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Abstract 

This paper develops two new classes of estimators measuring the distributive 

effects of a treatment on a population. Using imputation methods, empirical 

quantile and bootstrap simulations, we managed to define and study the properties 

of the two classes. The first class is Imputation Based Treatment Effect on 

distribution based on rank preservation assumption, basically the effect of 

treatment on the distribution of potential outcome. The second class is Imputation 

Based Quantile Treatment Effect which, according to this work is supposed to be 

the true Quantile Treatment Effect since no rank preservation assumption is made. 

The second class is based on the fact that each quantile before the treatment is 

tracked after the treatment and the estimator compares the same group before and 

after. The first class of estimators (for example the one generated by k-Nearest 

Neighbors imputation method) performs well as classic Quantile Treatment Effect 

                                                 

1
 Pan African University Institute for Basic Sciences, Technology and Innovation (PAUISTI), 

Kenya. 
2
 Machakos University, .PO Box 136-90100; Machakos, Kenya. 

3
 Institut Sous régional de Statistique et d’Economie Appliquée (ISSEA) 

P.O Box 294; Yaoundé, Cameroon. 

 

Article Info: Received: January 23, 2018. Revised : March 15, 2018 

           Published online : April 5, 2018 

 
 



44 Distributive and Quantile Treatment Effect Estimator, Imputation Based… 

 

given the simulation result. When applied to Lalonde real data set, it performs 

better than classic Quantile Treatment Effect and Firpo’s semi parametric 

estimator especially for middle quantiles. Also, we found that there is a significant 

difference between the two classes of estimators meaning that the bias caused by 

rank preservation assumption is quite significant. 

 

Mathematics Subject Classification: 62E15 
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1  Introduction  

Quantitative Impact Evaluation techniques have become the core of impact 

evaluation process. Most of the projects or programs implemented are in need of a 

strong and complete evaluation process from design, monitoring to final 

assessment. Nowadays, saying that a program has had an impact is no more 

enough, policy makers are interested in the quantitative value of the impact. In the 

literature, most of the quantitative impact evaluation methods focus on the average 

impact of the program (ATE) of a given population. If we take for example the 

difference in difference method, it gives you the average impact assuming that the 

potential outcome is known before and after the implementation of the program. 

Presenting the average impact as the effect of the program is a way of assuming 

that the effect of the program is homogenous therefore, the impact is made 

constant across all units. It is a very strong assumption that cannot be possible in 

real life because units are always different. Consequently, there is heterogeneity in 

the effects of the program. Meanwhile, the average effect of the program can be 

low or higher because of some extreme values of effects. In fact, as units are 

different or even if they are almost the same accordingly to covariates collected, 

they could not react to the project the same way. Some may have a greater impact 

and others a lower impact. As consequence, the average impact can be affected by 
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some units considered atypical. Since ATE is subjected to strong hypothesis and 

sensitive to extreme value of effect, but up to now cannot be put aside because 

classical literature is not able to isolate them, various researchers have been 

working on new methods to overcome those weaknesses of ATE. 

To fill the drawback of ATE, to respond to the needs of policy makers and to give 

more precisions about the effect of a given program, researchers have started to 

work on methods that can inform on how program has affected a whole population 

or a specific sub group of population in the targeted population. These methods 

are called by Imbens et al. ([1]) quantile and distributional effects methods. These 

methods aim to come up with the effect of the program in sub group of the 

targeted population, for a specific section of the distribution of the potential 

outcome, or more to give the effect on the whole distribution of potential outcome. 

First works done in this area of research in statistics were in the seventies. 

Doksum ([2]) and Lehman ([3]) were the first to define the quantile treatment 

effect. Later on, other researchers like Bitler et al. ([4]) estimate the quantile 

treatment effects in a randomized evaluation of a job training program. Firpo ([5]) 

developed methods for estimating QTE in observational studies given 

unconfoundedness. Abadie et al. ([6]) and Chernozhukov et al. ([7]) studied 

quantile treatment effects in instrumental variables settings and many others. All 

these works were done in the classical context of impact evaluation that is known 

in the literature. Despite the precision given by these new methods, it is still 

difficult, in the literature, to obtain individual effect consequently the true effect 

on the distribution. So many assumptions are often made before coming up with 

acceptable impact.  

In fact, comparing the quantiles of the distribution before and after the treatment 

does not give the effect on the distribution if rank preservation is not taken as an 

assumption. As a reminder, rank preservation assumption for QTE globally states 

that if a unit is in the quantile before the treatment assignment, after the treatment 

it will stay in the same quantile. That is a very strong assumption that is difficult 
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to achieve no matter the population and the program. Other researchers have made 

a weaker assumption which is the monotonicity of the program meaning that for 

two units, the treatment will keep their position in the final distribution. All these 

assumptions are difficult to verify and are not really achievable in real life. A way 

of bypassing these assumptions is to obtain individual effect then compute 

quantile or distributional effects. A method like propensity score matching can 

help in this but with a small sample and all the weaknesses leaning on the quality 

of the control group, the results are not stable and depend on the control group. 

Following the work recently done by Kenfac et al ([8]) where they managed to 

estimate counterfactual using imputation methods and obtain good ATE or even 

better ATE in specific contexts, they finally defined what they called Imputation 

Based Treatment Effect (IB-TE) from which individual effects can be drawn.  

