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1 Introduction

High-frequency time series inevitably show unexpected spikes (peaks and

troughs) that appear to be grossly inconsistent with neighboring values. Since

occasional large disturbances may have serious consequences on model identi-

fication and parameter estimation, it is important to attenuate their adverse

effects before data are used. This paper presents a robust smoother intended

to detect and then remove or reduce potentially troublesome behaviors in a

time series even if, at a preliminary stage, we ignore the specific technique

that would be applied to it. The line of reasoning we follow is that a large

proportion of spikes are caused by recurrent patterns of change that we cannot

afford to ignore or to modify. However, a small numbers of peaks and troughs

have such large magnitudes that any use of these observations in model fitting,

without an adequate theoretical and empirical knowledge base, would be mean-

ingless. The spirit of such a formulation is that spikes have to be dealt with in

a pre-processing stage and not as an integral part of the time series modelling.

This paper introduces a new robust outlier cleaner specific for high-frequency

time series data and provides guidelines for researchers who wish to use this

procedure before the analysis process starts. For this purpose, we assume that

a time series simply consists of spikes and other not better-specified aspects

that are superimposed upon a reference curve.

pt = p̂t + ut, t = 1, 2, · · · , n (1)

where pt ≥ 0 is the value observed at period t and n is the length of the time

series. The reference values p̂ = (p̂1, · · · , p̂n) belong to the reference curve

and the residuals ut are assumed to have zero mean, finite variance and to

be not necessarily uncorrelated. Once the reference curve has been defined,

it can be used to establish bands such that all observations that deviate from

the reference curve by more than a fixed amount will be replaced. The tacit

idea is that identification of extreme fluctuations has to be carried out before

any forecast technique is implemented. The first statistical task is the choice

of the reference values p̂ that approximate the observed values as well as

possible while, at the same time, penalizing curvilinearity of the smoothing

behavior. The next step is the construction of two thresholds one from above

and one from below, which enables outliers to be detected and replaced. To

carry out those tasks, the paper is organized as follows: in Section 2, we
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present the least absolute deviations smoothing (LADS) and show how a valid

filtering be carried out by using linear programming. The method is fully

automatic and very robust. Section 3 deals with the detection and mitigation

of outliers in time series. Section 4 examines the construction of simultaneous

prediction intervals derived from Box-Jenkins models. Section 5, A subsection

is devoted to analyze hourly time series of electricity prices on the Italian

market. The results are compared to ascertain whether (and, if so, how much)

data cleaning affects the accuracy of simultaneous prediction limits (here used

for the first time in the literature of filtering time series). The final section

discusses our findings and points out some extensions and improvements for

further applications of the proposed method.

2 Least absolute deviation smoothing

The reference curve is unknown and must be estimated. The primary

objective of our study is to develop a function representation that has a smooth

nonlinearity and it is close to the observed values. These requirements are

antithetical: a curve forced to pass through all the observed values will not

be free of any irregularity while a very smooth curve can rarely capture all of

the important features of a time series and, therefore, the eventual choice is

necessarily a compromise solution. In this paper, we suggest a reference curve,

which solves the following problem: given a real λ and a positive integer m,

find the reference values p̂=(p̂1, · · · , p̂n) that minimize the linear combination

Q (p̂) = λF (p̂) + (1− λ)S(p̂) , 0 ≤ λ ≤ 1 (2)

with

F (p̂) =
n∑

t=1

w1,t |p̂t−pt| , S (p̂) =
n∑

t=m+1

w2,t |∆mp̂t| . (3)

where ∆ denotes the difference ∆p̂t = p̂t− p̂t−1. The use of the least absolute

deviations instead of the conventional least squares is appropriate because the

former are less sensitive to big fluctuations in values (outliers) than the lat-

ter. See [17], [5] and [4]. The weights w1,t =wt/Fmax, t = 1, · · · , n are known

non-negative numbers (with at lest one greater than zero) representing the im-

portance given to the distance between reference and actual values associated
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to a particular period. A zero weight is given to an observations not being con-

sidered in the smoothing procedure, and positive weights characterize terms

actually used. When one does not have sufficient information to determine a

coherent weighting system, then a simple set of equal weights can be enough.

For example, [7] found equal weighting to be more valuable for his data.

