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Abstract

Forecasting is a key feature in the analysis of statistical data. It
entails estimating the current state using observations and the prior
knowledge of the state. The nonlinear and non stationary nature of
the electricity data calls for a better forecasting method. In this study
the States space models under Kalman filter method and Ensemble
Kalman filter are used. This is a variance minimizing where for each
step it minimizes the variance of the estimation errors resulting to an
optimal estimate. Having an ensemble forecast is of interest in the study
to check how effective it is compared to a single forecast. This paper
also gives the mathematical approach for each method. Electricity price
data for a five year period obtained from Nordpool (United Kingdom
set) was used.
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1 Introduction

Energy is a conservative quantity which must be transferred to an object for

it to produce heat and perform functions. It’s a day-to-day commodity that is

used almost everywhere. The production, conversion, measurement and usage

all have to be analyzed in such a way that it best suits the customers’ demands.

The growth of energy markets has resulted to it trading globally. It’s market

is increasingly becoming interdependent and expanded at a faster rate, this is

for both developing and developed markets [1].

Electricity pricing is governed by complex dynamics driven by factors such

as, day-to-day and seasonal variation in demand, seasonal variation in temper-

ature, availability of electricity from neighboring regions, and cascade effects

when plants are shut down [4]. This commodity is produced when actually

demanded since it cannot be stored and must be consumed immediately. This

non-storability property and the presence of a wide scope of demand and sup-

ply calls for analysis of how prices relates with the underlying drivers [5]. A

better pricing mechanism has been studied through a number of structural

models.

Modeling of the prices has been an interesting field for most industries

and academicians. Modeling causes of commodity prices including market

tightness, demand flexibility, weather in the spot markets has been focused.

The hourly time series data of electricity spot prices differ from time series of

equities and other commodities since of its non-non-non-storability feature [9].

These prices are usually considered multivariate time series because the spot

prices are simultaneously set a day before for each 24 intra-day [6]. They have

focused mainly in hedging effectiveness, cash flow at risk analysis and volatility

forecasting [11]. Several models can be used to test for volatility, seasonality,

price jumps and conditional heteroscedasticity.

Forecasting has a huge application in time series analysis and other fields

too. A forecasting model that is more accurate is required to facilitate all of the

stakeholders, where the future electricity prices is a major factor to business of

to the wholesalers, traders and retailers [10]. In their paper they stated that

forecasting electricity price problem is related to electricity load forecasting

yet distinct. The nature of electricity prices has always lead to generation of

different models. The use of multi-factor forecasting methods has not been
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effective to accurately forecast prices leading to lots of researchers making use

of time series forecasting methods.

To solve the above-mentioned problems,the introduction of state space

models has provided a better approach in time series analysis. The Kalman

filter updates the state variable often when there is a new data point. The

Kalman filter however is limited to linear systems. To deal with non linearity

of the data, Extended Kalman filter was introduced. This however has a high

computational cost since it converts the non-linear state to linear. [12] states

that these models can be updated recursively and their flexibility to model

nonlinearity is obtained by using ensemble Kalman filter as the algorithm for

estimating the state space models.The paper states that ensemble approxima-

tion techniques reduces the computational cost significantly and this makes

it possible to assimilate data into the system that are too large for previous

methods.

The estimates from Ensemble Kalman filter was found to give improved

forecast of the day ahead ozone concentration maxima [2]. It is seen as an

improved method of Kalman filter, where distribution of the state is expressed

by a sample or ”ensemble” from the distribution. Forward calculation of the

ensemble and its updates obtained over a given period is observed. Ensemble

representation gives a dimension reduction technique, leading to fast compu-

tational systems with high-dimensional systems. The ensemble size is selected

that which will statistically represent the whole model.

This study aims at determining an optimal ensemble size given a data

set. This size will be obtained at a size having the lowest root mean squared

error. The ensemble size will be used in the Ensemble Kalman filter method.

Secondly we discuss the mathematical background of the states space models

and lastly see how well the models predicts.

2 Methodology

2.1 Ensembles

Definition 2.1. An ensemble is an idealization of a large number of virtual

copies of a system, taken as a whole, with each representing a possibility of
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state at which the system might be. It is a probability distribution for the state

of the system [8].