This paper uses the results of [8] to propose a new approach of obtaining quantile 

treatment effects and impact on the distribution. Using IB-TE estimators, with the 

good imputation method associated with bootstrap, we can achieve that goal. In 

fact, having individual effect by completing sample with an estimate of 

counterfactual means that each unit of the sample can be ranked and follow before 

and after the treatment. Using this method can help to obtain the true quantile 

treatment effects without any assumption and better effects on distribution. The 

advantage of this approach is that no major assumption is made regarding the 

assignment process or regarding the rank preservation assumption which are 

sources of bias in classical literature. Meanwhile using imputation methods in 

context where more than half the observation is missing; a bias might be generated 

though according to the results obtain by Kenfac et al ([8]), is less than the bias 

due to assumption taken in classical methods. The results obtained are compared 

to the one from classic methods not completing the sample.  

The rest of the paper is organized as follows: section two discusses the main and 

recent methods used in literature to measure distributional effects and quantile 

treatment effects. Section three presents the new class of distributional and 
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quantile treatment effect based on work done in [8]. Section 4 is dedicated to 

simulations studies. Section 5 present a small application using a classic data set. 

 

2  Measuring Distributional Treatment Effects in the 

Literature 

There are two branches of the literature dealing with distributional treatment 

effects and both of them are related to distributions. The first branch uses the joint 

distribution of potential outcome before and after the treatment 0 1( , )F Y Y  to 

address the problem of distributional effects of treatment. The second branch uses 

the marginal distribution of potential outcome before 0( )F Y  and after 1( )F Y . 

This literature review is presented according to these two branches knowing that 

the second branch is the more developed because of its usefulness compared to the 

first one. 

2.1   Joint Distribution of Potential Outcome Approach 

This strand of the literature was not much developed. Few researchers have work 

on estimating the distributional treatment effect using a joint distribution of the 

two potential outcomes 0 1( , )Y Y  that is going to be used to compute the difference 

in quantiles between the two marginal distributions of potential outcome. 

Hoeffding ([9]) and Fréchet ([10]) pioneer this part of the literature with their 

work on probability distribution. Then, using their results in the aim of assessing 

distributional impact of a program, Heckman et al. ([11]) and Heckman and Smith 

([12], [13]) found the joint distribution of 0 1( , )Y Y  using the marginal distribution 

of 0Y  and 1Y  in a randomized control experiment, a practical case. Later on, 

researcher such as Aakvik et al. ([14]) used joint distribution to identify treatment 

effects of discrete outcome when the treatment effects are heterogeneous. An 

improvement of that work can be read in Aakvik et al. ([15]). Carneiro et al. ([16], 
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[17]) in their research proposed an approach to estimate directly or to bound the 

distribution using the method common in factor analysis but applied to model 

counterfactual distributions. If potential outcomes are generated by a low 

dimensional set of factors, then it is possible to estimate the distributions of factors 

and generate distributions of the counterfactuals. Here, low dimensional refers to 

the number of factors relative to the number of measured outcomes. For a 

summary and other development of this branch of the literature, see Section 2 of 

Abbring et al. ([18]).  

2.2  Marginal Distribution of Potential Outcome Approach 

Works presented here lean on estimation of the marginal distribution of 

potential outcome before the treatment and after the treatment. Lehmann ([3]) and 

Doksum ([2]) were the first to define the quantile treatment effect as the difference 

between the same quantile in the distribution after and before the treatment under 

rank preservation assumption. The definition that they used, coming from a shift 

function between two distributions under nonlinear assumption, is at the core of 

the development around quantile treatment effects. 

Abadie et al. ([19]) used a new instrumental variable approach that measure 

program impact on quantiles of the distribution of potential outcome. At the same 

time, assuming heterogeneity in the effects of the program, the monotonicity 

assumption developed by Imbens and Angrist ([20]) or the uniformity assumption 

presented in Heckman and Vytlacil ([21]), they estimated the Local Quantile 

Treatment Effect (LQTE) which is a kind of proxy of LATE in the classical IV 

literature. They used the identification results in Abadie ([22]); see also Imbens 

and Rubin ([23]) for identification of the marginal potential distributions of 

compliers when no covariates are present, and Abadie ([24]) for bootstrap tests of 

distributional treatment effects in a same framework. Chernozhukov and Hansen 

([7]) also proposed an IV model for quantile treatment effects in the presence of 

endogeneity and under rank invariance assumption. Later on, more development 



Paul B. Kenfac Dongmezo, P. Mwita and I. Kamga 49  

in this area were done by [25]. In line with IV quantile regression, see also [26] for 

their work on estimating the distributional effects of an endogenous treatment that 

varies at the group level when there are group-level unobservable.  

Heckman and Vytlacil ([21]) also proposed a non-parametric estimators of 

treatment effects using Marginal Treatment Effect assuming at the same time 

heterogeneity in choice and response. They developed what is called local 

instrumental variable. Later on, Carneiro and Lee ([27]) extended that method to 

the estimation of not only means, but also distributions of potential outcomes. The 

newly developed method is illustrated by applying it to changes in college 

enrolment and wage inequality using data from the National Longitudinal Survey 

of Youth of 1979. 

