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Abstract 

This paper explores recursive and integral equations for ruin probability of a 

controlled risk process under rates of interest with homogenous Markov chains. 

We assume that claim and rates of interest are homogenous Markov chains, take a 

countable number of non – negative values. Generalized Lundberg inequalities for 

ruin probability of this process are derived via a recursive technique. Recursive 

equations for finite time ruin probability and an integral equation for ultimate ruin 

probability are presented, from which corresponding probability inequalities and 

upper bounds are obtained. An illustrative numerical example is discussed.  
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The ruin problem in stochastic environments has been studied by many 

researchers [9], [10]. In classical risk model, the claim number process was 

assumed to be a Poisson process and the individual claim amounts were described 

as independent and identically distributed random variables. In recent years, the 

classical risk process has been extended to more practical and real situations. For 

most of the investigations treated in risk theory, it is very significant to deal with 

the risks that rise from monetary inflation in the insurance and finance market, and 

also to consider the operation uncertainties in administration of financial capital. 

Teugels and Sundt [16], [17] studied ruin probability under the compound Poisson 

risk model with the effects of constant rate. Yang [19] given both exponential and 

non – exponential upper bounds for ruin probabilities in a risk model with 

constant interest force and independent premiums and claims. Xu and Wang [18] 

given upper bounds for ruin probabilities in a risk model with interest force and 

independent premiums and claims with Markov chain interest rate.  Cai [1], [2] 

considered the ruin probabilities in two risk models, with independent premiums 

and claims and used a first – order autoregressive process to model the rates of in 

interest. Cai and Dickson [3] built Lundberg inequalities for ruin probabilities in 

two discrete- time risk process with a Markov chain interest model and 

independent premiums and claims. P. D. Quang [11] established Lundberg 

inequalities using the recursive technique for ruin probabilities in two risk model 

with homogenous Markov chain  premiums when claims and interest rates  

sequences are independent. P. D. Quang [12] used martingale approach to build 

upper bounds for ruin probabilities in a risk model with interest force and 

independent interest rates and premiums when claims is a Markov chain. P. D. 

Quang [13] used martingale approach to build upper bounds for ruin probabilities 

in a risk model with interest force and independent interest rates and Markov 

chain claims and Markov chain premiums. P. D. Quang [14] used martingale 

approach to build upper bounds for ruin probabilities in a risk model with interest 
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force and independent claims, Markov chain premiums and Markov chain 

interests. P. D. Quang [15] also used recursive approach to build upper bounds for 

ruin probabilities in a risk model with interest force and Markov chain premiums, 

Markov chain claims, while the independent interest rates.  

In addition, many papers studied an insurance model where the risk process can be 

controlled by proportional reinsurance. The performance criterion is to choose 

reinsurance control strategies to bound the ruin probability of a discrete-time 

process with a Markov chain interest. Controlling a risk process is a very active 

area of research, particularly in the last decade; see [4, 5, 6, 7], for instance. 

Nevertheless obtaining explicit optimal solutions is a difficult task in a general 

setting. Maikol A. Diasparra and Rosaria Romera [8] obtained generalized 

Lundberg inequalities for the ruin probabilities in a controlled discrete-time risk 

process with a Markov chain interest. 

In this article, we extend the model considered by  Maikol A. Diasparra and 

Rosaria Romera [8] to introduce homogenous Markov chain claims and 

homogenous Markov chain rates of interest.  

 

 

2  Preliminary Notes 

Let Yn be the n – th claim payment. The random variable Zn stands for the length 

of the n – th period, that is, the time between the ocurrence of the claims 
1nY 
 

and 
nY . Let  

0nn
I be the interest rate process. We assume that Yn, Zn, In are 

defined on the probability space ),,( PA . We consider a discrete – time 

insurance risk process in with the surplus  process  
1nn

U  with initial surplus u 

can be written as 

1 1 1(1 ) ( ). ( , ), 1n n n n n n nU U I C b Z h b Y forn       .  (2.1) 

We make several assumptions. 

