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Abstract 
 

When the weight function depends on the lengths of the units of interest, the 

resulting distribution is called length biased. Length biased distribution is thus a 

special case of the more general form, known as weighted distribution. In this paper, 

a new three parameter probability distribution called the Weibull Length Biased 

Exponential distribution is proposed, its statistical properties are studied in minute 

details. Expansions of the density function of the WLBE Distribution, reliability 

analysis, asymptotic behavior, moments etc. are discussed in minute details. 

Maximum likelihood estimation method is employed to determine the estimate of 

the parameters of the proposed distribution. Simulation studies and application to 

two life time data is performed to determine the flexibility of the model in modeling 

lifetime data. 
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1. Introduction  

The weighted distributions arise when the observations generated from a stochastic 

process are not given equal chance of being recorded; instead they are recorded 

according to some weighted function. When the weight function depends on the 

lengths of the units of interest, the resulting distribution is called length biased. 

Length biased distribution is thus a special case of the more general form, known 

as weighted distribution. The concept of length-biased distribution find various 

applications in biomedical area such as family history and disease survival and 

intermediate events and latency period of AIDS due to blood transfusion [1]. The 

study of human families and wildlife populations was the subject of an article 

developed by Patil and Rao [2]. Patil, et al. [3] presented a list of the most common 

forms of the weight function useful in scientific and statistical literature as well as 

some basic theorems for weighted distributions and length-biased as special case. 

They arrived at the conclusion that the length biased version of some mixture of 

discrete distributions arises as a mixture of the length biased version of these 

distributions. Gupta R.D and Kundu D. [4] studied a new class of weighted 

exponential distribution which has applications in many fields such as: ecology, 

social and behavioral sciences and species abundance studies. Gupta R.C and 

Kirmani S. [1], studied the role of weighted distributions in stochastic modeling. 

Much work was done to  characterize relationships between original distributions 

and their length biased version. A table for some basic distributions and their length 

biased forms is given by Patil and Rao [2] such as lognormal, Gamma, Pareto, Beta 

distribution. Khatree [5] presented a useful result by giving a relationship between 

the original random variable X and its length biased version Y. Recently Mudasir 

and S.P. Ahmad [6] studied the length biased Nakagami distribution.   

Recall that the exponential distribution is given as, 

 

𝑓(𝑥; 𝜃) =
1

𝜃
𝑒−

𝑥
𝜃    𝑥 ≥ 0, 𝜃 > 0                                                      (1) 

 

If the random variable X has distribution function𝑓(𝑥, 𝛾), with unknown parameter 

𝛾, then the corresponding length-biased distribution is of the form:   

 

𝑓∗(𝑥, 𝜃) =
𝑥𝑐𝑓(𝑥, 𝜃)

𝜇𝑐
ˈ

                                                                  (2) 

Where, 

𝜇𝑐
ˈ = ∫𝑥𝑐𝑓(𝑥, 𝛾)𝑑𝑥 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑠𝑒𝑟𝑖𝑒𝑠 

𝑎𝑛𝑑  𝜇𝑐
ˈ = ∑𝑥𝑐𝑓(𝑥, 𝛾)  𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 

When 𝑐 = 1, we get length biased distribution 

When 𝑐 = 2, we get area biased distribution 

A length biased Weibull distribution is obtained by applying the weights 𝑥𝑐, where 
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𝑐 =1 to the exponential distribution. 

A continuous random variable X is said to be exponentially distributed with 

parameter 𝜃 if as in equation (1),  

 

𝑓(𝑥; 𝜃) =
1

𝜃
𝑒−

𝑥
𝜃 , 𝑥 ≥ 0, 𝜃 > 0 

𝜇1
ˈ = ∫ 𝑥𝑓(𝑥; 𝜃)

∞

0

= ∫𝑥
1

𝜃
𝑒−

𝑥
𝜃𝑑𝑥 = 𝜃 

𝜇2
ˈ = ∫ 𝑥2𝑓(𝑥; 𝜃)

∞

0

= ∫𝑥2
1

𝜃
𝑒−

𝑥
𝜃𝑑𝑥 = 𝜃2 

𝑓∗(𝑥, 𝜃) =
𝑥𝑐𝑓(𝑥, 𝜃)