Athey and Imbens ([28]) proposed an estimation of quantile treatment effect 

under the assumption of difference in difference methods meaning data are 

available before and after the treatment for all units (kind of panel data analysis) 

and under rank preservation assumption. Their approach provides an estimate of 

the entire counterfactual distribution of outcomes that would have been 

experienced by the treatment group in the absence of the treatment and likewise 

for the untreated group in the presence of the treatment. Firpo ([5]) proposed a 

semi parametric estimator of QTE assuming that selection to treatment is based on 

observable characteristics. Root-N consistency, asymptotic normality, and 

achievement of the semiparametric efficiency bound was shown for that estimator. 

Ping Yu ([29]) proposed an estimator of marginal quantile treatment effects 

meaning conditional quantile on the covariates and rank in the distribution. The 

base of his work is the following definition of marginal quantile treatment effect 

1 0, ,
( , ) ( , ) ( , )

D D

MQTE

D D DY X U Y X U
x u Q x u Q x u     . After taking rank preservation 

assumption, he developed sharp bounds for the quantile treatment effect with and 

without the monotonicity assumption.  

Most of the literature presented here focuses on the IV method and its 

derivatives. Also, many assumptions are considered for implementation of such 
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methods. The main and common one is unconfoundedness which is difficult to 

verify. Another one at the core of assessment of distributional effects of treatment 

is heterogeneity of the response which is more logical given heterogeneity of 

population. With the IV method, there is a need of existence for good instruments 

satisfying some conditions that is not always easy to verify. Rank preservation 

assumption is as well assumed. Violation of these assumptions can significantly 

affect those methods especially when results are subjected to their verification.  

The common problem of these two branches of the literature is the 

counterfactual. In fact, most of these methods suffer from the fact that to estimate 

marginal distribution or joint distribution of potential outcome, the full set of 

observations is needed. Given that it is not possible to observe 0Y  and 1Y  at the 

same time, the previous methods suffer from that incompletion even if the method 

of estimation of the distribution is good. This paper, in order to simplify the 

problem of impact evaluation and from a statistical point of view solve, as Kenfac 

et al ([8]), the problem of distributional effects from the source as Rubin 

highlighted, assuming only that counterfactual is a missing value that can be 

estimated by specific methods according to the assignment process. 

 

3  Imputation Based Distributional Treatment Effects  

This section develops the framework of Imputation Based Distributional 

Effect of a treatment, then shows how estimators are derived from imputation 

methods, their properties and what their specificities are compared to others in the 

same literature. Some tools useful for development of estimators such as quantiles 

are also briefly presented. 

3.1  IB-TE Framework Description 

The approach developed in this paper is inspired by the work of [8]. In their 

work, their aim was to find out if imputation methods can be used to solve the 
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problem of impact evaluation in a better manner. Considering counterfactual as a 

missing value from a statistical point of view, different methods are used to 

estimate it. As a consequence, selection bias, unconfoundedness and rank 

preservation assumption which are some of important assumptions that should be 

considered and verified when assessing distributional effects of a program, are 

taken into account by the imputation method. Otherwise, bootstrap associated to 

the imputation method is supposed to soften the bias due to not taking into account 

those assumptions.  

The framework of IB-TE estimators is the following. We consider a treatment 

assignment defined by iT , equal to 1 if unit i  is treated and 0 otherwise. The 

potential outcomes observed are noted 
,0iY  if unit i  is not treated and 

,1iY  if 

unit is treated. Assuming that we have a global sample of n  units 1n  are treated, 

1n n  assumed as control group, after imputation the two distributions are given 

by: 

Treated group:  
1 11,1 2,1 ,1 1,1 ,1, ,..., , ,...,n n nTrCom Y Y Y Y Y % %  

Control group:  
1 11,0 2,0 ,0 1,0 ,0, ,..., , ,...,n n nCoCom Y Y Y Y Y % % %  

where potential outcomes with tilde are estimated counterfactual by a given 

imputation method. Let’s also consider a set of covariates X  corresponding to 

characteristics of different units.  

For the imputation methods, three imputation methods will be mainly 

considered from the works of [8] which are Multiple Imputation, Quantile 

Regression in case we have data before and after the treatment and finally linear 

regression (deterministic or random). In additions, other imputation methods like 

k-NN will be tested as well. 

The definition of empirical quantile given below will be used in this paper.  

Definition: Quantile 

Let Y  be a real valued random variable; and Let 0 1p   be a probability. The 
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thp  quantile is the smallest number y ΅  such that ( ) 1P Y y p   . 

Assuming that Y  is a continuous distribution which is often our case in IE 

framework, the thp  quantile can be defined in many ways as:  

 The thp  quantile is the number y ΅  such that ( ) 1P Y y p    ;  

  The thp  quantile is the number y ΅  such that ( )P Y y p   ;  

 Considering the distribution function of Y  being 

( ) ( )F y P Y y y    ΅ ; the thp  quantile is the number y ΅  such 

that ( )F y p   

 The thp  quantile is 1( ) ( ), (0,1)Q p F p p  . 

