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Abstract

We examined and compared forecasting ability of GARCH and Stochas-
tic Volatility models represented in the state space form using Kalman
Filter as an estimator for the models. The models are applied in the
context of Indian stock market. For estimation purpose, daily values of
Sensex from Bombay Stock Exchange (BSE) are used as the input. The
results confirmed the volatility forecasting capabilities of both mod-
els. Finally, we interpreted that which model performs better in the
out-of-sample forecast for h-step ahead forecast. Forecast errors of the
volatility were found in favour of SV model for a 30-day ahead forecast.
This also shows that Kalman filter can be used for better estimates and
forecasts of the volatility using state space models. Finally the numeri-
cal results make evident the effectiveness and relevance of the proposed
state space estimation.
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1 Introduction

Volatility in financial markets has been a growing area of interest of re-

searchers seeking to understand market dynamics. It has attracted the atten-

tion of policy makers and market traders, investors and risk managers espe-

cially during the past two decades because it can be used as a measurement

of risk. Primarily the volatility receives a great deal of concern from financial

market participants because greater volatility in the stock, bond and foreign

exchange markets raises important public policy issues about the stability of

financial markets.

Volatility forecasting is important for option pricing, portfolio management

and risk management. Nowadays, volatility has become the subject of trading.

There are now exchange-traded contracts written on volatility. Financial mar-

ket volatility also has a wider effect on financial regulation, monetary policy

and macro economy. Therefore there is a need of research in financial market

volatility modeling and hence forecasting.

The two main sources of volatility forecasts are time-series models and

implied volatilities which is calculated from observed prices. The time-series

models remain the major source of volatility forecasting which can also be used

to predict the time-varying beta. Accurate forecasting of time-varying beta is

important for several reasons. Firstly, the prediction of the beta value helps

investors to make their investment decisions easier. Secondly, for corporate

financial managers, forecasts of the conditional beta not only benefit them in

the capital structure decision but also in investment appraisal.

Sensex is the most followed market index in the Indian stock market and

consists of the 30 largest and most actively traded stocks and representative of

various sectors on the BSE. The Indian stock market has been an active area

of research during the last few decades along with markets of other emerging

economies. In India, different variants of GARCH model have been consid-

ered to study volatility forecasting and a large volume of literature focuses on

modeling volatility using these models. The present paper tests an alternate

modeling technique for the estimation of the volatility in the Indian stock mar-
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ket by using State Space (SS) model. Control engineers and physicists were the

first to introduce the State Space models for modeling of continuously chang-

ing unobserved state variable. The unknown model parameters in such mod-

els were estimated by the Kalman filter (KF, popularly named after Kalman

(1960). The Kalman Filter algorithm plays an integral role in the modeling,

estimating and further predicting the states of State Space models[1].

Several studies have reported applications of SS Model in estimating price

volatility [2]. These models are becoming more popular because they are able

to represent complex dynamics equations through a simple structure of matri-

ces. Further, it is easier to apply the Kalman Filter to SS Models because they

allow for certain relevant analysis that would otherwise be very difficult, such

as modeling samples with missing data or observation errors [3]. This approach

has been applied for stochastic volatility (SV) Model where the time-varying

variance as a stochastic process was modeled in state space form and further

estimated using Quasi Maximum Likelihood methods [4, 5, 6] and [7].

However, GARCH type modeling has been an popular area of research.

These models are also widely used because their properties are somewhat sim-

ilar to the observed properties of empirical financial data which can capture

various stylized facts [8]. Additionally, they are simple to model, gives a bet-

ter fit to the empirical financial data and are estimated by commonly used

estimation procedures like Maximum Likelihood (MLE) approaches. The con-

cern while using the GARCH models in forecasting is the errors occurring

when the forecasts are computed [9]. To overcome this limitation, an alter-

nate parameter estimation approach proposed by (Jerez et.al.)[10] is used in

this paper. The state space GARCH-KF model is obtained by treating mean

and variance equations internally in its equivalent state-space formulation suit-

able for Kalman Filter estimation. This approach allows certain computations

and analysis that would otherwise not be possible by traditional estimation

methods.