Assumption 2.1. 0 uU
o . 
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Assumption 2.2.  
0nn

Y is an homogeneous Markov chain, such that for any n 

the values of Yn are taken from a set of non – negative numbers 

 ,...,...,,
21 nY

yyyG   with Yo = yi and 

  ),,,()()(:
1 YjYiinjnij

GyGyNnyYyYPp 


  

where .1,10
1







j

ijij
pp  

Assumption 2.3.  
0nn

I is an homogeneous Markov chain, such that for any n 

the values of In are taken from a set of non – negative numbers 

 ,...,...,,
21 mI

iiiG   with Io = ir and 

  ),,,()()(:
1 IsIrrmsmrs

GiGiNmiIiIPq 


  

where .1,10
1







s

rsrs
qq  

Assumption 2.4.  
0nn

Z  is a sequence of independent and identically distributed 

non-negative continuous random variables with the same distributive function 

  .)(;)( zZPzF
o

   

Assumption 2.4. We denote by C(b ) the premium left for the insurer if the 

retention level b is chosen, where BbcbC  ,)(0 . 

The process can be controlled by reinsurance, that is, by choosing the retention 

level (or proportionality factor or risk exposure) b B  of a reinsurance contract 

for one period, where  1minB : b , ,  0 1minb ,  will be introduced below. The 

premium rate c is fixed. 

Assumption 2.5. We denote the function h(b,y )  with values in  0, y  

specifies the fraction of the claim y paid by the insurer, and it also depends on the 

retention level b at the beginning of the period. Hence y h(b,y ) is the part paid 

by the reinsurer. The retention level b =1 stands for control action no reinsurance. 
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In this article, we consider the case of proportional reinsurance, which means that 

  h(b,y ) b.y,  with b B.         (2.2) 

Usually, the constant 
min

b  in Assumption 2.4 is chosen by 

    0)(;1,0min:
min

 bCbb . 

Assumption 2.6. We suppose that  
0n n

Y


, 
0n n

Z


and  
0nn

I  are independent. 

Assumption 2.7. We consider Markovian control policies  
1n n

a ,


 which at 

each time n depend only on the current state, that is, n n na (U ) : b  for 0n  . 

Abusing notation, we will indentify functions a : B,  where 

,B   is the decision space.  

Consider an arbitrary initial state 0oU u   and a control policy  
1n n

a


 . 

Then, by iteration of (2.1) and assuming (2.2), it follows that for 1n , nU  

satisfies 

1 1

11 1

1 1
n nn

n l n l l l m

ll m l

U u ( I ) C(b )Z b .Y ( I ) 

  

 
     

 
    (2.3) 

The ruin probability when using the policy  , given the initial surplus u,and the 

initial claim o iY y ,  the initial interest rate o rI i with Assumption 2.1 to 2.7 is 

defined as  

 
1

0i r k o o i o r

k

(u,y ,i ) P (U )U u,Y y ,I i 




 
     

 
   (2.4) 

which we can also express as 

  0 1i r k o o i o r(u,y ,i ) P U for some k U u,Y y ,I i         (2.5) 

Similarly, the ruin probabilities in the finite horizon case with Assumption 2.1 to 

2.7, are given by 

 
1

0
n

n i r k o o i o r

k

(u,y ,i ) P (U )U u,Y y ,I i 


 
     

 
   (2.6) 

Firstly, we have 
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1 2i r i r n i r(u,y ,i ) ( u,y ,i ) ... ( u,y ,i ) ...,           (2.7) 

and with any ,Nn  

 1),,( 
rin
iyu .           (2.8) 

Thus, from (2.7) and (2.8), we obtain 

n i r i r
n
lim (u,y ,i ) (u,y ,i ).  


  

We denote by   the policy space. A control policy 
*  is said to be optimal if 

for any initial (Yo, Io) = (yi, ir), we have 

 )i,y,u()i,y,u(
riri

*    for all  . 

