better forecast of the model.Given that

et, the forecast error is defined as et = Xt − ft and ft as the forecast values,

n, the sample size

Mean Absolute Error (MAE):

is defined as

MAE =
1

n

n∑
t=1

|et| (8)

Root Mean Square Error (RMSE):

is defined as

RMSE =

√√√√ 1

n

n∑
t=1

e2
t (9)

Mean Absolute Scaled Error (MASE):

the Mean Absolute Scaled Error as

MASE =

(
MAE

∆

)
(10)

where

∆ =
1

n− 1

n∑
t=2

|xt − xt−1| (11)

or

∆ =
1

n− s

n∑
t=s+1

|xt − xt−s| (12)

The MASE was offered by [30], for relating prediction accuracies. It is inde-

pendent of the scale of the data, enabling it to be use for comparing forecasts

for data sets with different scales. The forecasting methods with the lowest

MASE is the preferred one.

Time series models such as the AR(p), MA(q), ARMA(p, q), ARIMA(p, d, q)

as well as the SARIMA(p, d, q)(P, D, Q)s sometimes does not tend to give

good results for the time series with a longer period for at least two centuries.

To remedied this situation, we employed a regression with ARIMA errors, the

regression terms are model with the Fourier functions which is adequate for

modeling the inherent structure of the time series data, and the correlated

errors with the ARIMA models. The adequate number of the sinusoid for the

Fourier terms is determined by using periodogram of the data and the orders

of models in the SARIMA, p, d, q, P, D, Q are obtain by studying ACF and
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PACF plots of respective time series signals. To be new specific, we study the

ensuing model:

Xt =
K∑

k=1

(mk cos 2πfkt + nk sin 2πfkt) + εt (13)

where mk and nk are the Fourier coefficients, fk are the frequencies, t is time

and εt is SARIMA process model as

ΦP (Bs)φ(B)∇D
s ∇dεt = α + ΘQ(Bs)θ(B)zt (14)

where zt is white noise. The K is the number of sinusoidal term,s is the length

of seasonality.

In this paper, the process will be referred as FARIMA(K, p, d, q)(P, D, Q)s.

Also, in this study we used Natural cubic spline defined as

xi(t) = ai(t− ti)
3 + bi(t− ti)

2 + ci(t− ti) + di 1 ≤ i ≤ m− 1 (15)

Using Truncated Power Basis to model the signal as given in equation (15) is

X (t) =
3∑

j=0

βjt
j +

K∑
k=1

θk(t− ηk)
3
+ (16)

where ηk is the knots and K is number of knots of the data-set. In general the

truncated power basis of a function with degree r and K knots can be written

as

X(t) =
r∑

j=0

βjt
j +

K∑
k=1

θk(t− ηk)
3
+ (17)

and therefore the cubic spline for time series is modeled using the truncated

power basis as

X(t) =
3∑

j=0

βjt
j +

K∑
k=1

θk(t− ηk)
3
+ (18)

where

(t− ηk)
3
+ =

(t− ηk)
3
+, if (t− ηk)

3
+ > 0

0, if (t− ηk)
3
+ ≤ 0

(19)

where K and ηk are the number of knots and knots position of the data-set.The

open source R.3.5.2 version will be employed in analyzing the data.
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4 Results and Discussion

Climatic conditions such as temperature and rainfall data collected in

five African sites from different climatic zones are used to build appropriate

FARIMA, SARIMA, and NCS models. Quite a lot of authors in the liter-

ature have conducted comparable studies in the preceding period, notwith-

standing, a majority of the studies primarily deliberated on ARMA, ARIMA

or SARIMA models for particular period of time, namely; weekly average,

monthly average or yearly average time series. For case in point, [31] mod-

eled Kapsoya historical rainfall data of Uasin Gishu county in Kenya based on

SARIMA(0, 0, 0)(0, 1, 2)[12] ;