𝜇𝑐
ˈ

=
𝑥

1
𝜃 𝑒−

𝑥
𝜃

𝜃
=

𝑥

𝜃2
𝑒−

𝑥
𝜃 

𝑓(𝑥, 𝜃) =
𝑥

𝜃2 𝑒−
𝑥

𝜃     (3) 

 

This is the required probability density function of the length biased exponential 

distribution, and its cumulative distribution is given as, 

 

𝐹(𝑥, 𝜃) = 1 − (1 +
𝑥

𝜃
) 𝑒−

𝑥

𝜃     (4) 

 

To this regard, our focus in this paper is to present an extension of the Length biased 

exponential distribution using the Weibull generalized family of distribution [7], the 

resulting distribution is called the Weibull generalized Length biased exponential 

distribution, various statistical properties will be looked at. The method of 

maximum likelihood is discussed for estimating the model parameter, simulation 

studies and application to two dataset is performed to determine the flexibility of 

the model in modeling lifetime data. 

 

2. The Weibull-G Length Biased Exponential (WLBE) 

Distribution 
In this section, we express all findings on the Weibull length biased exponential 

distribution. The cumulative distribution function and probability density function 

of the Weibull generalized family of distribution is given as, 

 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) = 1 −  𝑒
−𝛼{

𝐺(𝑥;𝜃)

[1−𝐺(𝑥;𝛩)]
}
𝛽

                                    (5) 

and  

𝑓(𝑥) = 𝛼𝛽𝑔(𝑥)
𝐺(𝑥,𝜃)𝛽−1

[1 − 𝐺(𝑥,𝜃)]𝛽+1   𝑒
−𝛼{

𝐺(𝑥;𝜃)

[1−𝐺(𝑥;𝛩)]
}
𝛽

                            (6) 
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Respectively.  
𝑓𝑜𝑟 𝑥 >  0, 𝛼 >  0, 𝛽 >  0 
By substituting equation (4) into equation (5), we obtain the cdf of the Weibull 

length biased exponential (WLBE) distribution given by, 

 

𝐹𝑊𝐿𝐵𝐸(𝑥) = 1 − 𝑒𝑥𝑝 {−𝛼 [
 1−(1+

𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

]

𝛽

}                                (7) 

 

The corresponding probability density function obtained by substituting equations 

(3) and (4) into equation (6) is given by, 

 

𝑓𝑊𝐿𝐵𝐸(𝑥) = 𝛼𝛽𝜃−2𝑥𝑒−𝑥
𝜃⁄ [

( 1−(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄ )

𝛽−1

((1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄ )

𝛽+1 ] 𝑒𝑥𝑝 {−𝛼 [
 1−(1+

𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

]

𝛽

}      (8) 

𝛼 > 0, 𝛽 > 0, 𝜃 = 0 

 

3. Expansion of the density function of the WLBE Distribution 

We describe density function of the WLBE model as a mixture representation in 

terms of power series expansion. 

 

𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

} = ∑
(−1)𝑖𝑎𝑖

𝑖!

∞

𝑖=0

[
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽𝑖

 

 

Then the pdf of the WLBE distribution reduces to 

 

𝑓𝑊𝐿𝐵𝐸(𝑥) = 𝛼𝛽𝜃−2𝑥𝑒−𝑥
𝜃⁄ [

( 1−(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄ )

𝛽−1

((1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄ )

𝛽+1 ] 𝑒𝑥𝑝 {−𝛼 [
 1−(1+

𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

]

𝛽

}       (9) 

Where, 

[1 − (1 +
𝑥

𝜃
) 𝑒−𝑥

𝜃⁄ ]
𝛽(𝑖+1)−1

= ∑(−1)𝑖

∞

𝑖=0

(
𝛽(𝑖 + 1) − 1

𝑘
) (1 +

𝑥

𝜃
)

𝑘

𝑒−𝑘𝑥
𝜃⁄  

 

Therefore, we can also write the pdf as follows: 

𝑓𝑊𝐿𝐵𝐸(𝑥) = 𝛽
𝑥

𝜃2 𝑒−𝑥
𝜃⁄ ∑

(−1)𝑖+𝑘𝑎𝑖+1

𝑖!