Many researchers have compared different time series data, daily exchange

rate and stock prices using variants of GARCH models to forecast the volatility.

Their findings showed that most of the advanced models did not provide better

forecasts than GARCH (1,1) model[11]. Therefore, in this paper we have

selected GARCH(1,1) model for forecasting using the framework of E4 toolbox,

referred in Spanish as ’Estimacin de modelos Economtricos en Espacio de los
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Estado ’. This toolbox allows for observation errors, missing data and GARCH

error modeling in state space form.

The study described in present paper can be justified on following ideas.

The evidence from other developing markets provide mixed evidence of fore-

casting performances in volatility models[12, 13, 14]. However, there has been

no comprehensive study of GARCH based State Space Modeling of volatil-

ity in India. As a result, this paper aims to compare stochastic volatility,

GARCH(1,1) and GARCH(1,1)-KF model which is a state space approach,

which substantially differ in terms of their computational model from the tra-

ditional estimation methods.

The paper uses the daily closing values of BSE-Sensex for the period 01

January 2006 to 22 August 2013. The daily index values of Sensex are collected

from the official websites of BSE[15]. The data set considered, has enough

number of observations to perform time-series analysis on the models to get

meaningful results. We have modeled the stochastic volatility (SV) forecasting

models using a state space modeling (SSM) toolbox for Matlab [16]. The

GARCH models are represented in state space form and the estimation is

done by E4 toolbox for MATLAB. The estimation results of SV model are

presented and compared with out-of-sampling forecast of GARCH(1,1) model.

The rest of paper is organized as follows. Section 2 gives a brief overview

of the GARCH and Stochastic volatility models along with the state space

representation. Then, we estimate and analyze the models by presenting the

main results of the paper. In section 3, out-of-sample forecast of the estimators

are discussed. Section 4 explores the comparative performance of the various

forecasting models and a 30-day ahead forecast is given in tabular and graphical

representation. Section 5 gives the concluding remarks.

2 Models Overview & State Space Represen-

tation

State space methods are tools which allows one to estimate the unknown

parameters along with the time varying states of linear models. It can also be

used to forecast future states and observations even if there is some missing
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data. The following section will review the basic model representation of State

Space. The results of model parameters estimation are briefly discussed in

subsequent sections.

2.1 Linear Gaussian State Space Model

This section provides a brief review of linear Gaussian state space model.

Let yt denote an p × 1 observation vector related to an m × 1 vector of

unobservable components αt (states sequences), by the so-called measurement

equation eq:1,

yt = Ztαt + εt, εt ∼ N(0, Ht) (1)

αt+1 = ct + Ttαt + Rtηt, ηt ∼ N(0, Qt) (2)

The evolution of the states is governed by the process or state equation (2).

Thus, the matrices Zt, ct, Tt, Rt, Ht, Qt, a1, P1 are required to define a linear

Gaussian state space model [17, 2]. The matrix Zt is the state to observation

linear transformation matrix, for univariate models it is a row vector m × 1.

The matrix ct is the same size as the state vector, and it is constant in the

state update equation, although it can be dynamic or dependent on model

parameters. The square matrix Tt [m × m ] defines the time evolution of

states. The matrix Rt [m × r ] transforms general disturbance into state space

and exists to allow for more varieties of models. Ht [p × p ] and Qt [r × r ] are

Gaussian variance matrices governing the disturbances, and a1 and P1 are the

initial conditions[18]. The specification of the state space model is completed

by the initial conditions concerning the distribution of α1 ∼ N(a1, P1),∀t.