 

 

3  Main Results  

3.1. Integral Equation for Ruin Probability 

We now construct recursive equation for finite time ruin  probabilities and an 

integral equation  

Theorem 3.1. Given model (2.1) and Assumptions 2.1 to 2.7, for n =1,2, …, we 

have 

o j s

o

o j s

o

b y u(1 i )

C(b )

n 1 i r ij rs n s o j o j s

j 1 s 1 b y u(1 i )0

C(b )

(u, y ,i ) p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z) ,(3.1)

 

 
 



   

 
 

       
 
 

  

and  

o j s

o

o j s

o

b y u(1 i )

C(b )

i r ij rs s o j o j s

j 1 s 1 b y u(1 i )0

C(b )

(u, y ,i ) p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z) .(3.2)

 

 
 

   

 
 

       
 
 

  

Where throughout this paper: 

i) If 0v then 0)( vF , 
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ii) If 0v then 



0

)()( zdFzdF
v

, 

iii) If 0v then .0)(),),((
0


v

ri
zdFiyzh  

Proof. 

We consider 1 j 1 sY ( ) y ,I ( ) i ,( )     and 

  o o i o rB : U ( ) u,Y ( ) y , I ( ) i ,       

  js 1 j 1 sA : Y ( ) y ,I ( ) i ,       

 o 1 o 1
1 1

o

U ( )(1 I ( )) b Y ( )
A : Z ( ) ,

C(b )

     
    
 

 

 o 1 o 1
1 1

o

U ( )(1 I ( )) b Y ( )
A : Z ( ) .

C(b )

     
    
 

 

Let Vk = u(Yk, Zk) = boYk – C(bo)Zk. From (2.1), we have 

 U1 = Uo(1 + I1) – V1 = u(1 + I1) – boY1 +C(bo)Z1 

Therefore 

 1 1 jsP : U ( ) 0 A A B 1      

 

n 1

k 1 js

k 1

P : U ( ) 0 A A B 1.






 
      
 
 

   (3.3) 

In addition, 

  11 jsP ;U ( ) 0 A A B 0.            (3.4) 

Let      n n nn 0 n 0 n 0
Y , Z , I

  
 be independent copies of  n n 0

Y


, 

 n n 0
Z


,  n n 0

I


 with o 1 j o 1 o 1 sY ( ) Y ( ) y ,Z ( ) Z ( ), I ( ) I ( ) i            

and k o k o kV b Y C(b )Z  , 
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n nn

n o l l 1 l l 1 l m

l 1l 1 m l 1

U U (1 I ) C(b )Z b Y (1 I ) . 

  

 
      

 
   

Thus (2.3) and (3.4) imply 

n 1 n 1

1 1k js k js

k 1 k 2

P : U ( ) 0 A A B P : U ( ) 0 A A B
 

 

 

   
             
   
   

 
1

1 1 1

22

: ( )(1 ( ) ( ) ( ) ( ) (1 ( ))
n k

o o o m

mk

P U I b Y C b Z I      





     


  

  11 1

2 1

( ) ( ) ( (1 ( )) 0
kk

m m m m p js

m p m

C b Z b Y I A A B   

  


      


   

  11 1

22 11

: ( ) (1 ( )) ( ) ( ) ( (1 ( )) 0 ,(3.5)
n k kk

o m m m m m p js

mm p mk

P U I C b Z b Y I A A B       

  

  
           

  
 

.Now, from (2.1) implies 

n 1

n 1 i r k

k 1

(u, y ,i ) P : (U ( ) 0 B


 




 
     

 
 

n 1

ij rs k ij

j 1s 1 k 1

p q P : (U ( ) 0 A B
 



  

 
     

 
 

  

 
n 1

ij rs k 1 ij 1 ij

j 1s 1 k 1

p q P : (U ( ) 0 A A B .P A A B
 



  

  
          

  
  

 
n 1

1 1k ij ij

k 1

P : (U ( ) 0 A A B .P A A B






   
         
   

 (3.6) 

From (3.3), we have 

 
n 1

k 1 ij 1 ij

k 1

P : (U ( ) 0 A A B .P A A B






 
      