∞
𝑖=0 (𝛽(𝑖+1)−1

𝑘
) [(1 +

𝑥

𝜃
) 𝑒−𝑥

𝜃⁄ ]
𝑘−(𝛽(𝑖+1)+1)

       

(10) 

 

 

Where 
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[(1 +
𝑥

𝜃
)]

𝑘−𝛽(𝑖+1)−1)

= ∑(
𝑘 − 𝛽(𝑖 + 1) − 1

𝑗
)

∞

𝑗=0

(
𝑥

𝜃
)

𝑗

. 

 

Thus the mixture representation of the WLBE distribution is given by 

 

𝑓𝑊𝐿𝐵𝐸(𝑥)

= 𝛽 ∑
(−1)𝑖+𝑘𝑎𝑖+1

𝑖!

∞

𝑖,𝑗,𝑘=0

(
𝛽(𝑖 + 1) − 1

𝑘
) (

𝑘 − 𝛽(𝑖 + 1) − 1

𝑗
)

𝑥𝑗+1

𝜃𝑗+2
𝑒−

𝑥
𝜃
(𝑘−(𝛽(𝑖+1))  

 

𝑓𝑊𝐿𝐵𝐸(𝑥) = 𝛽 ∑ 𝛿𝑖𝑗𝑘
∞
𝑖,𝑗,𝑘=0

𝑥𝑗+1

𝜃𝑗+2 𝑒−
𝑥

𝜃
(𝑘−(𝛽(𝑖+1))

                                (11) 

 

Where  

𝛿𝑖𝑗𝑘 = ∑
(−1)𝑖+𝑘𝑎𝑖+1

𝑖!

∞

𝑖,𝑗,𝑘=0

(
𝛽(𝑖 + 1) − 1

𝑘
) (

𝑘 − 𝛽(𝑖 + 1) − 1

𝑗
) 

 

4. Reliability Analysis for the WLBE Distribution 

Expression for the survival function and hazard function of the WLBE Distribution 

are clearly stated in this section. 

The survival function is mathematically expressed as, 

 

𝑆𝑊𝐿𝐵𝐸(𝑥) = 1 − 𝐹𝑊𝐿𝐵𝐸(𝑥) 

 

𝑆𝑊𝐿𝐵𝐸(𝑥) = 𝑒𝑥𝑝 {−𝛼 [
 1−(1+

𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

]

𝛽

}                                 (12) 

𝜃 > 0, 𝛼 > 0, 𝛽 = 0 

Also, the hazard or failure rate was derived using, 

 

ℎ𝑊𝐿𝐵𝐸(𝑥) =
𝑓𝑊𝐿𝐵𝐸(𝑥)

𝑆𝑊𝐿𝐵𝐸(𝑥)
 

This implies that 

ℎ𝑊𝐿𝐵𝐸(𝑥) =

𝛼𝛽𝜃−2𝑥𝑒
−𝑥

𝜃⁄

[
 
 
 
 
( 1−(1+

𝑥
𝜃
)𝑒

−𝑥
𝜃⁄ )

𝛽−1

((1+
𝑥
𝜃

)𝑒
−𝑥

𝜃⁄ )

𝛽+1

]
 
 
 
 

𝑒𝑥𝑝{−𝛼[
 1−(1+

𝑥
𝜃
)𝑒

−𝑥
𝜃⁄

(1+
𝑥
𝜃

)𝑒
−𝑥

𝜃⁄
]

𝛽

}

𝑒𝑥𝑝{−𝛼[
 1−(1+

𝑥
𝜃

)𝑒
−𝑥

𝜃⁄

(1+
𝑥
𝜃
)𝑒

−𝑥
𝜃⁄

]

𝛽

}   

               (13) 
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5. Asymptotic Behavior of the WLBE Distribution 

The behavior of the WLBE model in equation (9) is examined as 𝑥 → 0 and as 

𝑥 → ∞  

lim
𝑥→0

𝑓𝑊𝐿𝐵𝐸(𝑥) = lim
𝑥→0

𝛼𝛽𝜃−2𝑥𝑒−𝑥
𝜃⁄

[
 
 
 ( 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽−1

((1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽+1

]
 