[22] used a first-order differenced SARIMA(1, 1, 1)(0, 1, 2)[12] a suitable model

for predicting rainfall pattern in Embu, County. [25] modeled historical rain-

fall of Nakuru County and found SARIMA(0, 0, 1)(0, 1, 1)[12] to be best fitted

model. More so, [13] found that, there are significant variations on rainfall and

temperature overtime (1986-2015) in Siaya County. Additionally, [18] used the

SARIMA(0, 0, 0)(2, 1, 0)[12] model for forecasting the monthly rainfall of the

Ashanti Region of Ghana, while [19] also identified SARIMA(0, 0, 0)(1, 1, 1)[12]

model as an appropriate model for predicting monthly average rainfall figures

for the Brong Ahafo Region of Ghana. [12] study revealed that there are fluc-

tuations and an increase in the air temperature for all the twelve months of

the study period in Egypt. [32] used SARIMA to model a long term tempera-

ture data of Dibrugarh, Assam, for the period of fifty (50) years (1966-2015).

Their analysis revels that the best seasonal models which are satisfactory to

describe the data are SARIMA(2, 1, 1)(0, 1, 1)[12] for monthly maximum and

SARIMA(2, 1, 1)(0, 1, 1)[12] for monthly minimum temperature data respec-

tively.

In this paper, we considered records since January, 1991 to December, 2016

average monthly temperature and rainfall, a total of 312 observation each, to

fit the generated statistical models for the average monthly temperature and

the rainfall. The plot of the periodograms, and their autocorrelation func-

tions (ACF) and partial autocorrelation functions (PACF), plotted in Figures

2 and 3, were examined to establish the prospective processes of FARIMA and

SARIMA models for the monthly average temperature and the rainfall data.

In addition the natural cubic spline was considered for comparative analysis
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(a) Ghana

(b) Kenya

(c) Namibia

(d) Egypt

(e) Cameroon

Figure 2: Periodogram and Autocorrelation Analysis of Temperatures Data
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(a) Ghana

(b) Kenya

(c) Namibia

(d) Egypt

(e) Cameroon

Figure 3: Periodogram and Autocorrelation Analysis of Rainfall Data
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Table 2: Model accuracy measures for all formulated models for average