 
 

o j s
1

o

b y u(1 i )
P : Z ( )

C(b )
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o j s

o

b y u(1 i )

C(b )

0

dF(z)

 

  ,           (3.7) 

and from (3.5), we have 

 
n 1

1 1k ij ij

k 1

P : (U ( ) 0 A A B .P A A B






 
      
 
 

 

 
n k kk

1o m m 1 m m 1 m p js

m 2m 2 p m 1k 1

P : U ( ) (1 I ( )) C(b )Z ( ) b Y ( (1 I ( )) 0 A A B .
 

  

  
               

  
  

 

. 

 1 jsP A A B 

 
o j s

o

n s o j o j s

b y u(1 i )

C(b )

u(1 i ) b y C(b )z, y ,i dF(z).(3.8)




 

     .(3.8) 

Combining (3.7) and (3.8), therefore (3.6) may be written 

o j s

o

o j s

o

b y u(1 i )

C(b )

n 1 i r ij rs n s o j o j s

j 1 s 1 b y u(1 i )0

C(b )

(u, y ,i ) p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z) .(3.9)

 

 
 



   

 
 

       
 
 

  

When n = 0, we have 

o j s
1 i r ij rs

oj 1s 1

b y u(1 i )
(u, y ,i ) p q F .

C(b )

 


 

  
   

 
     (3.10) 

From the dominated convergence theorem, the integral equation for 

i r(u, y ,i ) in Theorem 3.1 then follows immediately by letting n   in 

(3.9). 

3.2. Inequalities for Ruin Probability 

We now establish  inequalities for the ruin probability corresponding to (2.4) and 

(2.6), respectively. We first prove the following Lemma. 
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Lemma 3.1. Given model (2.1) and Assumptions 2.1 to 2.7, and 

    0))((
11


iooo

yYZbCYbE
,    

and  

    00)(
11


iooo

yYZbCYbP
,      (3.11) 

For any Yi Gy  , then there exists a unique positive constant i
R  satisfying 

  
   .111)(




io

YbZbCR
yYeE ooi

       (3.12) 

Proof. 

Let the function 

 
   ,1)(

1

)( 11 


i

YbZbCt

i
yYeEtf oo  .;0 t  

We have 

     ,)()(
1

)(

11

' 11

i

YbZbCt

ooi
yYeZbCYbEtf oo 


 

    1 1
2 ( )''

1 1 1
( ) ( ) 0.o ot C b Z b Y

i o o i
f t E b Y C b Z e Y y      

 
 

Which implies that 

 )(tf
i is a convex function with ,0)0( 

i
f      (3.13) 

and 

   0)()0(
111

' 
iooi

yYZbCYbEf 
.      (3.14) 

As   00)(
11


iooo

yYZbCYbP
, we can find some constant 0  such 

that 

   00)(
11


iooo

yYZbCYbP 
. 

We therefore have 

 
   1)(

1

)( 11 


i

YbZbCt

i
yYeEtf oo

      ,111.
11

11

)(1

)(




 t

ZbCYbi

YbZbCt
eyYeE

oo

oo 




 

implying that 

 ,)(lim 


tf
i

t
          (3.15) 
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From (3.13), (3.14) and (3.15) there exists a unique positive constant i
R  

satisfying (3.12). 

Now consider  

 
   

Yiio

YbZbCR

io
GyyYeERR ooo 


,1:0inf 11)(

. 

Remark 3.1. 
   .111)(




io

YbZbCR
yYeE ooo

 

Using Lemma 3.1 and Theorem 3.1, we have a probability inequality for 

),,( ri iyu  by an inductive approach as follows. 