 
 

𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

}

= 0 

lim
𝑥→∞

𝑓𝑊𝐿𝐵𝐸(𝑥) = lim
𝑥→∞

𝛼𝛽𝜃−2𝑥𝑒−𝑥
𝜃⁄

[
 
 
 ( 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽−1

((1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽+1

]
 
 
 

𝑒𝑥𝑝{−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

} = 0 

 

This clearly shows that the Weibull length biased exponential distribution is 

unimodal. A clear observation of figure 1 shows the WLBE model has only one 

peak. This supports our claim that the WLBE distribution has only one mode. 

 

 

Figure 1: pdf of the Weibull Length Biased Exponential Distribution at 

selected parameter value 

 

6. Moments 

In this section, we derive the moments of the WLBE distribution. 

Theorem: Let X be a random variable with WLBE distribution. Then the 𝑟𝑡ℎ raw 

moment is 

 

𝜇𝑟
′ = 𝛽 ∑ 𝛿𝑖𝑗𝑘

∞
𝑖,𝑗,𝑘=0

𝛽𝑟𝛤(𝑟+𝑗+2)

(𝑘−𝛽(𝑖+1))𝑟+𝑗+2
                                          (14) 

Proof: The 𝑟𝑡ℎ  moment of X of a distribution can be obtained using following 

integral 
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𝜇𝑟
′ = ∫ 𝑦𝑟𝑓(𝑥; 𝛼, 𝛽, 𝜃)𝑑𝑥

∞

0

 

𝜇𝑟
′ = 𝛽 ∑

𝛿𝑖,𝑗,𝑘

𝜃𝑗+2 ∫ 𝑦𝑟+𝑗+1∞

0
𝑒−

𝑥

𝜃
(𝑘−(𝛽(𝑖+1))𝑑𝑦∞

𝑖,𝑗,𝑘=0                            (15) 

Let 𝑍 = −
𝑥

𝜃
(𝑘 − (𝛽(𝑖 + 1)).  Then, we can write 𝑦 =

𝑧𝛽

(𝑘−𝛽(𝑖+1))
 and 𝑑𝑦 =

𝛽

(𝑘−𝛽(𝑖+1))
𝑑𝑧 

 

The above equation reduces to 

 

𝜇𝑟
′ = 𝛽 ∑

𝛿𝑖,𝑗,𝑘

𝜃𝑗+2
∫

𝑧𝑟+𝑗+1𝛽𝑟+𝑗+1

(𝑘 − 𝛽(𝑖 + 1))
𝑟+𝑗+1

∞

0

𝑒−𝑧
𝛽

(𝑘 − 𝛽(𝑖 + 1))
𝑑𝑧

∞

𝑖,𝑗,𝑘=0

 

 

𝜇𝑟
′ = 𝛽 ∑ 𝛿𝑖,𝑗,𝑘 ∫

𝛽𝑟

(𝑘−𝛽(𝑖+1))
𝑟+𝑗+2

∞

0
∫ 𝑧𝑟+𝑗+1∞

0
𝑒−𝑧𝑑𝑧∞

𝑖,𝑗,𝑘=0                       (16) 

 

7. Moment Generating Function 

We define the moment generating function of the WLBE distribution as 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑥; 𝛼, 𝛽, 𝜃)
∞

0
𝑑𝑥 = ∫ ∑

𝑡𝑟

𝑟!
∞
𝑟=0

∞

0
𝑥𝑟𝑓(𝑥; 𝛼, 𝛽, 𝜃)𝑑𝑥              (17) 

 

𝑀𝑥(𝑡) = 𝛽 ∑ 𝛿𝑖,𝑗,𝑘

𝑡𝑟

𝑟!
∫

𝑥𝑟+𝑗+1

𝛽𝑗+2

∞

0

𝑒−
𝑥
𝜃
(𝑘−(𝛽(𝑖+1))𝑑𝑥

∞

𝑖,𝑗,𝑘=0

 

 

After thorough integration and simplification, we get the moment generating 

function of the Weibull Length biased exponential distribution as, 

 