We denote the ensemble by

xt = (x1
t , x

2
t , ..., x

k
t ) (1)

which represents the forecast ensemble members at time t. At each particular

time the electricity prices, x produces k ensemble forecasts. These k forecasts

represents the different realizations of the prices at that particular time. This

can be illustrated as below
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The ensemble mean and covariance is defined by

x̄t =
1

k

k∑
i=1

xi (2)

Σt =
1

k − 1

k∑
i=1

(xi − x̄) (xi − x̄)T (3)

Σt is summed over k − 1 to ensure that Σt is an unbiased estimate of the

covariance. We take the mean of the ensemble as optimal guess estimate and

the error variance from the spread. Ensemble members smoothness determines

its covariance [2]. The performance of EnKF relates to the size used in the

analysis [2].

Results of the EnKF analysis are influenced by the size. The smaller the size

the forecasts is affected through the underestimation of the error covariance.

We calculate the root mean squared error of different ensemble sizes and select

the one with the least value. The root mean squared error is given by

RMSE =

√√√√1

k

N∑
i=1

(
Xk

i −Xobs
i

)2
(4)
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where, Xobs
i represents the ith observation variable, Xk

i corresponds to the

ensemble set of size k of the ith observation and N is the total observations.

2.2 State Space

State space models provide a wide view of data assimilation and handling

of missing values [13]. This model is expressed as:

yt = xt + et, et ∼ N(0, Rt) (5)

xt = xt−1 + ηt, ηt ∼ N(0, Qt) (6)

Where {et}and {ηt} are independent white noise . xt has initial state x0 and

is random walk and yt is an observed form of xt with noise et. xt is the trend

or the state of the system at time t and yt as the observations with noise et.

Let xt|t = E(xt|Ft), as the conditional mean and Σt|t = V ar(xt|Ft) the variance

of xt given Ft, where Ft is information available upto time t (inclusive). yt|t

represents the conditional mean of yt with Ft. The 1-step ahead forecast error

and variance is given as st = yt − yt|t−1 and St = V ar(st|Ft−1) respectively.

E(st) = E[E(st|Ft−1)]

= E[E((yt − yt|t−1)|Ft−1)]

= E[yt|t−1 − yt|t−1] = 0

cov(st, yt) = E(st, yt)

= E[E(st, yt|Ft−1)]

= E[ytE(st|Ft−1)] = 0

This shows the independence (they are uncorrelated) between the forecast

errors and the observations.

2.3 Kalman Filter

The Kalman filter was first presented in 1960. It elaborates a recursive solu-

tion of the linear filtering discrete data problem [7]. The state and observation

equations are given as

xt = Mtxt−1 + ηt (7)
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Figure 1: Flow Chart of the Kalman filter Process

where Mt is a linear operator relating the previous time state at step xt−1 to

the present step xt and ηt is the process noise.

yt = Htxt + et (8)

H = (1, 0, ..., 0)1×m, is a linear observation operator that provides a mapping

from model space xt to observation space yt.

Assumptions of the filter

1. The state and the observation process are linear

2. The state noise ηt and observation noise et are sequences of independent

Gaussian white noise with zero mean.

3. xt, ηt and et are uncorrelated for t > 0. This means

E[ηtη
T
j ] = Qt for t = j and 0 for t 6= j

E[ete
T
j ] = Rt for t = j and 0 for t 6= j

E[ηtej] = 0 for all t and j

4. x0 which is given or follows a known distribution.

The Figure 1 shows the steps taken under the Kalman filter modeling.

The labels 1,2 and 3 are the major process in the calculation. The steps

are elaborated below.
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1. Kalmangain = Estimateerror
Estimateerror+measurementerror

2. Esimatet = Estimatet−1 + K[Measurement(y)− Estimatet−1]

3. Errorestimatet = [I −K](Errorestimatet−1)

Where K is the Kalman gain and, 0 ≤ K ≥ 1. Once we have the new (cur-

rent) estimate and current error they become the previous estimate and error

respectively in the next iteration.

Let xf
t ∈ <n as the prior state estimate at t with given information to period

t and xa
t as the posterior estimate at period t with measurements yt. During

forecasting, suppose the original forecast time is t and we want to predict xt+j

for j = 1, ..., h, where h > 0. The j−step ahead forecast xt(j) = E(xt+j|Ft),

where Ft is the past information.