Theorem 3.2. Given model (2.1) and Assumptions 2.1 to 2.7, under the conditions 

of Lemma 3.1 and 0oR , we have that 

 o 1R u(1 I )

i r o r(u,y ,i ) E e I i
               (3.16) 

For any u > 0, i Yy G  and r Ii G , where 

 

o o o o

t

R C(b )t R C(b )z

1 0

t 0

e e dF(z)

inf ,0 1.
F(t)






    


 

Proof. 

a) if 

o o o o

t
R C(b )t R C(b )z

0

t 0

e e dF(z)

inf .
F(t)




 


 

Firstly, we have 

 

o o o o o o

t t t
R C(b )t R C(b )z R C(b )(t z)

1 0 0 0

t 0 t 0 t 0

e e dF(z) e dF(z) dF(z)

inf inf inf 1.
F(t) F(t) F(t)

 



  
    

  

 

Implying that 0 1.    

For any v > 0, we also have 
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o o o o

o o o o

1
v

R C(b )v R C(b )z

v

R C(b )v R C(b )z0

0

e e dF(z)

F(v) .e . e dF(z)
F(v)







 
 
 
 
 
 


  

 

 o o o o o o o o o o o o 1

v

R C(b )v R C(b )z R C(b )v R C(b )z R C(b )v R C(b )Z

0 0

.e . e dF(z) .e . e dF(z) .e .E e .(3.17)



        

Let 

    o j s

1

o

b y u(1 i )
K (j,s) : j 1,2,... ,s 1,2,..., : 0 ,

C(b )

  
    
 

 

         o j s

2

o

b y u (1 i )
K ( j , s ) : j 1 , 2 , . . . , s 1 , 2 , . . . , : 0 .

C ( b )

  
    
 

 

From (3.10), we have 

o j s
1 i r ij rs

oj 1s 1

b y u(1 i )
(u, y ,i ) p q F

C(b )

 


 

  
   

 
  

1 2

o j s o j s

ij rs ij rs

j s j so o
( j,s) K ( j,s) K

b y u(1 i ) b y u(1 i )
p q F p q F .

C(b ) C(b )
 

      
    

   
     

Using (3.17), we have 

 
o j s

o o
o o o 1

2 2

b y u(1 i )
R C(b )

o j s C(b ) R C(b )Z

ij rs ij rs

j s j so
( j,s) K ( j,s) K

b y u(1 i )
p q F p q e E e

C(b )

 



 

  
  

 
   

 

 o o j s o o 1

2

R b y u(1 i ) R C(b )Z

ij rs

j s
( j,s) K

p q e E e
    



   .      (3.18) 

In addition, we also have 
o j s

o

b y u(1 i )
F 0

C(b )

  
 

 
 if 1( j,s) K . Therefore 
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1

o j s

ij rs

j s o
( j,s) K

b y u(1 i )
p q F 0

C(b )


  
 

 
 

 o o j s o o 1

1

R b y u(1 i ) R C(b )Z

ij rs

j s
( j,s) K

p q e E e
    



     (3.19) 

Combining (3.18) and (3.19), we imply 

 

1 i r(u, y ,i )   o o j s o o 1
R b y u(1 i ) R C(b )Z

ij rs

j 1 s 1

p q e E e
 

    

 

    

 o o 1 1 o o 1
R b Y u(1 I ) R C(b )Z

o i o rE e Y y ,I i .E e
            

 

 o o 1 o 1 o 1 o 1
R C(b )Z b Y R u(1 I ) R u(1 I )

o i o r o rE e Y y .E e I i E e I i ,(3.20)
                 

    
.Under an inductive hypothesis, we assume 

 o 1R u(1 I )

n i r o r(u,y ,i ) E e I i
        .       (3.21) 

So inequality (3.30) implies (3.21) holds with n =1. We have 

 

o s o j o 1R u(1 i ) b y C(b )z (1 I )

n s o j o j s o r(u(1 i ) b y C(b )z, y ,i ) E e I i
               

  
 

For Yi Gy   and Ir Gi  , 
s o j o 1u(1 i ) b y C(b )z 0,I 0      then 

 
o s o j oR u(1 i ) b y C(b )z

n s o j o j s o r(u(1 i ) b y C(b )z, y ,i ) E e I i
              

  
 

 
o s o j oR u(1 i ) b y C(b )z

e .
                (3.22) 