𝑀𝑥(𝑡) = 𝛽 ∑ 𝛿𝑖,𝑗,𝑘
𝑡𝑟𝛽𝑟𝛤(𝑟+𝑗+2)

𝑟!(𝑘−𝛽(𝑖+1))𝑟+𝑗+2
∞
𝑖,𝑗,𝑘=0                                      (18) 

 

8. Quantile Function and Random Number Generation 

If U is a uniform random variable with (0,1), then 𝑥 = 𝑄(𝑈)  . The quantile 

function of X corresponding to the cdf of the WLBE distribution is, 

 

𝑥 = 𝐹−1(𝑢) = 𝛽

[
 
 
 

𝑒
𝑥
𝛽

(1−log(1−𝑢)−
1
𝛼)

−
1
𝛽

− 1

]
 
 
 

                                      (19) 

 

Since it is a complex equation, then by iteration method, the equation provides the 

quantiles and random numbers of the WLBE distribution. 
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9. Order Statistics 

We considered a random sample denoted by 𝑋1 …𝑋𝑛  from the densities of the 

WLBE distribution. Then,  

 

𝑓𝑠:𝑛(𝑥) =
𝑛!

(𝑠−1)!(𝑛−𝑠)!
𝑓𝑊𝐿𝐵𝐸(𝑥)𝐹𝑊𝐿𝐵𝐸(𝑥)𝑠−1[1 − 𝐹𝑊𝐿𝐵𝐸(𝑥)]𝑛−𝑠               (20) 

 

The probability density function of the 𝑠𝑡ℎ  order statistics for the WLBE 

distribution is given as, 

 
𝑓𝑠:𝑛(𝑥)                                                                                                                                                  

=
𝑛!

(𝑠 − 1)! (𝑛 − 𝑠)!
𝛼𝛽𝜃−2𝑥𝑒−𝑥

𝜃⁄

[
 
 
 ( 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽−1

((1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽+1

]
 
 
 

𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

}(1

− 𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

})

𝑠−1

[1 − (1 − 𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

})]

𝑛−𝑠

 

(21) 

The WLBE distribution has minimum order statistics given as; 

 

𝑓1:𝑛(𝑥)

= 𝑛𝛼𝛽𝜃−2𝑥𝑒−𝑥
𝜃⁄

[
 
 
 ( 1 − (1 +

𝑥
𝜃) 𝑒−𝑥

𝜃⁄ )
𝛽−1

((1 +
𝑥
𝜃) 𝑒−𝑥

𝜃⁄ )
𝛽+1

]
 
 
 

𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃) 𝑒−𝑥

𝜃⁄
]

𝛽

}[1

− (1 − 𝑒𝑥𝑝{−𝛼 [
 1 − (1 +

𝑥
𝜃) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃) 𝑒−𝑥

𝜃⁄
]

𝛽

})]

𝑛−1

 

(22) 

And maximum order statistics given as; 

𝑓𝑛:𝑛(𝑥) = 𝑛𝛼𝛽𝜃−2𝑥𝑒−𝑥
𝜃⁄

[
 
 
 ( 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽−1

((1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄ )
𝛽+1

]
 
 
 

𝑒𝑥𝑝 {−𝛼 [
 1 − (1 +

𝑥
𝜃
) 𝑒−𝑥

𝜃⁄

(1 +
𝑥
𝜃
) 𝑒−𝑥

𝜃⁄
]

𝛽

} 

(1 − 𝑒𝑥𝑝 {−𝛼 [
 1−(1+

𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃⁄

]

𝛽

})

𝑛−1

                                              (23) 
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10. Parameter Estimation 

Here we express the maximum likelihood estimate of the parameters of the WLBE 

model. Let 𝑋1, … 𝑋𝑛 indicate a random sample of the complete WLBE distribution 

data, and then the sample's likelihood function is given as, 

𝐿 = ∏𝑓(𝑥𝑖; 𝛼, 𝛽, 𝜃)

𝑛

𝑖=1

 

 

𝐿 = ∏ 𝛼𝛽𝜃−2𝑥𝑖𝑒
−

𝑥𝑖
𝜃⁄

[
 
 
 ( 1−(1+

𝑥𝑖
𝜃

)𝑒
−

𝑥𝑖
𝜃⁄ )