A 1-step forecast is obtained as

xt(1) = E(xt+1|Ft) (9)

The forecast error from above is st(1) = xt+1 − xt(1)

Each iteration of the KF is started with a prior estimate xf
t , which is the

expected value of the state just before assimilating the measurement.

The state error for the prior and posterior estimates are obtained as

wf
t = xt − xf

t wa
t = xt − xa

t (10)

The corresponding prior and posterior estimate error covariances are given as

Σf
t = E[wf

t (wf
t )T ]

Σa
t = E[wa

t (w
a
t )

T ]

The estimation error is assumed having a mean zero with covariance matrix

Σt. The prior state estimate from equation 7 can be expressed as

xf
t = E[xt|Ft−1]

= E(Mtxt−1 + ηt|Ft−1)

= E(Mtxt−1|Ft−1) + E(ηt|Ft−1)

= Mtx
a
t−1
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The corresponding error covariance matrix is

Σf
t = E[wf

t (wf
t )T ]

= E[(Mtw
a
t−1 + ηt)(Mtw

a
t−1 + ηt)

T ]

= MtΣ
a
t−1M

T
t + Qt

In the derivation of the KF equations, we derive an equation that calculates the

posterior estimate, xa
t which is as a linear combination of a previous estimate

xf
t and the difference between actual and a predicted measurement [3]. The

recursive KF algorithm is demostrated in equation 11.

xa
t = xf

t + Kt(yt −Htx
f
t ) (11)

which is the posterior estimate xa
t , where Kt is the Kalman gain which updates

the mean state given observations. The difference (yt − Htx
f
t ) is refereed to

as the measurement shock. The Kalman gain explains the effect of the new

shock to the state variable xt.

From equation 11 the posterior estimate error is given by

wa
t = xt − xa

t

= xt − xf
t − kt(yt −Htx

f
t )

= xt − xf
t − kt(Htxt + et −Htx

f
t )

= (I − ktHt)(xt − xf
t )− ktet (12)

where I is an (n× n) identity matrix.

The error covariance matrix in the posterior estimate is obtained as

E[wa
t (w

a
t )

T ] = E[[(I −KtHt)(xt − xf
t )−Ktet][(I −KtHt)(xt − xf

t )−Ktet]
T ]

= E[[(I −KtHt)(xt − xf
t )−Ktet][(I −KtHt)

T (xt − xf
t )

T −KT
t eT

t ]]

= E[(I −KtHt)(xt − xf
t )(I −KtHt)

T (xt − xf
t )

T ]−KtetK
T
t eT

t

= (I −KtHt)E[(xt − xf
t )(xt − xf

t )
T ](I −KtHt)

T −KtE[ete
T
t ]KT

t

Σa
t = (I −KtHt)Σ

f
t (I −KtHt)

T + KtRtK
T
t

(13)

We then minimize the sum of the variances equation with respect to Kt. This

is achieved by minimizing the trace of the covariance matrix. The least square

method is used to achieve this.

min(Σa
t )

T = [(I −KtHt)Σ
f
t (I −KtHt)

T + KtRtK
T
t ]T
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∂(
∑a

t )
T

∂Kt

= 2(I −KtHt)Σ
f
t (−HT

t ) + 2KtRt

0 = −Σf
t H

T
t + KtHtΣ

f
t H

T
t + KtRt

Σf
t H

T
t = Kt(HtΣ

f
t H

T
t + Rt)

This process gives the Kalman gain equation to be

Kt =
ΣtHt

HtΣtHT
t + Rt

(14)

This means that as Rt tends to zero, the measurement yt gives a ”big trust”

while the predicted estimate Htx
f
t is less trusted. Similarly if Σf

t approaches

the actual value yt is less trusted while the estimates Htx
f
t are trusted more.

The error covariance is then updated given new observations by

Σa
t = (I −KtHt)Σ

f
t (I −KtHt)

T + KtRtK
T
t

= Σt − ΣtH
T
t KT

t −KtHtΣt + KT
t HT

t Σt

= (I −KtHt)Σt (15)

Hence we have,

Σt+1 = (I −KtHt)Σt (16)

The Kalman filter works under assumption of a linear evolution model and

observation operator.