In this work, the quantiles used for simulation will be deciles 

(
1

, 1,2,...,9
10

p t t   ) and for application can be centiles 

(
1

, 1, 2,...,99
100

p t t   ) depending on the size of the sample.  

Besides the theoretical definition of quantile, the one that is going to be used here 

is the definition of the empirical quantile.  

Given a series of data 1 2, ,..., ny y y  with a common distribution, we want to 

estimate the thp  quantile ( )Q p  with p  as a probability. The thp  quantile is 

such y  that ( )P Y y p  . For any y  we can estimate ( )P Y y  using 

frequencies, the estimate is therefore:  

#( : )
ˆ i iy y y
p

n


  

The empirical quantile is such that p̂  is close to p . Practically; to compute the 

empirical quantile, two steps have to be taken: (i) consider an integer m  such 

that /p m n  (we may round pn  to the closest integer); (ii) the estimate of 

( )Q p  is the 
thm  largest observation in the series. 

 
 



Paul B. Kenfac Dongmezo, P. Mwita and I. Kamga 53  

3.2  Effect across distribution and subgroups: IB-TED 

Given that the counterfactual is estimated as a missing value, the sample of the 

treatment group and control group are completed. For treatment group, the sample 

is completed by an estimated value of what would have been the potential 

outcome for those who are not treated but considered as control. The same thing is 

done when considering those who are not treated in the same population. Using 

those estimations, individual effects is given by 

1 0 1 0
ˆ ( ) ( )(1 )i i i i i i iY Y T Y Y T     % % . 

Imputation Based Treatment Effect on Distribution (IB-TED) 

To obtain the imputation based effect of the treatment on the distribution, two 

samples have to be compared: Treatment completed by imputation 

 
1 11,1 2,1 ,1 1,1 ,1, ,..., , ,...,n n nTrCom Y Y Y Y Y % %  and control group completed 

 
1 11,0 2,0 ,0 1,0 ,0, ,..., , ,...,n n nCoCom Y Y Y Y Y % % % . The comparison is made using quantile 

difference, or mean and median effects of distribution of effects given by

 1 2
ˆ ˆ ˆ, ,..., n   . Given a probability   we define:  

   
1 1 1 11,1 2,1 ,1 1,1 ,1 1,0 2,0 ,0 1,0 ,0( ) , ,..., , ,..., , ,..., , ,...,n n n n n nIB TED Y Y Y Y Y Y Y Y Y Y     % % % % %  

With ()  as the quantile of order   of the distribution in brackets.  

Imputation Based Treatment Effect on Distribution in sub population 

 (IB-TED ( X x )) 

Assuming that covariates are available, the effect can be defined for a subgroup of 

the population on interest. For example, if it is suspected that a treatment can have 

different effects depending on the sex, the model is developed generally but the 

distributional effect according to the sex can be computed.  

Given a probability   and subgroup defined by X x , we define:  

   
1 1 1 11,1 2,1 ,1 1,1 ,1 1,0 2,0 ,0 1,0 ,0( ) , ,..., , ,..., , ,..., , ,...,n n n n n nIB TED X x Y Y Y Y Y X x Y Y Y Y Y X x        % % % % %

 

If the subsample X x  is all taken, the ( )IB ATE X x   can be computed and 
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compared to the general IB ATE .  

Properties of this class of estimators will be derived empirically using simulations 

and bootstrap. By increasingly sampling the population, the bias, consistency and 

convergence will be studied. 

3.3  Effects on Quantiles : IB-QTE 

To obtain the effect of the treatment on the distribution, the quantiles are 

considered to be the ones affected by the distribution. Taking just the difference 

between quantile of two groups does not give the true QTE but just the effect on 

the distribution. By assuming rank preservation or rank invariance for most of the 

methods in the literature, helps to ensure that when the difference of two quantiles 

is done, we obtain the treatment effect since the same units are compared in 

treatment and control. In the method developed here, such assumption is not made. 

Given that we have individual effects, we can track all the units of a specific 

quantile of the distribution before the treatment and find its associate treated 

potential outcome after the treatment to form the after-treatment quantile group. 

Two steps have to be taken to identify the IB-QTE:  

(i) Identify the quantile of belonging for each unit in the distribution of the 

control group given by the following sample  
1 11,0 2,0 ,0 1,0 ,0, ,..., , ,...,n n nY Y Y Y Y

% % %

and identify the value of the quantile as well which probably correspond to 

the value of potential outcome of given unit;  

(ii) For each quantile group identified previously, create the image group in 

the treatment sample given by  
1 11,1 2,1 ,1 1,1 ,1, ,..., , ,...,n n nY Y Y Y Y

% % ;  

(iii) The average or median change observed in the quantile control group 

compared to the image group in the treatment sample is the IB-QTE.  

Let’s   be a probability such that 0 1  , let 0 ( )Q   the 
th  quantile group 

and 0 ( )q   the value of the 
th  quantile in the completed distribution of control 

group (CoCom) and 1( )Q   the 
th  quantile group and 1( )q   the value of the 
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th  quantile in the completed distribution of treated group (TrCom). Let also 

assume that 0 ( )q   is attained for the 0i  unit in the CoCom distribution.  