𝛽−1

((1+
𝑥𝑖
𝜃

)𝑒
−

𝑥𝑖
𝜃

⁄
)

𝛽+1

]
 
 
 

𝑒𝑥𝑝 {−𝛼 [
 1−(1+

𝑥𝑖
𝜃

)𝑒
−

𝑥𝑖
𝜃

⁄

(1+
𝑥𝑖
𝜃

)𝑒
−

𝑥𝑖
𝜃

⁄
]

𝛽

}𝑛
𝑖=1     (24) 

The log likelihood function may be expressed as, 

 

𝐿(𝑥) = 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝛽 + ∑ 𝑙𝑜𝑔(𝑥) − 2𝑛𝑙𝑜𝑔(𝜃) − ∑
𝑥

𝜃
+ (𝛽 − 1)∑ 𝑙𝑜𝑔 {1 −

(1 +
𝑥

𝜃
) 𝑒−

𝑥

𝜃} − (𝛽 + 1)∑ 𝑙𝑜𝑔 (1 +
𝑥

𝜃
) 𝑒−

𝑥

𝜃 − 𝑎 ∑{
𝑒

𝑥
𝜃

(1+
𝑥

𝜃
)
− 1}

𝛽

                             (25) 

 

By taking the derivative with respect to 𝛼, 𝛽, 𝑎𝑛𝑑 𝜃 and fixing the outcome to zero, 

we have, 

𝜕𝐿(𝑥)

𝜕𝛼
=

𝑛

𝛼
− ∑{

𝑒
𝑥
𝜃

(1+
𝑥

𝜃
)
− 1}

𝛽

                                              (26) 

 
𝜕𝐿(𝑥)

𝜕𝛽
=

𝑛

𝛽
− ∑ 𝑙𝑜𝑔 {1 − (1 +

𝑥

𝜃
) 𝑒−

𝑥
𝜃} − ∑𝑙𝑜𝑔 {(1 +

𝑥

𝜃
) 𝑒−

𝑥
𝜃} 

−𝛼 ∑{
𝑒

𝑥
𝜃

(1+
𝑥

𝜃
)
− 1} {

𝑒
𝑥
𝜃

(1+
𝑥

𝜃
)
− 1}

𝛽

                                                                                                                 (27) 

 

𝜕𝐿(𝑥)

𝜕𝜃
=

2𝑛

𝜃
+ ∑

𝑥

𝜃2
− 𝛼𝛽 ∑ {

𝑒
𝑥
𝜃

(1 +
𝑥
𝜃
)

− 1}

𝛽−1

{
𝑥𝑒

𝑥
𝜃

𝜃2 (1 +
𝑥
𝜃
)

2 −
𝑥𝑒

𝑥
𝜃

𝛽2 (1 +
𝑥
𝜃
)
} 

+(𝛽 − 1)∑
𝑥𝑒

−
𝑥
𝜃−𝑥𝑒

−
𝑥
𝜃(1+

𝑥

𝜃
)

𝜃2[1−(1+
𝑥

𝜃
)𝑒

−𝑥
𝜃 ]

− (𝛽 + 1)
[𝑥(1+

𝑥

𝜃
)𝑒

−𝑥
𝜃 −𝑥𝑒

−
𝑥
𝜃]

𝜃2(1+
𝑥

𝜃
)
2                         (28) 

 

Non linear equations are solved for 𝛼, 𝛽, 𝑎𝑛𝑑 𝜃  by utilizing softwares 

MATHEMATICA (NMaximize) or R-Language. 
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11. Simulation using the WLBE Distribution 

Now, we simulate n =30, 50, 100 and 300 times the WLBE distribution for 𝜃 =
0.6, 1, 2; 𝛼 =  0.5 𝑎𝑛𝑑 𝛽 =  1.5. We compute the ML estimates of parameters 

for each sample size. 10000 repetitions are obtained and then the Bias and MSE are 

computed. The values such obtained are used for comparison of the performance of 

ML estimators, for same values of ‘𝛼’ and 𝛽 and different values of β and are 

given in Table 1. 