2.2 GARCH Model

The GARCH(1,1)-model includes one lag of the conditional variance given

by following equation:

yt = εtht (3)

h2
t = φ + αy2

t−1 + βh2
t−1 (4)
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εt is an IID process with zero mean and variance of unity. In most applications

εt is assumed to be NID(0,1). To ensure the existence of the conditional vari-

ance and for avoiding the degeneration of the process φ > 0 and α, β ≥ 0 must

hold, yt|Ωt−1 ≈ iidN(0, h2
t ) such that the conditional variance h2

t , follows a

GARCH(1,1) equation:

Defining vt = y2
t −h2

t , it follows that previous equation can be rewritten as

(1− αB − βB)y2
t = φ + (1− βB)vt (5)

where B is the backshift operator. This equation is analogous to an ARMA

equation

y2
t = σ2 + nt (6)

[1− (α + β)B] nt = (1− βB)vt (7)

with parameters (α + β) and β. Here σ2, the variance, is given by[19]:

σ2 ≡ E(y2
t ) =

φ

(1− (α + β))

hence the estimation procedure for time series models based on the state space

KF can be used. It is shown in [10] that for GARCH processes, it is possible to

have a state space formulation i.e. GARCH-KF. In order to obtain an efficient

estimation for the parameters and hence predictions, the approach is based on

the Kalman Filter.

2.3 Stochastic Volatility Model

Stochastic volatility is a popular modeling technique for non-linear/ non-

Gaussian state-space models and hidden Markov models. It is probably an

important volatility model for daily currency and equity indices returns, with

forecast properties similar to ARCH or GARCH.

The stochastic volatility(SV) model in discrete time for a observation asset

log-returns yt is formulated in this section. The Stochastic volatility can be ap-

propriately represented by the unobserved state variable as shown in equation

(8) and (9).

yt = µ + σ∗exp

(
1

2
ht

)
εt, εt ∼ IID(0, 1), (8)



Neha Saini and Anil Kumar Mittal 85

with

ht+1 = φht + ηt, ηt ∼ IID(0, σ2
η), h1 ∼ N(0, σ2

η/(1− φ2)), (9)

for t = 1, . . . , T . The parameter µ denotes the unconditional expectation of the

return process yt. The scaling parameter σ∗ is the average standard deviation

with σ∗ > 0. The unobserved log-volatility process is denoted by ht = log(σ2
t )

[20].

Here, the logarithm ensures positivity of (σ2
t ). The regression parameter φ

is 0 < φ < 1 [20] and is usually reported to take on values greater than 0.8.

The constant µ will be treated as fixed and set to zero as shown by [21]. Here,

ht is modeled as a first-order autoregressive process. For details see [2]. The

disturbances εt and ηt are Gaussian white noise[22] where, εt represents the

new information ; ηt reflects the shocks to the newsflow’s intensity.

The SV model in (8) and (9) are commonly referred as the log-normal

SV model. It represents a state space model where the observation equa-

tion describes the relationship between the univariate vector of observations,

y = (y1, . . . , yT )
′
, and the state vector. The hidden volatility process θ =

(h1, . . . , hT )
′
is specified in the state equation, which models the dynamic prop-

erties of ht. As εt and ht, are stochastic (both enter the multiplication in the

mean equation), the basic SV model is nonlinear, hence linear approach cannot

be used.

In the estimation problem there is no closed expression for the likelihood

function. Therefore, the parameters of the SV model cannot be estimated by

directly applying standard maximum likelihood techniques. The estimation

has to be conducted by approximation of Likelihood or using simulation-based

techniques based on observable past information[23]. There are methods pro-

posed [7, 2] to linearize the SV model by squaring the returns and taking

logarithms as shown in equation (10) and (11):

logy2
t = ht + logσ2

∗ + logε2
t , (10)

ht+1 = φht + ηt, (11)

where the disturbance term, ηt, is assumed to be uncorrelated in the trans-

formed model. Taking logarithm leads to a heavily skewed distribution of log

ε2
t with a long left-hand tail.
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Our model-based estimated actual volatility is fitted well, by the Gaussian

distribution using Quasi Maximum Likelihood. The estimates of volatility [24]

are obtained by

σ2
t|T ≡ V ar(yt|YT ) (12)

E(exp(ht)|YT ) = exp(µt|T + s2
t|T /2)

with variance

V ar(σ2
t|T ) = E(exp(2ht)|YT )− {E(exp(ht)|YT )}2 (13)

= exp(2µt|T + 2s2
t|T )