2.4 Ensemble Kalman Filter

The method was first studied by Evensen (1994) based on Monte Carlo

simulations that makes it possible to use Kalman filter method on nonlinear

models. A single state estimate in KL is used to give an analysis while for

EnKF the ensemble is used. This step is applied k times resulting to generation

of k-member ensemble of state vector estimates. This k ensemble members are

taken as a sample drawn from the prior distribution at that time.

The ensemble mean and its covariance matrix used to compute the Kalman

gain. The ensemble representation gives a dimension reduction, resulting to

easy computation for higher dimensional systems. It gives optimal estimates

on parameters of interest from indirect, inaccurate and uncertain observation.
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Thus from Equation 2 and 3, we have the best estimate and the error covari-

ance.

The update equation follows where each ensemble member is updated ac-

cording to the updating equation 11 and calculate

x
(i)
t+1 = x

(i)
t + kt

(
yt −Htx

i
t

)
(17)

where kt is the Kalman gain given by,

kt = ΣtHt

(
HtΣtH

T
t + Rt

)−1
(18)

Each ensemble member according to equation 17 gets to be updated where

from this the updated state vectors and error covariance matrix are estimated.

This is a recursive process by first setting initial estimates for xa
0 and Σa

0 and

then generating a set of ensemble members.

2.5 Model performance

The measure of forecast accuracy is measured in terms of Mean Absolute

Percentage Error(MAPE) and the Root Mean Squared Error (RMSE). They

help to validate the methods used on the variability of their accuracy. They

are defined by the following equations:

MAPE = 100× 1

N

N∑
i=1

| xi − x̂i |
xi

(19)

RMSE =

√√√√ 1

N

N∑
i=1

(ei − ē)2 (20)

where ei = x̂i−xi

x̄
and xi is the actual price, x̂

i
the predicted price, x̄ is the

value of mean price at that time and N is the size of the predicted time.

3 Results

3.1 Ensemble size determination

The model was fit to some simulated data sets. For each observed data set,

copies from the same data are simulated with respect to different ensemble
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size. This is done for each data set in the column. Ensemble sizes of 20, 50,

70, 100, 140, 180, 200, 230, 250 and 300 were tested. For example, at an

ensemble size of 20, we have 20 data sets for each observed value generated

from them. 10 observations were used for this process. Each line on the graph

represents an observation.

The Figure 2 shows the different values of RMSE when the generated set

of ensembles follow a standard normal distribution.

Figure 2: The RMSE values for different ensemble sizes with data N(0,1)

The corresponding RMSE at each ensemble size is

Ensemble size 20 30 50 70 100 140 180 200 250 300

RMSE 1.369 1.966 2.980 1.138 3.747 3.687 3.976 4.647 3.195 6.822

From the table we can see that at ensemble size 70, the RMSE is 1.1384

which is the smallest. Given the above ensemble sizes we select 70 as our

optimal size.
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Figure 3: The RMSE values for different ensemble sizes with data, λ = 5

The same can be done for any distribution of data. The second case involves

a poison distribution with λ = 5. From Figure 3 we conclude at size 70 we have

the least value of RMSE hence the optimal size. It means that if we take a

sample of 70 for each observation with this distribution and do the prediction,

there is a high chance of obtaining a best predicted value with a low variation.

The following Tables 1 and 2 gives a summary for distributions.

Table 1: Optimal selection of the ensemble size from different normally dis-

tributed data sets
Distribution Ensemble size with the least RMSE

N(0,1) 70

N(0,100) 70

N(40,1) 140

N(35,5) 140

N(10,10) 180

N(100,2) 250

N(200,200) 50
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Table 2: Optimal selection of the ensemble size from different data sets follow-

ing a poison distribution

Distribution Ensemble size with the least RMSE

λ = 1 100

2 100

3 70

5 70

7 180

99 50

200 100

The theory behind ensembles can be applied in any distribution. Ensemble

approach has a greater advantage in minimizing forecast errors than a single

forecast [14]. There is always a challenge in having too small and too big

ensemble size, the size must be at a point where the RMSE is small. Given a

data set one can obtain an ensemble forecast with an optimal ensemble size as

obtained above.