So from Lemma 3.1, (3.9), (3.17) and (3.22), we obtain 

o j s

o

o j s

o

b y u(1 i )

C(b )

n 1 i r ij rs n s o j o j s

j 1 s 1 b y u(1 i )0

C(b )

(u, y ,i ) p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z)
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o j s

o

o j s

1
o

b y u(1 i )

C(b )

ij rs n s o j o j s

j s b y u(1 i )0
( j,s) K

C(b )

p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z)

 





 


 
 

      
 
 

   

 

o j s

o

o j s

2
o

b y u(1 i )

C(b )

ij rs n s o j o j s

j s b y u(1 i )0
( j,s) K

C(b )

p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z) .(3.23)

 





 


 
 

      
 
 

   

.Because 
o j s

1
o

b y u(1 i )
( j,s) K : 0

C(b )

 
   then 

(1 )
0,

( )

  
 

 

o j s

o

b y u i
F

C b
 

o j s

o

n s o j o j s n s o j o j s

b y u(1 i ) 0

C(b )

(u(1 i ) b y C(b )z, y ,i )dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z).

 

 

 

         

Combining with (3.22), we have 

o j s

o

o j s

1
o

b y u(1 i )

C(b )

ij rs n s o j o j s

j s b y u(1 i )0
( j,s) K

C(b )

p q dF(z) (u(1 i ) b y C(b )z, y ,i )dF(z)

 





 


 
 

      
 
 

   

1

ij rs n s o j o j s

j s 0
( j,s) K

p q (u(1 i ) b y C(b ), y ,i )dF(z)







       .      

o s o j o

1

R u(1 i ) b y C(b )z

ij rs

j s 0
( j,s) K

p q e dF(z)


     



    .      (3.24) 

 

Using (3.17) and (3.24), we have 
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o j s

2
o

o j s

ij rs n s o j o j s

j s b y u(1 i )o
( j,s) K

C(b )

b y u(1 i )
p q F (u(1 i ) b y C(b )z, y ,i )dF(z)

C(b )





 


 
   

      
  

 

  

o j s

o

o s o j o o s o j o

o j s

2
o

b y u(1 i )

C(b )
R u(1 i ) b y C(b )z R u(1 i ) b y C(b )z

ij rs

j s b y u(1 i )0
( j,s) K

C(b )

p q e dF(z) e dF(z)

 


             

 


 
 

   
 
 

   

o s o j o

2

R u(1 i ) b y C(b )z

ij rs

j s 0
( j,s) K

p q e dF(z)


     



    .      (3.25) 

From (3.24) and (3.35), we obtain 

o s o j oR u(1 i ) b y C(b )z

n 1 i s ij rs

j 1 s 1 0

(u, y ,i ) p q e dF(z)

 
      



 

      

 o o 1 1 o o 1
R b Y u(1 I ) R C(b )Z

o i o rE e Y y ,I i .E e
            

 

 o o 1 o 1 o 1 o 1
R C(b )Z b Y R u(1 I ) R u(1 I )

o i o r o rE e Y y .E e I i E e I i
                 

    
. 

Consequently 

 o 1R u(1 I )

n 1 i r o r(u, y ,i ) E e I i
  


    
  , 

Such that inequality (3.21) holds for any n = 1, 2, 3, ... and inequality (3.16) 

follows by letting n   in inequality (3.21). 

b) If 

o o o o

t

R C(b )t R C(b )z

0

t 0

e e dF(z)

inf 0.
F(t)




  


 

With any 0  :   

o o o o

t

R C(b )t R C(b )z

0

e e dF(z)

F(t)



 


 and 

 o o o o

v
R C(b )v R C(b )z

0

1
F(v) e e dF(z).
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We also prove similar such that a), we obtain 

 o 1R u(1 I )

n i r o r

1
(u,y ,i ) E e I i .

      
 

      (3.26) 

Let n  in inequality (4.16), we imply 

 o 1R u(1 I )

i r o r

1
(u,y ,i ) E e I i .