{
1− exp(−s2

t|T )
}

The smoothing estimates of the square root of volatiltiy are also calculated

by

σ∗
t|T ≡ E(exp(ht/2)|YT ) = exp(µt|T /2 + s2

t|T /8) (14)

with variance

= exp(µt|T + s2
t|T /2)

{
1− exp(−s2

t|T /4)
}

(15)

2.4 Kalman Filter

The general form of a state space model is defined by an observation (or

measurement) equation and a state transition (or state) equation. The struc-

ture and dynamics are similar to linear state space gaussian model with noise

[1]. The measurement equation describes the relation between observed se-

quences and unobserved (hidden) state variables. State transition equation

describes the dynamics of the state variables based on information from the

past. The forecast of the next state can be completely described by the knowl-

edge of the present state and the future input.

The Kalman filter method, is an iterative computational algorithm which is

used to calculate forecasts and forecast variances for state space models. The

algorithm is as follows: First, in each step of the process, the next observation

is forecasted based on the previous observation and the estimate of the pre-

vious observation. Second, one step ahead forecast is computed by updating
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Figure 1: Kalman Filter Recursion

the previous forecast. Finally, the above process is repeated again. Figure 1

explains the recursion process in an easy and convenient flowchart form [25].

The updates for each forecast are weighted averages of the previous ob-

servation and the previous forecast error. The weights are also known as the

Kalman gain. In the algorithm, the kalman gain is chosen such that the fore-

cast variances are minimized in least square sense.

The KF recursively computes the states predictions of yt, which is condi-

tional on past information and also on the variance of their prediction error.

The vector, vt, is the time t innovation. i.e. the new information in yt that

could not be predicted from knowledge of the past, is the one-step-ahead pre-

diction error.

The normal Kalman filter recursion are as follows

Measurement Update:

vt = yt − Ztat,

Ft = ZtPtZ
T
t ,

Kt = TtPtZ
T
t F−1

t ,

Lt = Tt −KtZt.
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Time Update:

at+1 = ct + Ttat + Ktvt,

Pt+1 = TtPtL
T
t + RtQtR

T
t .

The matrix Kt is referred as the Kalman gain and the models uses it extensively

for forecasting. Kalman filter can additionally be used to improve upon the

measurement of current and past volatility estimates using filtering and state

smoothing which are not used in this paper.

3 Estimation and Model Analysis

This study uses daily closing value of SENSEX from the time period start-

ing from 01 January 2006 to 22 August 2013. All the stock market index data

are collected from the official website of BSE. The daily returns are calculated

for each series shown in equation (16).

rt = (log(Pt)− log(Pt−1)) ∗ 100 (16)
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Figure 2: Sensex Closing Index
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Figure 3: Sensex Return

where rt is the daily return series, Pt is the current stock price and Pt−1 is

the stock price of the previous period. Figures 2 and 3 respectively plot the

price and the index returns over the sample period. Our final working sample

consists of 1900 data points for Sensex. In order to make forecasts, the whole

sample is divided into two parts comprising of 1870 in-sample observations from

01 January 2006 to 07 July 2013 and 30 out-of-sample observations from 08

July 2013 to 22 August 2013 which are used for model performance evaluation.

Descriptive Statistics(SENSEX)

Period 1/1/2006 to 22/8/2013

Mean 0.00039114

Median 0.00097652

Maximum -0.1160

Minimum 0.1599

Kurtosis 10.1986

Skewness 0.1321

Std. Dev 0.0171

Table 1: Descriptive Statistics

Descriptive statistics for the Sensex returns series are shown in Table 1. It

shows the mean, median, maximum, kurtosis, skewness and standard deviation
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of the series. As expected for a time series of returns, the mean is close to zero.

The mean daily return is 0.00039114. The sample maximum is 0.1599 which

happened on 18 May 2009. The volatility (measured as a standard deviation) is

0.0171. The returns are positively skewed (skewness= 0.1321) which indicates

that there are more positive than negative outlying returns in Indian Stock

Market. The kurtosis coefficient is positive, having high value for the return

series(Kurtosis = 10.1986) which indicates leptokurtosis or fat taildness in the

underlying distribution.