3.2 Data Exploration

3.2.1 Data

In this section we explore prices from Nord Pool which is one of the best

power market in Europe. It gives day-ahead and intraday market prices to

customers. It offers prices for 13 markets (countries), 19 bidding zones and

over 300 buyers and sellers place over 2000 orders every day. The data for

United Kingdom, N2EX, was used. This data include the prices for the period

running from 1st of January 2014 to 31st of December 2018. The analysis was

done using R software. The data was obtained from Nordpool website.

With the prices, denoted as pt, at time t given we calculate daily returns,

rt, as the continuously compounded returns given as

rt = log(pt)− log(pt−1) = log

(
pt

pt−1

)
(21)

pt is the present price and pt−1 is the previous day’s price.
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3.2.2 Descriptive Statistics

Table 3 gives the basic statistics of the whole series. This table shows that

the series tend to have excess kurtosis, since its value 16.899 > 3 implying the

data is not normally distributed.

Table 3: Descriptive statistics for auction prices

Number of observations 1826

Minimum 27.93

Maximum 169.65

1. Quartile 38.705

3. Quartile 50.2

Mean 45.141599

Median 42.745

Sum 82428.56

SE Mean 0.23247

Variance 98.576767

Stdev 9.928583

Skewness 2.313936

Kurtosis 16.895592

3.2.3 Time series plots

The Figure 4 shows that the prices have a trend and are generally not station-

ary. Figure 5 is a plot of returns which makes the time series data stationary

since the returns are close to zero. However there are presence of high spikes

and low spikes.

Tables 4 and 5 confirms that the data is stationary ( since the p−value < α)

and returns are not normally distributed (since p− value < α) for α = 0.05.

3.3 Price filter forecast

The filter method gives a forecast of the return data set for a period of

365, which is 20 percent of the entire data set as shown in Figure 6. This
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Figure 4: Time series plot for day ahead auction prices

Table 4: Augmented Dickey-Fuller Test

Dickey-Fuller p-value

-19.181 0.01

Table 5: Shapiro-Wilk normality test

W p-value

0.70948 2.2e-16

sample was used to check at how the filter returns a one step ahead prediction

of states.

From the plot we can see that the filter estimates almost have the same

values as the actual prices. This forecast confirms how well it predicts. The

Table 6 gives a view of the predicted values versus the actual values
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Figure 5: Time series plot for day ahead auction returns

Table 6: Table showing the logprices of the actual and predicted at 80 and 95

confidence intervals
Actual logprices Predicted logprices Lo.80 Hi.80 Lo.95 Hi.95

3.8299 3.8299 3.8016 4.0255 3.7424 4.0847

3.9448 3.9065 3.8254 4.0737 3.7597 4.1396

3.9090 3.9081 3.8500 4.1039 3.7828 4.1712

3.97180 3.9475 3.8116 4.0663 3.7441 4.1337

4.0397 4.0045 3.7950 4.0569 3.7257 4.1263

3.91899 3.9517 3.7874 4.055 3.7166 4.1259

3.4 Model Evalution

From the forecast, which is the data from 1stJanuary, 2018 to 31stDecember, 2018

we use MAPE and RMSE to check how well the method performs in forecasting

the prices.
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Figure 6: Plot of the filter forecast estimates using 365 data sets

Table 7: Method evaluation using MAPE and RMSE

MAPE 0.005895775

RMSE 0.008985829

The Table 7 gives the MAPE and RMSE output. The values of the RMSE

and MAPE are low and this means that the filter predicts the prices well. It

also confirms from the literature.
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4 Conclusion

The research has shown how state space models performs given a certain

data set. The introduction of state space to now the ensemble filters has been

helpful in the time series modeling. We discussed the ensemble approach and

how to determine an optimal ensemble given different distributions. It was

observed that the sizes vary and that the RMSE gives a point at which we

select the size. However, the size might not give a perfect forecast but its

values have higher degree of accuracy. The mathematical formulation of the

models was discussed too. It gives a clear part of how this filters work from

their two steps, the forecast state and the update state. Finally the results from

the RMSE and MAPE shows that the method gives a better prediction. This

study dealt with prices individually, future studies can be done where factors

affecting the prices such as weather conditions, fuel prices, etc are incorporated

in the model to determine how these will impact on the forecast.
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