 

 

1) The Imputation Based Quantile Treatment is defined by:  

 
1 1 00 0

* * *

0 0 0( ) ( )
i i iIB QTE Q Y q Y Y       

with 
1*

1

1

i

i

i

Y if the unit i is treated
Y

Y if the unit i not treated


 


%
 and 

0*

0

0

i

i

i

Y if the unit i is not treated
Y

Y if the unit i is treated


 


%
       

2) The Imputation Based Average Quantile Treatment Effect is defined by:  

     * *

0 1 0 0 0( ) ( ) ( )i iIB AQTE Q E Y i Q E Y i Q        

3) The Imputation Based Median Quantile Treatment Effect can be as well 

defined by:  

     * *

0 1 0 0 0( ) ( ) ( )i iIB MedQTE Q Med Y i Q Med Y i Q        

With Med as the median of the group in bracket in other term the 0.5th
 quantile. 

3.4  Comparisons and Differences 

The two classes of estimators defined previously both access the distributional 

effect of the program or treatment but both of them are not QTE. The IB-TED is 

the effect of the treatment on the whole distribution of potential outcome. Its value 

is the answer to the question of how much the distribution of the potential 

outcome shifted positively or negatively depending on the sign of the effect. A 

unit in the first decile can find itself in the 8th decile it doesn’t matter as long as it 

contributes to shift upward the distribution. The IB-QTE is really the Quantile 

Treatment Effect since it measured on how a given quantile changed after the 
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treatment. All the units in a specific quantile are tracked and they are put in the 

same group after the treatment. That group will then be compared to the initial 

quantile where they were before the treatment. The difference obtained is what is 

called in this study the true QTE. To obtain that result, no assumption is made and 

it is possible since imputation can help us to compute the individual effect as 

stated in [8].  

Therefore, the main difference in the first one is the effect on the distribution 

while in the second one is the real effect on the quantile defined before the 

treatment assignment. 

 

 

4  Simulations and Summary of Results 

The main objective of this section is to use simulations to test our hypothesis 

that when using imputation before applying empirical quantiles can lead to better 

estimators than using empirical quantiles straight forward or any other method. In 

this section, a description of simulation procedure and parameters is done, then 

simulations are performed under Random Assignment (MCAR missingness) 

hypothesis and under Deterministic Assignment (MAR or NMAR missingness) 

hypothesis. 

 

4.1  Description of Simulation Procedure 

The aim of this simulation is to show that using the appropriate imputation 

method to estimate counterfactual; we can come up with better distributional 

effects including quantile treatment effects.  

The simulation recreates a hypothetical situation where a treatment (project or 

program) has to be assigned in a population with all the parameters being known. 

For example, if the assignment process is well known, the potential outcome is 

known, decision to treat everyone or not to treat everyone can be taken so that 

computation of the true impact of the project on the distribution of outcome can be 
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done easily. In brief, all parameters are mastered and they can be modified to 

obtain different results according to the objectives fixed. Therefore, for a given 

assignment process, simulation results will tell which imputation method gives 

closer results to the true distributional impact. 

In the simulation exercise, a data base of 10,000 cases is generated. The 

potential outcome ( bY ) and the covariates before the treatment assignment or 

before the program are generated. Since we are in the simulation, a situation 

where by all units are not treated ( 2NTY ) and a situation where all units are treated 

( 2TY ) is simulated at the same time. From that, the true QTE is computed in the 

overall population as follows 2 2( ) ( ) ( )true T NTQTE Y Y     where   is a given 

probability. The quantile treatment effect computed from the population is 

basically the true QTE given the way the data are simulated. 

The next step of simulation is to create the treatment variable (T ), by deciding 

which case is treated and which case is not treated according to the assignment 

process chosen. In this study, two situations are considered: Random assignment 

leading to MCAR missingness mechanism and Controlled assignment leading to 

MAR or NMAR missingness mechanism. If 1T   the case is treated and if 

0T   the case is not treated. From this stage of simulation, the classic and most 

used distributional impact of treatment in the literature under rank preservation 

assumption can be computed by: 
_ 2 2( ) ( 1) ( 0)Class true T NTQTE Y T Y T      , it 

is just the difference between quantile in the treated group and the same quantile 

for the control group.  

The potential outcome in the reality is now generated in the variable aY  as 

follows: 

 For non-treated ( 0T  ), 2a NTY Y , the value of 2NTY  is just reported 

when 0T  ;  

 For treated ( 1T  ), 2a TY Y , the value of 2TY  is just reported when 

1T  .  
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Using aY  the potential outcome with missing values are generated ( TY and NTY ), 

if you are treated, what would have happened if they were not treated is a missing 

value and also if they are not treated, what would have happened if you were 

treated is consider as a missing value.  

 For treatment case, create TY  as follows: report all observations of 

potential outcome for treated and for non-treated considered as missing 

values: T aY Y  if the unit is treated and . ( )TY miss  if the unit is not 

treated and has to be imputed;  

 For non-treatment case, create NTY  as follows: report all observations of 

potential outcome for non-treated and for treated consider as missing 

values: NT aY Y  if the unit is not treated and . ( )NTY miss  if the unit is 

treated and has to be imputed. 