The constant Fmax is the maximum value of F (p), which occurs when all

m-th differences are equal to zero. This implies that p̂ is determined by fitting

a polynomial of degree (m−1) to p by using the least absolute deviations.

The constant Smax is the maximum possible value of S(p), which occurs when

reference values are equal to observed values and hence Smax =
∑n

t=m+1|∆mpt|.
The constants Fmax and Smax re-scale the objective function Qm,λ (p̂) to the

[0, 1] interval, so that λ consistently balances smoothness against the goodness-

of-fit for different time series.

The rationale of (2) is the trade-off between F (p̂λ) that is inversely related

to goodness-of-fit and S(p̂λ) that is inversely related to the smoothness of the

reference curve. If λ→1, then the dominant component will be the normalized

city block metric of the residuals and p̂λ will increasingly resemble the observed

values more closely, no matter how irregular they may be. As λ → 0, p̂λ

approaches the polynomial p̂t,m =
∑m−1

j=0 bjt
j t = 1, 2, · · · , n regardless of the

fit component. Apart from these extreme cases, however, the solution of (2) is

a serious concern because there does not appear to be an easy, efficient method

to account for the two conflicting components.

2.1 A cost-parametric linear programming solution

In order to simplify the solution of problem (2), we can replace the differ-

ences between smoothed and observed values in the F component at period t,

say ft = p̂t − pt, with the sum of two non-negative variables:

|ft|= |p̂t−pt|=f+
t +f−t , f

+
t =

{
ft if p̂t≥pt

0 otherwise
, f−t =

{
−ft if p̂t<pt

0 otherwise
(4)

The same can be done for the component S, that is, |∆mp̂t| = |st| = s+
t + s−t .

Given the order of difference m, we can formulate (2) as a cost-parametric
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linear programming problem

min
p̂m∈Rn

(c + λa)t x

subject to Ax = b, x ≥ 02(2n−m), 0 ≤ λ ≤ 1.
(5)

where xt = [(f+)t|(f−)t|(s+)t|(s−)t] is a 2(2n − m) row vector of “decision

variables” and c and a are 2(2n−m) partitioned vectors of “costs” such that

ct =
[
wt

1 |wt
1 |0t

n−m |0t
n−m

]
, at =

[
−wt

1 | −wt
1 |wt

2 |wt
2

]
(6)

The symbols f+ and f− denote n × 1 vectors and s+ and s− are (n−m) × 1

vectors. The weights w1 are given by w1,t = wt/Fmax, t = 1, 2, · · · , n and the

weights w2 are given by w2,t = 1/Smax, t = m + 1, · · · , n. The symbol 0n−m

represents an (n −m) × 1 column vector with all components equal to zero.

The matrix A is an (n−m)× 2(2n−m) partitioned matrix

A =
[

D −D In−m −In−m

]
(7)

where In−m denotes the (n−m) identity matrix and D is a (n−m)×n banded

matrix, i.e. the non-zero elements are in a band centered on the main diagonal

di,j =

{
(−1)m+j−i (m

j−i

)
i = 1, 2, · · · ,m; j = i, i+ 1, · · · , i+m

0 otherwise
(8)

The right-hand side of the equality constraints in (5) is given by b = Dp where

D is such that the elements of the vector b

bi =
i+m∑
j=i

(−1)m+j−i

(
m

j−i

)
pj i = 1, 2, · · · , n−m (9)

are the differences of order m of the observed values. The matrix A is assumed

to be of full row rank. Smoothed values can be then obtained from the decision

variables of the optimal solution as: p̂t = pt + (f+
t − f−t ).

[16] show that the set of admissible values of λ can be partitioned into a

finite number ν of subintervals.

p̂t (λ)=


pt, t = 1, · · · , n if λ = λ0 = 0

(1−λi)w
t
1 (f++f−) + λiw

t
2 (s+ + s−) if λ∈ [λi−1, λi), i = 1, · · · ,ν∑m−1

j=0 bjt
j, t = 1, · · · , n if λ = λν = 1

(10)
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The central relationship in (10) means that an optimal basic index set for some

fixed value of λ would remain optimal for a range of λ. The parametric linear

programming procedure is not difficult to implement (see, for example, [12],

[21]). All the calculations are executed by the statistical language R and the

scripts are available by the authors upon request.