      
 

      (3.27) 

Let 
*n(n N )   then (3.27) becomes 

 o 1R u(1 I )

i r o r

1
(u,y ,i ) E e I i .

n

      
 

      (3.28) 

letting n   in inequality (3.28), we have 

 o 1R u(1 I )

i r o r(u, y ,i ) 0 E e I i .
        

   

Thus, inequality (3.16) holds when 0  .        

Remark 3.2. Let o 1R u(1 I )

r o rA(u,i ) E e I i
     

  . From 1I 0, 1   , we 

have 

 o 1 o oR u(1 I ) R u R u

r o rA(u,i ) E e I i e e .
          

   

So an upper bound for the ruin probability from inequality (3.16) is better than 

oR u
e


. 

 

4  Numerical Example 

In this section we give a numerical example to illustrate the bounds of 

),,(
ri
iyu derived in Section 3.  

Let 
0nn

Z be a sequence of independent and identically distributed non-negative 

continuous random variables with the same distributive function 

)0(1)( 25,0   zezF z
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Let  
0nn

Y  be a homogeneous Markov chain such that for any n, Yn take values  

 3,1
Y

G  with Y1 having a distribution: 

Y1 1 3 

P 0,4 0,6 

and matrix  
22xij

pP  is given by 











8,02,0

7,03,0
P  

Let  
0nn

Y  be a homogeneous Markov chain such that for any n, In take value in 

 15,0;1,0
Y

G  with I1 having a distribution: 

I1 0,1 0,15 

P 0,35 0,65 

and matrix  
22xij

qQ  is given by 











4,06,0

75,025,0
Q  

Then, we have  

    .4
25,0

1
)(;6,28,0.32,0.13;4,27,0.33,0.11

111
 XEYYEYYE

oo

 

We chose  
0


nn

a  với an = 1 nên bo = 1, C(bo)= 1, therefore 

   Yiio
GyZEyYYE  ),(()(

11 ,       (4.1) 

In the other hand, 

       030,010
1111


oo

YXYPYXYP .   (4.2) 

Combining (4.1), (4.2) imply that Lemma 2.1 holds. 

Next, we solve equation (3.12).  

Firstly, we have 

       ).2,1(. 1111 )(



ieEyYeEyYeE

ZR

io

YR

io

ZYR iii   
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where 

   








0

)25,0(
).2,1(

25,0

25,0
25,011 i

R
dxeeE

i

xRZR i   

and 

 

1 1 1 1

1 1

3

1 1

3

1 . 1 1 . 3 1

0,3 0,7

R Y R R

o o o

R R

E e Y e P Y Y e P Y Y

e e

               

 
 

  

2 1 2 2

2 2

3

1 1

3

3 . 1 3 . 3 3

0,2 0,8

R Y R R

o o o

R R

E e Y e P Y Y e P Y Y

e e

               

 
 

Respective equation (3.12) for R1, R2 by 

     
1 13

10,3 0,7 4 1R Re e R         (4.3) 

     
2 23

20,2 0,8 4 1R Re e R         (4.4) 

Using Maple, we find respective root of (3.12) for R1, R2, by 

 1 20,33878; 0,28124R R   

Hence,  1 2min , 0,28124oR R R  . 

We can apply the result of Theorem 3.2 for ),,(
ri
iyu  

    .),,(),,(
)1( 1

Irrro

IuR

ri
GiiugiIeEiyu o 

     (4.5) 

where 

 

1(1 )

1,1 1,15

1 1

( ;0,1) 0,1

. 0,1 0,1 . 0,15 0,1

o

o o

R u I

o

R u R u

o o

g u E e I

e P I I e P I I

 

 

  
 

           
 

       
1 , 1 1 , 1 5

0 , 2 5 0 , 7 5o oR u R ue e 
   

        

1( 1 )

1 , 1 1 , 1 5

1 1

( ;0,15) 0,15

. 0,1 0,15 . 0,15 0,15

o

o o

R u I

o

R u R u

o o

g u E e I

e P I I e P I I
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1 , 1 1 , 1 5