The classical quantile treatment effect can also be computed using aY  the 

potential outcome in the reality as follow: 

_ ( ) ( 1) ( 0)Class true a aQTE Y T Y T      . One of the major weakness of this 

estimator is that it assumes the rank preservation assumption. 

Knowing that in our simulation we hypothetically have all potential outcomes, 

the real estimators of the distributional impact can be computed as well as an 

estimation of values considered as missing. The aim being to estimate missing 

values using imputation methods then compute imputation based distributional 

impact. Those estimators will be compared to the distributional estimators 

computed using the population and to the ones obtained by classical methods 

(classical empirical quantiles).  

Under the large class of existing imputation methods, the chosen ones in this 

study are: Mean imputation, Random imputation, Linear regression imputation 

(deterministic and random), Nearest Neighbour imputation, Multiple Imputation, 

Maximum Likelihood imputation, Propensity score matching imputation and 

finally Quantile regression imputation which is not commonly used.  

To test the performance of our computed Imputation Based Distributional 
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Treatment Effect estimators (IB-QTE and IB-TED), the average bias is computed 

as follows: ( ˆ( )AvrgBias E    ) and compared to the one for classical method. 

Of course, this is done under a bootstrap procedure of 1000 replications which will 

give us variance and standard deviation.  

Globally, the simulation shows that most of our estimators are biased no 

matter the assumptions and the assignment process and the bias decreases slowly. 

Checking out the variances of each estimator, fortunately it tends to zero as the 

sample size increases and for almost all IB-QTE estimators they are smaller than 

classic QTE estimators. The conclusion is straight, IB-QTE and IB-TED 

estimators can be used to estimate distributional effect of a treatment. 

4.2  Random Assignment Hypothesis Results (MCAR) 

Results of this section are twofold; the first result is the quantile treatment effect in 

both cases reduced sample and sample completed using imputation methods under 

rank preservation assumption. The second result will be classical quantile 

treatment effect under rank preservation assumption compared to IB-QTE without 

assuming rank preservation. 

4.2.1- RA under rank preservation assumption: Effect on the whole 

distribution (IB-TED) 

Under rank preservation assumption, the simulations show that the bias of all 

estimators (Classic QTE and IB_TED) is decreasing too slowly and will probably 

never get to zero. Therefore, it is clear that we are working with biased estimators 

and the best one will be the one with the smallest bias and smallest variance (small 

and convergent variance). From simulation results, it is clear that IB- TED 

estimators are far better than Classic QTE in almost all the cases except few cases 

related to sample size and small quantiles. In fact, for small quantiles (1
st
 and 2

nd
 

decile) classic QTE performs as well as the IB- TED, it is even better for the 1
st
 

decile than all IB- TED estimators especially for small sample (N<200). Out of 
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those specific cases highlighted previously, IB-QTE estimators are better than 

classic QTE. For example, the k-NN imputation which is among the best IB-TED 

gives the best results for large sample (N>200) and no matter the quantile selected. 

The k-NN IB- TED is always among the three best estimators in our simulations. 

For small samples, PSM IB-TED and k-NN IB-TED are sharing the first and the 

second position in term of estimators with the smallest bias. For example, for the 

sample size of 50 and the 8
th

 decile, the bias for classic QTE is 4.6 while for PSM 

IB- TED it is 2.5 and for k-NN it is 6.5. For the same sample size and for the 5
th

 

decile (the median), the bias is 3.5 for PSM IB- TED and 7 for k-NN.  

4.2.2- RA without rank preservation assumption: IB-QTE 

Without assuming rank preservation, each unit in a quantile before the treatment 

will be followed after the treatment and the two groups will be compared to get 

the true quantile treatment effect based on the distribution of the potential outcome 

before the treatment. In other words, units in the th  quantile will be grouped to 

form the comparison group after treatment: this is how we define the true Quantile 

Treatment Effect (IB-QTE). From the result of simulation, outcomes are a bit 

mitigated at first sight, they show globally that IB-QTE are as good as the classic 

QTE. For small quantiles no matter the sample size, classic QTE are slightly better 

than most of IB-QTE estimators but for quantile above median, IB-QTE are far 

better. Taking for example linear regression imputation, for two different sample 

sizes (50 and 100) the IB-QTE obtained from that is better than classic QTE 

especially for larges quantiles but less good for small quantiles. For example, for 

N=50 the bias for IB-QTE is small for the 8
th

 and 9
th

 deciles and smaller than 

classic QTE bias. For large samples, in general, classic QTE are better than 

IB-QTE for extreme quantile (1
st
 decile and 9

th
 decile quantile) but for the other 

ones in between they are not better. The IB-QTE that are good in average are ML 

IB-QTE, k-NN IB-QTE and MI IB-QTE compared to classic QTE.  
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4.3 Assignment controlled by Variables (NMAR or MAR) 

Considering that the assignment process depends on a given variable or 

combinations of some given variables. When a threshold is established, the 

population is divided in two parts and the group below the threshold is treated 

while the group above is not and they are compared with each other. 