 
Table 1: Estimated bias and MSE for several values of the parameter 

𝑛  𝜃 = 0.6 𝜃 = 1 𝜃 = 2 

𝛼 = 0.5 𝛽 = 1.5 𝛼 = 0.5 𝛽 = 1.5 𝛼 = 0.5 𝛽 = 1.5 

30 Bias 0.0888 0.1193 0.1152 0.2451 0.1076 0.0302 

MSE 0.3602 0.5236 0.401 0.4834 0.4123 0.3920 

50 Bias 0.0293 0.0992 0.0301 0.2182 0.0394 0.0274 

MSE 0.2403 0.4452 0.2890 0.231 0.2742 0.2511 

100 Bias 0.020 0.0723 0.0241 0.1092 0.0142 0.0192 

MSE 0.1832 0.3029 0.1342 0.1632 0.1720 0.2013 

300 Bias 0.0156 0.0623 0.0118 0.0981 0.0092 0.0095 

MSE 0.0921 0.0251 0.0913 0.1024 0.092 0.1293 

 

It is observed from table 1 that 

• The Mean square error decreases as the sample size increases. 

• Bias also decreases as sample size increases. 

 

12. Application of Weibull Length Biased Exponential (WLBE) 

Distribution to dataset. 
Here, the importance and flexibility of the Weibull length biased exponential 

distribution by comparing the results of the model fit with some new and existing 

distribution. Two dataset were used in this study to compare between fits of the 

Weibull length biased exponential distribution (WLBE) with that of Beta Length 

Biased Exponential (BLBE), Exponentiated Generalized Length Biased 

Exponential (ELBE), Log Gamma Length Biased Exponential (LGALBE), Gamma 

Length Biased Exponential (GALBE), Length Biased Exponential (LBE), and 

Generalized Exponential (GE) distribution. DATA V was used.  

 

For DATA I 

The first data set represents the death times (in weeks) of patients with cancer of 

tongue with aneuploidy DNA profile. The data set has been previously used by 

Oguntunde et al., [8], Obubu et al [9]. Apart from its application in discriminating 
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between the Generalised Inverse Generalised Exponential distribution, Inverse 

Generalised Exponential distribution and the Inverse Exponential distribution, it has 

also been used to assess the superiority of the Exponentiated Generalised 

Exponential distribution over the Exponentiated Exponential distribution, 

Generalised Exponential distribution and Exponential distribution. The dataset 

consists of fifty-two (52) observations out of which twenty-one (21) are censored 

observations. The data set is as follows: 

 

1, 3, 3, 4, 10, 13, 13, 16, 16, 24, 26, 27, 28, 30, 30, 32, 41, 51, 61*, 65, 67, 70, 72, 

73, 74*, 77, 79*, 80*, 81*, 87*, 87*, 88*, 89*, 91, 93*, 96, 97*, 100, 101*, 104, 

104*, 108*, 109*, 120*, 131*, 150*, 157, 167, 231*, 240*, 400* 

NOTE: * denote censored observations 
 

Table 2: Descriptive Statistics on the death times (in weeks) of patients with cancer 

of tongue with aneuploidy DNA profile 

Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness Kurtosis Variance 

0.550 1.375 1.590 1.507 1.685 2.240 0.999263 3.923761 0.1050575 

 

From the above, we observed that the data is positively skewed with variance of 

0.1050575 

 
Table 3: MLEs, of parameters on the death times (in weeks) of patients with cancer 

of tongue with aneuploidy DNA profile 

Model Estimates 

𝜃 �̂� �̂� 

WLBE 

(Proposed Model) 

2.963082621   0.003192285 19.832010734 

BLBE (New) 5.063632 96318.220569 149.708914 

ELBE 2.930833e+05  5.499483e+00 3.873680e+02 

GALBE (New) 0.6616500  0.5374506  

LGALBE (New) 5.048596e+00  3.457120e+05 2.846806e+02 

LBE 12.9249779   - - 

GE 31.34891 2.61157 - 

 