2.2 Choice of the smoothing constant

The choice of λ is as important as it is arbitrary. One way to proceed is

to solve problem (5) for various values of λ and then deciding which value

constitutes a good choice on the basis of visual comparisons. A less subjective

method is to compute the objective function (2) for a fixed set of values such

as λ ∈ L = (0.01, 0.05, 0.10, · · · , 0.90, 0.95, 0.99). It can be shown that Q[p(λ)]

is a positive and concave function of λ. In Figure 1, we report the relationship

between λ and Q[p̂(λ)], which is obtained by evaluating (5) for each λ in L.

The example we consider consists of the hourly spot price on the Italian day-

ahead energy market from 01:00 on Monday, 1st January 2018 to 24:00 on

Wednesday, 31st January 2018 for a total of n = 744 observations.

The curves reveal an inverted U -shaped relationship between the minimum of

Q(p̂m,λ) and λ for each order of differencing. This behavior indicates that, as

λ growths, the minimum of Q(p̂m,λ) increases, and after reaching a turning

point, will diminish. As an operative strategy, we consider the element of the

grid where the turning point is located as the best λ because, at this level,

smoothness turns from a positive into a negative influence on goodness-of-fit.

For example, the curve appear to be almost symmetrical only for m = 1; thus,

only in this case λ = 0.5 is the optimal choice for the smoothing constant.

Needless to say, it is a rather cumbersome and expensive way of finding the

smoothing constant, but it has the merit of being completely automatic and

data-driven.

2.3 Order of differencing

The order of difference is another parameter influencing the smoothing, but

we also note that establishing the correct order of differencing is not crucial
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Figure 1: Relationship between the loss function and the smoothing parameter.

to achieve smoothness. In fact, only two special cases: m = 2 or m = 3,

are worthy to be considered. See, for example, [13], [20], [1]. On the basis

of several experiments with time series of different complexity, we can state

that m = 3 is adequate for many problems. In the sequel, we assume m = 3,

although the computer routine that implements our algorithm will have m as

an external parameter.

3 Detection and mitigation of outliers

The least absolute deviation smoothing (LADS) method proposed in the

preceding section can be particularly useful in the treatment of outliers when

there is no a priori information that can be used to identify and remove abnor-
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mal measurements. Outliers are detected via the difference between original

and reference values ût = p̂t − pt t = 1, 2, · · · , n by looking for points that

are poorly predicted by the reference curve. In this regard, it is necessary to

define lower and upper thresholds for the residuals ût which delimit what we

accept as common cause of variations.

µ̃−Kσ̃ < ût < µ̃+Kσ̃ t = 1, 2, · · · , n (11)

where K is a positive multiplier, µ̃ is a robust measure of central tendency, σ̃

is a robust measure of dispersion (robustness is required because the mean and

the variance are vulnerable to the influence of outliers). In our experiments,

we use the Sen rank weighted mean ([18])

Sν =

[(
ν

2j + 1

)]−1 ν∑
i=1

(
i− 1

j

)(
ν − i

j

)
û(i) (12)

where â(i) is the i-order statistic with 0 < j < (ν − 1)/2. Our choice is

j = 2 if ν > 5, otherwise Sν = median(|ût|), |u|t > 0. The integer ν ≤ n is

the number of residuals that are different from zero (in absolute value). This

restriction is necessary because the residuals arising from the solution to the

linear programming problem discussed in Section 2.1 contains a certain number

of zero values, which if fully included in the computation of the two statistics,

would reduce their robustness.

The statistic used as a robust scale estimator is the first quartile of the

sorted pair-wise differences between all residuals.

Qν = 2.21914
{∣∣|ûi| − |ûj|

∣∣; i < j, |u|i, |u|j > 0
}

(q)
(13)

where q =
(

n
2

)
/4. See [15].

The factor K appearing in the bands (11) establishes the aggressiveness of

the LADS in rejecting/replacing outliers. Tolerant choices (large values) of K

effectively turn the filter off since no modifications are suggested by warnings.