 

4.3.1- NMAR and MAR under rank preservation assumption: Effect on the 

whole distribution (IB-TED) 

Assuming NMAR or MAR in simulation and under rank preservation assumption, 

the simulations results show that for small samples (N<200), IB-TED produced 

using deterministic imputation and random imputation are good as classical 

imputation for big quantiles but better for small quantiles. Taking for example the 

N=50, the bias of the IB-TED for deterministic linear regression is smaller than 

the bias due to classic QTE for the first eight deciles and only bigger for the 9
th

 

decile. For the bigger sample size (N>200), the k-NN IB-TED is the best method 

for almost all the quantiles. For example, for N=500 the bias for the IB-TED for 

the first sixth deciles is smaller than the bias for the classic QTE but almost the 

same and a little bit greater for the last three. In the case of random assignment, on 

average the best imputation methods are deterministic linear regression IB-TED 

for small sample and k-NN IB-TED for large samples.  

 

4.3.2- NMAR and MAR without rank preservation assumption: IB-QTE 

Assuming that the assignment process is NMAR or MAR, the true QTE called 

here IB-QTE is estimated using imputation method. The idea here is to follow 

each quantile after the treatment and obtain the treatment effect on that quantile. 

Comparison between IB-QTE and classic QTE shows that results are mitigated. In 

some cases, classic QTE is better while in some others it is IB-QTE which are 

better. The only constancy is that IB-QTE is far better than classic QTE no matter 

the sample size for middle deciles (3
rd

, 4
th

, 5
th

, 6
th

 and 7
th

 deciles). Therefore, 

under NMAR or MAR and without rank preservation assumption, IB-QTE 



62 Distributive and Quantile Treatment Effect Estimator, Imputation Based… 

 

estimators are better in estimating the middle decile of the distributional effect of a 

treatment. The chosen estimators are k-NN IB-QTE and ML IB-QTE for small 

sample and k-NN IB-QTE, ML IB-QTE and MI IB-QTE for large sample. As an 

example of this result, considering N=50, IB-QTE estimators like k-NN, ML and 

MI are better than classic estimators especially for middle deciles.  

 

 

5  Applications 

After simulations, where the results showed that IB-TED and IB-QTE 

estimators can perform as well as classic quantile treatment effect estimators 

otherwise better in some cases, the next step is to apply these results to real set of 

data since simulation are always questionable.  

Firstly, the Lalonde ([30]) data set is considered for application. Lalonde data 

set (1986) contain the treated and control units from the male sub-sample from the 

National Supported Work Demonstration. The NSW Demonstration [Manpower 

Demonstration Research Corporation (MDRC) 1983 was a federally and privately 

funded program implemented in the mid-1970s to provide work experience for a 

period of 6-18 months to individuals who had faced economic and social problems 

prior to enrolment in the program. Those randomly selected to join the program 

participated in various types of work, such as restaurant and construction work. 

Pre-intervention variables were collected by the program to allow Lalonde to use 

control groups, selected using pre-intervention variables to compare and obtain the 

treatment effect on treated. 

Applying our estimators to Lalonde data, the three best IB distributional 

effects are considered and compared to classic QTE without completing data and 

to Firpo’s ([5]) results on the same data set. Combining bootstrap to imputation 

methods and applying the empirical quantile shows that estimation of the median 

impact using IB-TED estimators is closer to the ATE estimator than the Firpo’s 

result and classical QTE.  
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In fact, looking at classic QTE estimators under rank preservation assumption, 

the effect of the program is increasing with the deciles. For the first decile, the 

effect is 0 then for the second, it is still 0 the 3
rd

 decile effect is 943 then the 

median effect is 1093.5 which is far from the ATE ($1794). Adding bootstrap on it 

did not change much the result, the largest effect being for the 8
th

 and 9
th

 decile 

respectively 2273 and 3197 which is basically explosive and too much. Analysis 

of Firpo’s results show also that the effect is increasing with deciles after the 4
th

 

decile. The effect is 0 for the 1
st
 and 2

nd
 decile which is not likely to happen, then 

711 for the 3
rd

 decile, 21 for the 4
th

 decile meaning that some effects were 

probably negative. Then comes the median effect which is 1927 quite close to 

1794 the ATE but after that the effect becomes explosive, 3879 for the 6
th

 decile, 

4517 for the 7
th

 decile to end at 5530 for the 9
th

 which is again not likely to happen. 

Firpo’s method may perform well only for median. Now if we take one of our best 

IB-TED estimator (k-NN) under rank preservation assumption, the effect is quite 

uniform across decile with an average difference of 30 units. The tendency is the 

following: effect of the program is larger for the tail of the distribution of potential 

outcome (1793.8 for the 2
nd

 decile and 1811.8 for the 9
th

 decile) and quite stable 

and close to the ATE for the middle deciles (1702.4 for median effect and 1693.2 

for 6
th

 decile). This pattern of results is almost the same for all IB-TED estimators 

computed using imputation methods. 

In conclusion, explosiveness of Firpo’s results and classic QTE shows that 

estimators construct using non-parametric approach and using incomplete data set 

are not convergent practically. They basically show that the effect of training 

program on earning increases with the decile meaning that the more you earned 

before the program the more the program will have an effect on you which is 

counter intuitive given that theoretically effect of the training is most likely to be 

greater for those who were earning less. From the result using IB-TED, the effect 

is more stable across the distribution of earnings and bigger for people earning 

less and people earning more (tail of the distribution) which is more likely to 



64 Distributive and Quantile Treatment Effect Estimator, Imputation Based… 

 

happen than for explosive effect of the training. 