3.1 Unit root test

Augmented Dickey Fuller(ADF) test is used to test for the presence of

unit root in the returns series. The ADF test statistics is tested for the null

hypothesis of unit root at 1% level of significance. A formal application of ADF

test on log returns, rejects the null hypothesis of a unit root in the return series.

The value of ADF statistics is much lower than the critical value for the model

with trend (-2.5691) and without trend (-1.9416) at all the 4-lags shown in

Table 2. Hence, the hypothesis that the daily volatility in the Sensex index

over the period from January 2006 to July 2013 has a unit root is rejected.

ADF Test on SENSEX

With Trend Without Trend

Lags stat value stat value p-value

0 -40.3126 -40.3126 0.001

1 -40.3146 -30.2715 0.001

2 -40.2924 -25.3026 0.001

3 -40.2708 -22.4195 0.001

4 -40.2496 -20.3959 0.001

Table 2: ADF Test

3.2 Model Estimation

Maximum Likelihood estimation is performed for identification of param-

eters in both the models. Log likelihood is maximized numerically using the
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kalman covariance, details are given by Durbin and Koopman(2001) [2] and

[26]. Recently, full asymptotic solver based on maximum likelihood estima-

tion of state space models has been provided by Aston and Peng(2011) [18]

in SSM Toolbox of Matlab. The estimate and kalman functions of SSMODEL

class were used to perform the estimate and 1-step ahead prediction for SV

Model. The GARCH models are estimated using E4 toolbox which is based

on exact maximum likelihood optimization. Model specification and forecast-

ing was also performed using the E4 toolbox [10]. The model estimates of

GARCH(1,1) model after estimation are:

GARCH(1,1) model Parameter Estimates

Parameter Estimate Std. Error t-test

φ 0.027385 0.00593 4.6180

α 0.10127 0.0091045 11.1231

β 0.89225 0.008909 100.1522

Table 3: Garch(1,1) model Estimation

The model estimates of GARCH(1,1)-KF model in state space form after

estimation are:

GARCH(1,1)-KF model Parameter Estimates

Parameter Estimate Std. Dev. t-test Gradient

σt 2.6820 0.8377 3.2015 0.0000

(α + β) 0.9898 0.0047 -210.7738 0.0053

β 0.8971 0.0122 -73.4885 -0.0029

Table 4: Garch model Estimation with Kalman Filter

The model becomes y2
t = 2.6820+nt with [1− .9898B] nt = (1−0.8971B)vt
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Figure 4: ACF & PACF

The ACF and PACF are used as identification tools as they provide some

indication of the broad correlation characteristics of the returns [23]. Figure

4 shows graphically the ACF and PACF of squared innovations of GARCH

model, there is little indication of correlation in the residuals, which is clear

as there are no significant spikes. To conclude, the residuals of the GARCH

models are consistent with white noise. The figure shows that ACF die out

quickly, indicating that the GARCH process innovations are close to stationary.

This is an indication that GARCH models is adequate model class for this data

set.

The QML estimation method is used to estimate the model parameters

of SV. This is implemented by combining predefined observation Gaussian

noise with constant and autoregressive model using model concatenation in

SSMODEL class in the toolbox. Hence, the estimates are obtained by the

Kalman filter by treating εt and ηt as though they were normal and by mini-

mizing the prediction-error. To solve the QML estimates, estimate and kalman

function operations are performed on return series with the specified SV Model

parameters.

Table 5 shows the estimates of Stochastic Volatility model in state space
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form:

T =

[
1 0

0 0.9887

]
, R =

[
0

1

]
, Z =

[
1 1

]
, Ht = [4.834] , Q = [0.02138](17)

SV Model Parameters Estimates

Variables SV Model

φ1 0.9887

ζ 0.02138

ε 4.834

Table 5: SV Model Parameter Estimate

3.3 Evaluation Measures

Four measures are used to evaluate the forecast accuracy of the models,

namely, the mean square error (MSE), the root mean square error (RMSE),

the mean absolute error (MAE) and mean absolute percentage error (MAPE).