Conversely, aggressive choices (small values) of K lead to the refusal of most of

the observed values. We have adopted the traditionally four-sigma rule, that

is, K = 4, which, in a random sample from a standard Gaussian distribution,

would reject the 0.0063% of the units. This means that only 6 observations

out of 100′000, may be expected to lie beyond a distance of ±4σp from the

reference curve.
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subsectionReplacement of outliers

If a residual ût surpasses the warning bands, then the corresponding value

is considered an outlier. This does not imply that the outlier should auto-

matically be eliminated. The sharp decision of whether to keep or reject an

observation is, to some degree, wasteful. While the removal of aberrant values

may improve the performance of forecasting models, it may end up suppressing

some important feature of the time series. The presence of sharp peaks and/or

narrow valleys is a rule rather than an exception in most high-frequency time

series. If too many of them are deleted and imputed, for example, using an

average of the remaining data, the forecasting tecnique may be adapted to an

unrealistic time series without sufficient information about peaks and valleys.

We argue that, it would be better to down-weight dubious observations rather

than reject them.

Indeed, when considered the relevance of the spikes in time series, we do

not want to drastically smooth out such maxima. On the other hand, local

minima should be, at least partially, preserved because they could represent

particular conditions that need to be accounted for in time series setting. In

summary, we propose the replacing of suspect outliers with a weighted average

of observed and reference values

p̃t = γpt + (1− γ) p̂t, with 0 < γ < 1 (14)

where t runs over all the periods with values falling outside the fences (11).

The greater is γ, the closer is the averaged value p̃t to the observed outlier pt

and the smaller is the contribution of the reference value p̂t. As γ decreases,

the strategy (14) yields average values which lie more and more closer to the

reference time series, thus exaggerating the role of the smoothing procedure.

Let rp,p̂ denote the Pearson correlation coefficient between p and p̂ and let σ2
p

be the variances of observed outliers and σ2
p̂ the variance of the corresponding

values of the reference curve p̂. We have

σ2
p̃ = γ2σ2

p + (1− γ)2 σ2
p̂ + 2γ (1− γ)σpσp̂rp,p̂ (15)

Without loss of generality, we set σ2
p = θ2σ2

p̂, where θ > 0 is a proportionality

factor. We obtain

σ2
p̃ = γ2θ2σ2

p̂ + (1− γ)2 σ2
p̂ + 2

(
γ − γ2

)
σ2

p̂θrp,p̂

= γ2σ2
p̂

[
θ2 − 2rp,p̂θ + 1

]
−2γσ2

p̂ (1−θrp,p̂)+θ
2σ2

p̂

(16)
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Differentiating with respect to γ, and equating to zero we get the minimum of

σ2
p̃ occurring when

γ =
1− rp,p̂θ

θ2 − 2rp,p̂θ + 1
. (17)

In fact, the second derivative

d2σ2
p̃

dx2
= 2σ2

p̂

[
θ2 − 2rp,p̂θ + 1

]
(18)

is positive because the discriminant 2
√
r2
p,p̂ − 1 of the quadratic equation on

the right-hand side of (18) has two complex roots unless rp,p̂ = 1, that is, unless

the reference values are a proportional transformation of the observed values.

It follows that any non trivial average always improves the reference values.

Additionally, since γ must be positive, then θ must be less than one, that is,

the variance of reference values must be less than the variance of actual values.

This is guaranteed by the fact that some of the extreme observations in p have

been brought closer to the mean level in p̂.

If the correlation between actual values and reference values rp,p̂ is zero and

σ2
p̂ is an exact estimate of σ2

p with (θ = 1) then the appropriate value of γ is 0.5

i.e. p̃t is the simple mean between pt and p̂t. In general, however, rp,p̂ is greater

than zero and the optimum value of γ is not that obvious. The empirical work

undertaken so far has been rather limited. While awaiting additional studies,

we suggest γ = 0.25, which enables the smoothed time series to maintain the

shape, up to some degree, if not the magnitude, of maxima (with surrounding

peaks) and minima (with surrounding valleys). It must be pointed out that,

after performing a vast amount of computation to evaluate (14), we concluded

that the question of how to combine observed and reference outliers does not

seem to be critical, within certain limits, to forecast accuracy.

In Figure 1, aberrant spikes appearing in the original time series (20/744 ≈
2.7%), are replaced by the values obtained by the LADS method, while pre-

serving peak and valley data points.