monthly temperature
Country Model RMSE Rank MAE Rank MASE Rank

Ghana

FARIMA(5,1,1,3)(1,0,0)[12] 0.369 2 0.277 1 0.307 1

SARIMA(1,0,3)(2,1,1)[12] 0.391 1 0.291 2 0.657 2

NCS 1.440 3 1.223 3 2.757 3

Kenya

FARIMA(3,1,1,3)(0,0,0) 0.407 1 0.320 1 0.474 1

SARIMA(0,0,2)(0,1,1)[12] 0.443 2 0.343 2 0.735 2

NCS 0.995 3 0.808 3 1.732 3

Namibia

FARIMA(1,1,1,4)(0,0,2)[12] 0.923 2 0.737 2 0.416 1

SARIMA(2,0,1)(2,1,1)[12] 0.799 1 0.607 1 0.702 2

NCS 3.530 3 3.127 3 3.613 3

Egypt

FARIMA(2,5,1,2)(0,0,1)[12] 0.975 1 0.770 1 0.266 1

SARIMA(2,0,2)(2,1,0)[12] 1.042 2 0.789 2 0.721 2

NCS 5.982 3 5.347 3 4.887 3

Cameroon

FARIMA(3,1,1,1)(1,0,0)[12] 0.357 1 0.280 1 0.390 1

SARIMA(1,0,1)(2,1,0)[12] 0.394 2 0.303 2 0.691 2

NCS 1.123 3 0.951 3 2.168 3

Table 3: Model accuracy measures for all formulated models for average

monthly rainfall
Country Model RMSE Rank MAE Rank MASE Rank

Ghana

FARIMA(1,0,0,1)(2,0,0)[12] 29.227 1 22.319 1 0.565 1

SARIMA(1,0,0)(1,1,0)[12] 31.612 2 23.256 2 0.872 2

NCS 61.496 3 54.561 3 1.381 3

Kenya

FARIMA(1,0,0,1)(2,0,0)[12] 30.462 1 21.688 1 0.655 1

SARIMA(1,0,0)(1,1,0)[12] 31.569 2 21.970 2 0.774 2

NCS 36.846 3 29.324 3 0.886 3

Namibia

FARIMA(2,1,0,1)(2,0,1)[12] 14.993 1 8.408 2 0.571 1

SARIMA(1,0,3)(2,1,2)[12] 14.994 1 8.213 1 0.679 2

NCS 27.613 3 21.458 2 1.456 3

Egypt

FARIMA(2,0,0,0)(1,0,0)[12] 2.114 1 1.317 1 0.664 1

SARIMA(3,0,2)(2,0,1)[12] 2.255 3 1.502 3 0.847 2

NCS 2.149 2 1.500 2 0.756 3

Cameroon

FARIMA(2,0,0,3)(1,0,0)[12] 34.895 1 25.282 1 0.459 1

SARIMA(0,0,0)(2,1,0)[12] 37.103 2 25.585 2 0.798 2

NCS 87.165 3 74.770 3 1.358 3

of the formulated models;viz: FARIMA,SARIMA and NCS. A periodogram

is used to detect the principal periods (or frequencies) of a time series. This
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can be a useful means for detecting the main repeated comportment in a se-

ries. The periodogram graphs a degree of the relative significance of potential

frequency values that might explain the oscillation pattern of the observed

data. From the Figures 2, 3, Table 2, and Table 3, for the selected sites, a

careful scrutiny to identify the dominant frequencies inherent in the data, the

ordinary, and the seasonal terms and orders identified, for example, consid-

ering Ghana, the most dominant frequencies, K = 5, p = 1, d = 1, q = 3,

P = 1, D = 0, Q = 0, and s = 12, thus FARIMA(5, 1, 1, 3)(1, 0, 0)[12] for

average monthly temperature whereas the FARIMA(1, 0, 0, 1)(2, 0, 0)[12] was

identified for average monthly temperature as compared with the natural cubic

spline,NCS. The error measures RMSE, MAE, and MASE are also computed.

Using MASE, the model with the smallest value, 0.307, is best fitted model for

average monthly temperature for Ghana and the smallest value,0.565, is the

best fitted model for average monthly rainfall. For, seasonal ARIMA modeling,

SARIMA(1, 0, 3)(2, 1, 1)[12] was identified for average monthly temperature,

and SARIMA(1, 0, 0)(1, 1, 0)[12] identified for the average monthly rainfall.

In general, FARIMA process shows potential adequacy in fitting both average

monthly temperature and rainfall for selected study regions, Ghana, Kenya,

Namibia, Egypt and Cameroon climatic regions. Comparing results from Ta-

bles 2 and 3, among the three models, the natural cubic spline performed less

satisfactory and the Fourier function ARIMA, FARIMA, performed most sat-

isfactorily. Based on the analysis, a plot of the original data sets and the best

fitted models are in Figure 4. Its shows how well FARIMA modeling adequately

models the average monthly temperature and average monthly rainfall.

5 Conclusions

The statistical analysis demonstrates that the average monthly tempera-

ture data and average monthly rainfall from the considered five African climatic

regions display seasonal variation and dynamics, hence some statistical param-

eters differ significantly concerning these locations. Again, average monthly

temperature and rainfall modeling and fitting presents a stimulating assign-

ment for controlling monthly time series data. Our study has shown that

FARIMA models can adequately explain the sequence of the temperature and
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(a) Ghana

(b) Kenya

(c) Namibia

(d) Egypt

(e) Cameroon

Figure 4: A plot of the original data sets and the best fitted models of Tem-

perature and Rainfall Data
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rainfall patterns in the selected climatic regions, generating the smallest mean

absolute scaled error. Accordingly, it is recommended, that FARIMA mod-

eling could be considered for modeling temperature and rainfall, to aid as a

tool for proper planning on decisions regarding environmental and agricultural

models that depends on temperature and rainfall patterns.
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