 

 

6  Conclusion 

Following pioneer work of Kenfac et al ([8]) in using imputation methods to 

derive Average Treatment Effects from individual effects as they have introduced 

in their paper, this paper has tried to use the same approach to estimate the 

distributional effect of a program in the population. Given that in the literature 

most of QTE are done using rank preservation assumption, the work done here 

managed to overcome that weakness and does not make any such assumptions.  

The aim of this research was to come up with a new class of distributional 

effect estimators performing better than existing ones with less assumptions made. 

Using the approach developed by Kenfac et al ([8]), two distributional effect 

estimators can be defined: IB-TED (Imputation Based Treatment Effect on the 

Distribution) being the effect of the program on the distribution assuming rank 

preservation assumption and IB-QTE (Imputation Based Quantile Treatment 

Effect) being the true quantile treatment effect without any rank assumption was 

found out. The first estimator is compared to all estimator in the literature 

assuming rank preservation like classic QTE and Firpo’s semi parametric QTE 

and the second one is just to present what is really the quantile treatment effect 

from our own perspective.  

Simulation results shows that IB-QTE and IB-TED are biased just like classic 

QTE but consistent and can perform as good as existing estimators or even better 

than existing ones especially classic QTE in some cases and for some specific 

quantiles. This new class of distributional effects estimators came with the 

possibility of having the true QTE without any assumption and to estimate more 

accurately the effect of a treatment on a given distribution.  

The estimators constructed have been tested on the famous dataset of 

Lalonde and the results are more likely to be realistic than the classic QTE and 
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Firpo’s results on the same dataset. According to IB-TED results, the effect of the 

training is larger for extreme deciles and close to the average for the middle 

deciles. This result is different from classic QTE results and Firpo’s result but 

theoretically is more likely to happen. This means that IB-TED can be a serious 

and useful approach in accessing the distributional effects of a program.  

Meanwhile, the IB approach is subjected to getting the best imputation 

method. Better is the imputation method and the best will be the IB estimator 

computed. As an example, if the imputation method is regression, make sure that 

the R
2
 is good enough for the explanatory variables to explain enough percentage 

of the missing variable. With the best imputation methods, the IB estimators will 

be perfect for estimating the treatment effect.  
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Appendices 

Results of estimations for Lalonde data.  

 
Parameters 

N (Sample size) 350 
        

 

P (Share of treated) 0,4 
        

            

            

 Classic QTE reduced 
sample 

Deciles 1st dec 2nd dec 3rd dec 4th dec 5th dec 6th dec 7th dec 8th dec  9th dec 

 
Values Pop 0,0 0,0 943,0 1169,5 1093,5 1452,3 1802,5 2273,1 3197,8 

 
Values Boot 0,0 4,6 929,0 1324,9 1184,3 1493,5 2019,2 2248,1 3121,7 

            

 
Firpo Results 

Deciles 1st dec 2nd dec 3rd dec 4th dec 5th dec 6th dec 7th dec 8th dec  9th dec 

 
Values 0,0 0,0 711,0 21,0 1927,0 3879,0 4517,0 6027,0 5530,0 

            

            

Imputation 
Based 
results 

(Completed 
sample) 

Imputation Methods 
Deciles of the completed distribution using different imputation methods 

1st dec 2nd dec 3rd dec 4th dec 5th dec 6th dec 7th dec 8th dec  9th dec 

Mean Imputation (1) 
Gen Mean 1765,3 1858,3 1822,2 1805,2 1805,2 1805,2 1805,2 1746,2 1789,0 

Conditional 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 

Random Imputation (2) 
General 1692,0 1742,3 1774,3 1771,6 1810,8 1828,8 1846,2 1864,5 1871,5 

Hot deck 1715,8 1726,9 1787,8 1789,9 1800,0 1814,0 1829,8 1873,1 1906,3 

Deterministic linear regression Imp (3) 1553,2 1526,0 1526,9 1532,9 1554,4 1571,8 1618,6 1714,6 1789,0 

k-NN imputation (4) 
V1 1782,2 1793,8 1776,3 1733,2 1702,4 1693,2 1747,6 1788,9 1811,8 

V2 1724,9 1771,5 1744,8 1716,8 1699,1 1704,6 1744,5 1789,8 1811,8 

Random linear regression Imp (5) 1482,1 1527,8 1564,2 1603,9 1630,1 1665,2 1685,7 1732,0 1779,2 

Multiple imputation (6) Mice 1675,8 1631,7 1619,9 1601,9 1597,8 1598,8 1599,5 1642,4 1707,1 

Maximum Likelihood Imp 
(7) (MissMech package) 

Normal 1455,4 1521,7 1546,8 1584,5 1610,1 1638,7 1669,8 1708,4 1757,6 

Dist-free 1494,8 1526,8 1569,0 1588,2 1623,2 1648,3 1668,6 1706,8 1771,1 

Propensity score matching Imp (8) 1282,6 1259,2 1213,0 1164,6 1014,9 620,4 362,5 287,6 220,7 

 