4 Outlier cleaning in a prediction framework

There are various indicators that can be used to quantify the impact of

outlier cleaning. In this section, we evaluate the LADS method by analyzing
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Figure 2: Detection of outliers in hourly single national price; m = 3, K =

4, β = 0.25

its effects on the accuracy of simultaneous prediction intervals (PIs) derived

from Box-Jenkins seasonal models.[11] shows that point predictions are largely

unaffected by outliers, provided that the outliers do not occur too close to the

origin of the forecasts. However, outliers always affect the estimate of the

variance of the residuals, thus impacting the width prediction intervals, as

these intervals are proportional to the standard deviation of the residuals.

In this section, we will evaluate the consequences of leaving outliers in the

data by splitting a time series into two parts: the “training” period, which

ignores a number of the most recent time points, and the “validation” period,

which is comprised only the ignored time points and constitutes a separate

part of the time series. The training period is used to identify and estimate

the model. The validation period is used to test the effects of our smoothing

procedure with respect of the effectiveness of simultaneous prediction intervals.

4.1 Point predictions

Here, we assume that the time series pt, t = 1, 2, · · · , n is adequately repre-
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sented by a multiplicative seasonal autoregressive moving average with external

regressors process (SARMAX)

pt−

(
β0+

m∑
j=1

βjXt,j

)
=[φ∗ (B)]−1 θ∗ (B) at (19)

where at, t = 1, 2, · · · , are independent and identically distributed random

variables with mean zero and finite variance σ2
a, B is the backward shift oper-

ator and φ∗ (B) and θ∗ (B) are polynomials{
φ∗(B) =1− φ∗1B − φ∗2B

2 − · · · − φ∗p∗B
p∗

θ∗ (B) =1− θ∗1B−θ∗2B2 − · · · − θ∗q∗B
q∗

(20)

where p∗ and q∗ are the orders of the AR and MA polynomials, respectively.

For stationarity and invertibility, it is assumed that the roots of φ∗(B) and

θ∗(B) lie outside the unit circle, with no single root common to both polyno-

mials. The Xt,j, j = 1, 2, · · · , k are k variables observed on day t influencing

the dependent variables; βj is a parameter measuring how the price pt is related

to the j-th variable Xt,j. In order to keep the estimation problem tractable,

the exogenous variables are all deterministic functions of time, e.g. calendar

variables or orthogonal polynomials in time. Of course, in the case of binary

variables one of the categories must be omitted to prevent complete collinear-

ity. In each case, the use of binary variables precludes using the difference

operators in (19).

An equivalent form of (19) is the infinite moving-average representation

et = pt −

(
β0 +

m∑
j=1

βjXt,j

)
=

∞∑
i=0

ψiat−i where
∞∑
i=0

|ψi| <∞ (21)

with ψ0 = 1. Coefficients ψs are functions of the parameters φs and θs and

can be easily obtained through recursive equations (see, for example, [6]). If

the parameters of the process are known, then we can compute the minimum

mean square error forecast pn,l of the future value pn+l starting from time n.

The consequent forecast errors are

en,l =
l−1∑
j=0

ψjan+l−j (22)
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with E[en,l] = 0 and

Cov [en,i, en,j] = σi,j = σ2
a

[
i−1∑
l=0

ψlψj−i+l

]
i, j = 1, · · · , H. (23)

where H is the time horizon of the forecasts. Note that forecasting the re-

gression term in (19) does not present particular difficulties because we have

assumed the perfectly predictable nature of the regressors.

4.2 Simultaneous prediction intervals

In order to assess the effectiveness of our robust smoother, we compare the

capacity of prediction intervals (PIs) to contain all H future values, both in

the presence and absence of smoothing. The scope is to determine two bands

P

[
H⋂

l=1

(
C1

l,α ≤ pn+l ≤ C2
l,α

)]
= 1− α . (24)

such that the probability of consecutive future values pn+l , l = 1, 2, · · · , H
lying simultaneously within their respective range is (1−α). The limits in (24)

are C1
l ,α = pn,l − cασl and C2

l ,α = pn,l + cασl . The quantity σ2
l is the residual

variance at the l -th lead time

σ2
l = σ2

a

l−1∑
l=0

ψ2
l l = 1, 2, · · · , H . (25)

cα is a quantile of the joint probability distribution of forecast errors

G−1(cα) = 1− α with G (cα) = Pr (|zl| ≤ cα, l = 1, 2, · · · , L) (26)

where zl = en,l/
√
σ2

l , l = 1, · · · , H are the standardized forecast errors. The

computation of cα requires an explicit hypothesis about the distribution of the

forecast errors. More specifically, we assume that G is the H-variate Gaussian

distribution.