For all competing distributions using the death times (in weeks) of patients with 

cancer of tongue with aneuploidy DNA profile, Table 3 shows parameter estimate.  
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Table 4: Log-likelihood, AIC, AICC, and BIC values of models fitted for the death 

times (in weeks) of patients with cancer of tongue with aneuploidy DNA profile 

Model Negative 

LL 

AIC BIC CAIC 

WLBE 

(Proposed Model) 

15.27429 36.54859 42.97799 36.95537 

BLBE (New) 20.88664 47.77327  54.20268 48.18005 

ELBE 23.95317 53.90635 60.33575 54.31313 

GALBE (New) 64.47559 134.952 139.2383 135.152 

LGALBE (New) 20.86643 47.73286 54.16227 48.13964 

LBE 30.08071 64.16143  68.4477 64.36143 

GE 31.38347 66.76694  71.05321 66.96694 

 

From Table 4, the WLBE has the highest log-likelihood values and the lowest AIC, 

CAIC, and BIC values; hence it is chosen as the most appropriate model amongst 

the considered distributions, implying that it provides a better fit than the Beta 

Length Biased Exponential (BLBE), Exponentiated Generalized Length Biased 

Exponential (ELBE), Log Gamma Length Biased Exponential (LGALBE), Gamma 

Length Biased Exponential (GALBE), Length Biased Exponential (LBE), and 

Generalized Exponential (GE) distribution. 

 

 

Figure 2: Histogram of the fitted distributions 
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Figure 3: Empirical cdf of the fitted distributions 

 

For DATA II 

The sixth data set represents the time (in years) it took for 10 different countries to 

completely eliminate malaria. The data set was obtained from the World malaria 

report, 2019. The data set is as follows: 

7, 3, 3, 3, 6, 3, 5, 4, 1, 3 

 
Table 5: Descriptive Statistics on the times (in years) it took to eliminate malaria 

from 10 different countries in the world. 

Min. 1st 

Qu. 

Median Mean 3rd 

Qu. 

Max. Skewness Kurtosis Variance 

1.00 3.00 3.00 3.80 4.75 7.0 0.4501384 2.545054 3.066667 

 

From the above, we observed that the data is positively skewed with variance of 

3.066667 
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Table 6: MLEs, of parameters on the times (in years) it took to eliminate malaria 

from 10 different countries in the world. 

Model Estimates 

𝜃 �̂� �̂� 

WLBE 

(Proposed Model) 

1.3825555  0.1022386 8.1333987 

BLBE (New) 1.403846  13926.238947    290.527878 

ELBE 42276.110180      1.430762    538.728872 

GALBE (New) 0.6626756  1.3488160  

LGALBE (New) 1.43416  822.80909   68.57389 

LBE 2.545748 - - 

GE 5.602514  0.620932 - 

 

For all competing distributions using the times (in years) it took to eliminate malaria 

from 10 different countries in the world, Table 6 shows parameter estimate.  

 
Table 7: Log-likelihood, AIC, AICC, and BIC values of models fitted for the times 

(in years) it took to eliminate malaria from 10 different countries in the world 

Model Negative LL AIC BIC CAIC 

WLBE 

(Proposed Model) 

18.97721 43.76643  44.57218 47.56343 

BLBE (New) 18.98361 43.96722 44.87498 47.96722 

ELBE 18.98664 43.97327 44.88103 47.97327 

GALBE (New) 20.52712 45.05424 45.65941 46.76853 

LGALBE (New) 18.98646 43.97292 44.88067 47.97292 

LBE 19.24976 42.49953 43.1047 44.21381 

GE 19.34369 42.68737 43.29254 44.40166 

 

From Table 7, the WLBE has the highest log-likelihood values and the lowest AIC, 

CAIC, and BIC values; hence it is chosen as the most appropriate model amongst 

the considered distributions, implying that it provides a better fit than the Beta 

Length Biased Exponential (BLBE), Exponentiated Generalized Length Biased 

Exponential (ELBE), Log Gamma Length Biased Exponential (LGALBE), Gamma 
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Length Biased Exponential (GALBE), Length Biased Exponential (LBE), and 

Generalized Exponential (GE) distribution. 

 

 

Figure 4: Histogram of the fitted distributions 

 

 

Figure 5: Empirical cdf of the fitted distributions 
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