They are defined by:

MSE =
1

n

n∑
t=1

(σ̂t − σt)
2

RMSE =

√√√√ 1

n

n∑
t=1

(σ̂t − σt)2

MAE =
1

n

n∑
t=1

|σ̂t − σt|

MAPE =
1

n

n∑
t=1

(|σ̂t − σt)/σt| (18)

where, σ̂t is the forecast value and σt is the actual value calculated using

equation(19). Statistically, actual volatility is often estimated as the sample

standard deviation

σ̂ =

√√√√ 1

T − 1

T∑
t=1

(rt − µ)2 (19)
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where rt is the return on day t, and µ is the average return over the T -day

period. In this context, the model which has minimum forecast error using the

evaluation measure techinques mentioned above, is considered to be the best

volatility forecasting model. Table 6 clearly shows that both the models has

less forecast error values by using all four evaluation measures.

Forecast Error Statistics

GARCH(1,1) GARCH-KF SV Model

MSE 0.0985 0.0790 0.0340

RMSE 0.3138 0.2811 0.1843

MAE 0.2828 0.2487 0.1552

MAPE 0.3017 0.2695 0.1619

Table 6: Forecast Error Statistics

The result of the estimated volatility values by using Garch(1,1) and SV

model is shown in figure 5
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Figure 5: In Sample Volatility estimate

4 Comparison of Out of Sample forecast

After obtaining the daily volatility series, the 1-day ahead forecasts are

chosen for the forecasting horizon of 30 days. Furthermore, a period has to be
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chosen for estimating parameters and a period for predicting volatility. The

data series of period starting from 1/1/2006 to 7/7/2013 is used to estimate

the models. Therefore, the first day for which an out-of sample forecast is

obtained is 08/07/2013.

Using the estimated models, sequential 1-day ahead forecasts are made.

Hence, in total 30 daily volatility values are forecasted. With this setup, the

models are required to predict volatility for the above mentioned period. The

out of sample forecast for GARCH(1,1) and Stochastic Volatility models are

shown in figure 6.

Figure 7 shows the 30-day ahead point forecast of both the models plotted

along with the actual volatility, which is used as benchmark calculated using

equation (19). The graph shows that stochastic volatility has more appropriate

forecast as it has lesser residual errors when both models are estimated using

maximum-likelihood based technique.

5 Conclusion

This paper examined the performance of state space methods for fore-

casting stock market volatility of the Sensex index. The important mod-

els considered here are the GARCH(1,1), GARCH(1,1)-KF and SV models.

GARCH(1,1)-KF is an alternative estimation of GARCH(1,1) model using the
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Figure 7: Volatility Forecast Comparison

Kalman filter approach with the model representation in state space form.

To investigate the forecasting ability of the models we fit the models to

daily closing returns and estimate the models using SSM and E4 toolbox in

Matlab. Forecast errors based on return forecasts of the estimates and the

actual volatility are used to evaluate the out-of-sample forecasting ability of the

three models. It was found that the SV model forecasts are more precise based

on the evaluation measures for 30-day ahead forecast. The results also show

evidence in favour of the Kalman filter approach as compared to GARCH(1,1)

estimation methods.

The empirical results of this paper provide strong support for the appli-

cation of the state space model in volatility forecasting. Finally, we have

presented a simple forecasting application of the Kalman Filter, which has

proved useful to forecast the stock market data. For future research, it would

be interesting to explore different fat tailed distribution and time varying KF

model to fit the above models in state space form.

References

[1] Choudhry, T. and Wu, H. Forecasting Ability of GARCH vs Kalman

Filter Method: Evidence from Daily UK Time-Varying Beta. Journal of

Forecasting, 27:670–689, 2008.



Neha Saini and Anil Kumar Mittal 97

[2] J. Durbin and S. J. Koopman. Time Series Analysis by State Space Meth-

ods. Oxford University Press, 2001.

[3] J.D. Hamilton. A new approach to the economic analysis of nonstationary

time series. Econometrica, 57:357–384, 1989.