Pr (|zl| ≤ cα, l = 1, 2, · · · , H) =

∫ +cα

−cα

· · ·
∫ +cα

−cα

f (z1, · · · , zL) dz1 · · · dzH .

(27)

Simultaneous PIs guarantee that the H individual intervals include the respec-

tive expected value with a confidence level of (1−α). See [6]. If at is a Gaussian



60 An L1 smoother for outlier cleaning of TS

process and the φ, θ and σ2
a coefficients are known, then (z1, · · · , zH) have an

H-variate Gaussian distribution with mean vector 0H and correlation matrix

Σ = (ρi,j) =

∑i−1
l=0 ψjψj−i+l√∑i−1

l=0 ψ
2
l

√∑j−1
l=0 ψ

2
l

i < j . (28)

If the forecast errors are independent and identically distributed, then Σ =

σ2
aIH . In this case it is legitimate to use of the marginal prediction intervals

pn,l ± zα/2σl, l = 1, · · · , H. (29)

where zα/2 is the upper α-th quantile of the univariate standard Gaussian dis-

tribution [3, sec. 5.2.4]. However, the hypothesis of independent or even un-

correlated forecast errors is illusory and has no validity in practical situations.

Therefore, unless the observed values pn+l, l = 1, · · · , H develop according to

a known pattern, the probability that a given sequence lies completely inside

all H marginal PIs would be less than 100(1−α), especially if H is large. This

is the reason why we have focused our efforts on simultaneous PIs.

It is evident that cα in place of zα/2 is the only difference between the two

types of limits, but marginal PIs do not vary with the forecast horizon. In this

sense, [19] noted that, for example, at α = 0.05 (i.e., at a coverage probability

of 95%) the α/2-quantile is 1.96 for all leading times. On the other hand, for

simultaneous PIs, c0.05 increases with H. For H = 20, we have c0.05 = 2.8004

which makes the extent of the spurious narrowness of marginal PIs clear. See

[14].

4.3 Evaluation of PIs

The most important characteristic of PIs is their actual coverage probability

(PIAC). We measure PIAC by the proportion of true values of the validation

period enclosed in the bounds

PIACα = 100H−1

H∑
l=1

cl,α where cl,α =

{
1 if pn+k ∈

[
C1

l,α, C2
l,α

]
0 otherwise

(30)

If PIACα≥ (1−α) then future values tend to be covered by the constructed

bands, but this may also imply that the estimates of the variances in the fore-

cast errors are positively biased. A PIACα<(1−α) indicates under-dispersed
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forecast errors with overly narrow prediction intervals and unsatisfactory cov-

erage behavior.

All other things being equal, narrow PIs are desirable as they reduce the

uncertainty associated with forecast-based decision-making. However, high

accuracy can be easily obtained by widening PIs. A complementary measure

that quantifies the sharpness of PIs might be useful in this context. Here, we

use the score function.

Rl,α =

(
1−α

2

) (
C2

l,α − C1
l,α

)
pn+l

, l = 1, 2, · · · , H. (31)

This expression reflects a penalty proportional to the narrowness of the in-

tervals that encompass the true values at the nominal rate. The penalty in-

creases as α decreases, to compensate for the tendency of prediction bands to

be broader as the confidence level increases. Of course, the lower Sl,α is, the

more accurate PI will be. The average value of the score width across time

points

ASWα =
1

H

L∑
l=1

Rl,α (32)

can provide general indications of PIs performance.

5 Empirical Analysis

In this section, we perform an experimental evaluation of our method. In

particular, we examine 144 = 24×6 daily time series of prices, one for each hour

of the day and each zone of the Italian electricity market. Due to transmission

capacity constraints, Italy is partitioned into six zones: North, Center-North,

Center-South, South, Sardinia and Sicily with a separate price for each zone.

When there is no transmission congestion arbitrage opportunities force the

prices in each zone to be equal. See [9]. All the time series are long 1′976 days

long, but the last three weeks (H = 21) are reserved for assessing the accuracy

of PIs. Thus, only the first 1, 895 days are used for estimation and validation

of the models.