[4] N. Shephard. Stochastic Volatility: Selected Readings,. Oxford, UK, Ox-

ford University Press., 2nd edition, 2005.

[5] S. J. Taylor. Modelling Financial Times Series. John Wiley & Sons,

Inc.,Chichester, 1986.

[6] Tsyplakov, A. Revealing the arcane: an introduction to the art of stochas-

tic volatility models. MPRA Paper No. 25511, September 2010.

[7] Harvey, A. C. and Shephard, N. Estimation of an Asymmetric Stochastic

Volatility Model for Asset Returns. Journal of Business & Economic

Statistics, 14(4):429–434, 1996.

[8] S. Ossandon and N. Bahamonde. On the nonlinear estimation of garch

models using an extended kalman filter. Proceedings of the World Congress

on Engineering, 1, 2011.

[9] J. Muller, J. Kanniainen, and R. Piche. Calibration of garch models

using concurrent accelerated random search. Applied Mathematics and

Computation, 2013.

[10] Jerez, M., Casals, J., and Sotoca, S. Signal Extraction for Linear State-

Space Models. Lambert Academic Publishing GmbH & Co.. KG, Saarbr-

cken (Germany)., 2011.

[11] M. Marius. Assessing volatility forecasting models: Why garch models

take the lead. Romanian Journal of Economic Forecasting, 12:42–65, 2009.

[12] Yu, J. Forecasting volatility in the New Zealand stock market. Applied

Financial Economics, 12:193–202, 2002.

[13] T.G. Andersen, T. Bollerslev, P.F. Christoffersen, and F.X. Diebold.

Volatility forecasting. Working Paper 11188, National Bureau of Eco-

nomic Research, Cambridge, MA, USA., 2005.



98 On the predictive ability of GARCH and SV models of volatility ...

[14] Pan, H. and Zhang, Z. Forecasting Financial Volatility: Evidence from

Chinese Stock Market. Working paper in Economics and Finance No.

06/02, February 2006.

[15] Bombay stock exchange. url: ”http://www.bseindia.com/histdata/hindices.asp”.

[16] Peng, J. Y. and Aston, J. A. D. The State Space Models toolbox for

MATLAB. Journal of Statistical Software, 41(6):1–26, May 2011. Software

available at http://sourceforge.net/projects/ssmodels.

[17] Timmer, J. and Weigend, A.S. Modeling volatility using state space mod-

els. International Journal of Neural Systems, 8(4):385–398, August 1997.

[18] Peng, J. Y. and Aston, J. A. D. State Space Models Manual. Institute of

Information Science, University of Warwick, July 2011.

[19] D. Alberg, H. Shalit, and R. Yosef. Estimating stock market volatility

using asymmetric garch models. Applied Financial Economics, 18:1201–

1208, 2008.

[20] Ghysels, E., Harvey, A. C., and Renault, E. Stochastic volatility, vol-

ume 14. Handbook of Statistics, Amsterdam, The Netherlands: North-

Holland, 1996.

[21] S. Kim, N. Shephard, and S. Chib. Stochastic volatility: Likelihood infer-

ence and comparison with ARCH models. Review of Economic Studies,

65(3):361–393, 1998.

[22] P. H. Franses and D. V. Dijk. Non-linear Time Series Models in Empirical

Finance. Cambridge University Press, Cambridge, UK., 2000.

[23] S. Mergner. Applications of State Space Models in Finance. PhD thesis,

Georg-August-University at Gottingen, 2009.

[24] Shimada, J. and Tsukuda, Y. Estimation of Stochastic Volatility Mod-

els :An Approximation to the Nonlinear State Space Representation.

In Econometric Society 2004 Far Eastern Meetings, number 611. Tokyo

Metropolitan University, February 2004.



Neha Saini and Anil Kumar Mittal 99

[25] Neha Saini and Anil Kumar Mittal. Forecasting volatility in indian stock

market using state space models. Journal of Statistical and Econometric

Methods,, 3, 2014.

[26] J. Durbin. State space and unobserved component models. Cambridge

University Press, 2004.