Parameters can be estimated by optimizing the log-likelihood function of

(19), provided that p, q, P, Q are known and errors are Gaussian random
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variables. Since we ignore the order of the polynomials, the estimation is

repeated for different values of p, q, P and Q. The search of the best SARMAX

model is conducted within the bounds 0 ≤ p, q, P,Q ≤ 3 which include 256

distinct processes to be explored for each time series. Note that p∗ = p+sP ,

q∗ = q+ sQ. The search for the best model is carried out in non-stepwise

automatic mode using the auto.arima function of the R package forecast

([10]) with parameters constrained to be stationary. It should be pointed out

that PIs tend to perform poorly when the residuals are not Gaussian. In

consequence, even under the most favorable conditions, the PIs in (24) are de

facto “approximate” PIs.

To compute (27), we apply the method proposed by [8]. Table 1 shows the

results at the confidence levels (80, 85, 90, 95). Columns labeled “none” dis-

play the actual prediction interval coverage rate (PIAC) and the average width

(ASW) when time series have not undergone a pre-processing stage. Columns

labeled “LADS”, display the analogous results obtained after applying our ro-

bust smoother. In the initial general examination, we note the consistency

of the behavior of PIAC and ASW with the latter decreasing as the former

increases, for each zone, either in the presence or absence of filtering. Nat-

urally, this is a confirmation of the expected behavior of the score function

(32). What appears immediately clear are the notable differences between the

various zones, reflecting the climatic diversity of geographical zones, different

size of the zones and price differentials (see, e.g., [2]). It is no coincidence that

the most negatively affected zones are the problematic large islands of Sicily

and Sardinia, which suffer from poor interconnections and frequent congestion.

To have an idea of the effects of LADS in reducing the impact of price

spikes on forecasting, we compare the narrowness of the prediction intervals

reported in the columns headed ASWα at the first level. Figures shown in col-

umn “LADS” are systematically and significantly lower than those shown in

column “none”. Additionally, more precise forecasts are obtained without ap-

preciably reducing the coverage rate. The performances of SARMAX models,

combined with the LADS, appear to be moderately satisfactory with respect

of the improved accuracy and efficiency of the prediction intervals. The main

result is that, in the absence of smoothing, SARMAX models consistently yield

PIs with greater than nominal coverage rates. The robust smoother corrects
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Table 1: Improvement in the accuracy of prediction intervals.

PIACα ASWα

Zone (1−α)% None LADS None LADS

1 80 87.66 82.16 13.65 10.27

85 91.41 87.01 11.29 8.62

90 94.37 93.05 8.42 6.51

95 96.93 95.46 4.87 3.76

2 80 89.83 83.17 15.33 11.04

85 92.00 87.60 12.61 9.33

90 95.15 93.44 9.43 7.01

95 97.92 96.06 5.45 4.04

3 80 93.58 90.22 17.73 11.48

85 94.96 93.05 14.63 9.56

90 96.73 96.26 10.87 7.17

95 98.32 97.67 6.35 4.13

4 80 95.55 90.82 17.48 11.85

85 96.35 93.05 14.54 9.91

90 97.13 95.26 10.84 7.46

95 98.12 97.06 6.27 4.30

5 80 99.10 97.22 28.26 19.27

85 99.10 98.61 23.37 15.80

90 99.10 99.21 17.39 11.72

95 99.10 99.60 10.11 6.75

6 80 98.71 97.22 22.85 13.65

85 98.71 98.61 18.91 11.15

90 98.90 98.81 14.04 8.37

95 98.90 99.21 8.09 4.86

the coverage rates, but not in a way to alter the impression of over-dispersed

forecast errors. This is an unwanted conservatism, primarily due to inflated

estimates of the forecast error variances, which, in turn, can be attributed ei-

ther to unsuspected behavior of the time series in the validation period, or to

the length of the forecast horizon or, ultimately, to the weakness of the usual

Box-Jenkins approach, when applied to electricity price time series.
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6 Conclusions and future research

If one fits a model to a time series that has not been properly filtered, then

important temporal patterns could remain buried in the noise and outliers

might have detrimental effects on forecast accuracy. As we have seen, the

LADS method is not only effective in favoring the best conditions for the

application of forecasting models, but also have neutral or inhibiting effects

when the tuning constants are appropriately chosen. Naturally, we do not

claim that our method achieves the best, or even a satisfactory, result under all

circumstances, or even under most. Nonetheless, it does have the advantage

that it reduces the width of simultaneous prediction intervals deriving from

SARMAX models while keeping the coverage rate close to the nominal level.

As such, our robust smoother adds a very promising new methodology to the

data analysis toolbox within the area of statistical data cleaning.

In the future, we intend to apply the LADS method to other forecasting

techniques such as Holt-Winters, trend-seasonal decomposition, artificial neu-

ral networks. In addition, we plan to compare our results with those obtained

with other smoothers looking at a careful design of the experiment which al-

lows to overcome the main challenge posed to smoothing methods comparisons.

Most specifically, it must be ensured that none of the methods should have

an unfair advantage merely because the selected tuning constants and/or the

data used for the applications are more in accordance with the model on which

the method is based.

References

[1] I.L. Amerise and A. Tarsitano, A new method to detect outliers in high-

frequency time series, International Journal of Statistics and Probability,

8, (2019), 16–24.

[2] S. Bigerna and C.A. Bollino, Ramsey prices in the Italian electricity mar-

ket, Energy Policy, 88, (2016), 603–612.

[3] G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and

Control, San Francisco, Holden-Day, 1976.



I.L. Amerise and A. Tarsitano 65

[4] F.Y. Chan, L.K. Chan, J. Falkenberg and M.H. Yu, Applications of linear

and quadratic programmings to some cases of the Whittaker-Henderson

graduation method, Scandinavian Actuarial Journal, (1986), 141–153.

[5] F.Y. Chan, L.K. Chan and M.H. Yu, A generalization of Whittaker-

Henderson graduation, Transactions of Society of Actuaries, 36, (1984),

183–211.

[6] S.H. Cheung, K.H. Wu and W.S. Chart, Simultaneous prediction inter-

vals for autoregressive-integrated moving-average models: A comparative

study, Computational Statistics & Data Analysis, 28, (1998), 297–306.

[7] M. Chiodi, A partition type method for clustering mixed data, Rivista di

Statistica Applicata, 2, (1990), 135–147.

[8] A. Genz, Numerical computation of multivariate normal probabilities,

Journal of Computational and Graphical Statistics, 1, (1992), 141–149.

[9] A. Gianfreda and L. Grossi, Forecasting Italian electricity zonal prices

with exogenous variables, Energy Economics, 34, (2012), 2228–2239.

[10] R.J. Hyndman, Forecast: forecasting functions for

time series and linear models, (2015), Available online:

http://rpackages.ianhowson.com/cran/forecast/

[11] J. Ledolter, The effect of additive outliers on the forecasts from ARIMA

models, International Journal of Forecasting, 5, (1989), 231–240.

[12] T.L. Magnanti and J.B. Orlin, Parametric linear programming and anti-

cycling pivoting rules, Mathematical Programming, 41, (1988), 317–325.

[13] A.S. Nocon and W.F. Scott, An extension of the Whittaker-Henderson

method of graduation, Scandinavian Actuarial Journal, 1,(2012), 70–79.

[14] N. Ravinshanker, Shao-Yen Wu and L. Glaz, Multiple prediction inter-

vals for time series: comparison of simultaneous and marginal intervals,

Journal of Forecasting, 10, (1991), 445–463.

[15] P.J. Rousseeuw and C. Croux, Alternatives to the median absolute devi-

ation, Journal of the American Statistical Association, 88, (1993), 1273–

1283.



66 An L1 smoother for outlier cleaning of TS

[16] T. Saaty and S. Gass, Objective function (part 1), Journal of the Opera-

tions Research Society of America, 2, (1954), 316–319.

[17] D.A. Schuette, A linear programming approach to graduation, Transac-

tions of Society of Actuaries, 30, (1978), 407–431.

[18] P.K. Sen, On some properties of the rank-weighted means, Journal Indian

Society of Agricultural Statistics, 16, (1964), 5–61.

[19] J. Siu-Hang Li and W-S. Chan, Time-simultaneous prediction bands: A

new look at the uncertainty involved in forecasting mortality, Insurance:

Mathematics and Economics, 49, (2011), 81–88.

[20] R. Weron and M. Zator, A note on using the HodrickPrescott filter in

electricity markets, Energy Economics, 48, (2015), 1–6.

[21] Y. Yao and Y. Lee, Another look at linear programming for feature se-

lection via methods of regularization, Statistical computing, 24, (2014),

885–905.