0 , 6 0 , 4o oR u R ue e 
   

Table 4.1 shows values upper bounds ( , )rg u i of ),,(
ri
iyu for a range of 

value of u 

 

Table 4.1. Upper bounds ( , )rg u i of ),,(
ri
iyu  with  

0


nn
a : an = 1 

u ( ;0,1)g u  ( ;0,15)g u  

1 0.726228 0.729814 

2 0.527426 0.532654 

3 0.38306 0.388775 

4 0.27822 0.283774 

5 0.202082 0.207141 

6 0.146785 0.15121 

7 0.106624 0.110387 

8 0.077454 0.080588 

9 0.056266 0.058836 

10 0.040876 0.042958 

15 0.008276 0.008919 

20 0.001677 0.001854 

 

 

5  Conclusion 

Theorem 3.2 provide recursive equations for ),,(
rin
iyu  and an integral 

equation for ),,(
ri
iyu , by using a recursive technique. Using Lemma 3.1 and 

Theorem 3.2, we obtain a probability inequality for ),,(
ri
iyu  by an inductive 

approach. An illustrative numerical example is discussed. 

 

 



98     Upper Bounds for Ruin Probability in a Controlled Risk Process under… 

 

References 

[1] J. Cai, Discrete time risk models under rates of interest. Probability in the 

Engineering and Informational Sciences, 16 (2002), 309-324. 

[2] J. Cai, Ruin probabilities with dependent rates of interest, Journal of Applied     

Probability, 39 (2002), 312-323. 

[3] J. Cai and D. C. M. Dickson, Ruin Probabilities with a Markov chain interest 

model.  Insurance: Mathematics and Economics, 35 (2004), 513-525. 

[4] J. Grandell, Aspects of Risk Theory, Springer, Berlin, 1991. 

[5] O. Hernández-Lerma, J.B. Lasserre, Discrete- Time Markov Control 

Processes: Basic Optimality Crieria, Springer- Verlag, New York, 1996. 

[6] O. Hernández-Lerma, J.B. Lasserre, Further Topics on Discrete- Time 

Markov Control Processes, Springer- Verlag, New York, 1999. 

[7] O. Hernández-Lerma, J.B. Lasserre, Markov Chains and Invariant 

Probabilities. Birkhauser, Basel, 2003. 

[8] Maikol A. Diasparra and Rosaria Romera, Inequalities for the ruin 

probability in a controlled discrete-time risk process, Woking paper, 

Statistics and Econometrics Series, 2009. 

[9] H. U. Gerber, An Introduction to Mathematical Risk Theory, Monograph 

Series, Vol.8.S.S. Heubner Foundation, Philadelphia, 1979. 

[10] S.D. Promislow, The probability of ruin in a process with dependent 

increments. Insurance: Mathematics and Economics, 10 (1991), 99-107. 

[11] P. D Quang, Ruin Probability in a Generalized Risk Process under Rates of 

Interest with Homogenous Marrkov Chain premiums, International Journal of 

Statistics and Probability,Vol. 2, No.4 (2013), 85-92. 

[12] P.D. Quang, Upper bounds for Ruin Probability in a Generalized Risk 

Process under Rates of Interest with Homogenous Markov Chain claims, 

Asian Journal of Mathematics & Statistics, Vol.7, No.1 (2014), 1-11 (2014). 



Phung Duy Quang 99  

[13] P.D. Quang, Upper bounds for Ruin Probability in a Generalized Risk 

Process under Rates of Interest with Homogenous Markov Chain claims and 

Homogenous Markov Chain premiums, Applied Mathematical Sciences, 

Vol.8, No.29 (2014), 1445-1454. 

[14] P.D. Quang, Martingale Method for Ruin Probability in a Generalized Risk 

Process under Rates of Interest with Homogenous Markov Chain Premiums 

and Homogenous Markov Chain Interests, Journal of Statistics Applications 

& Probability Letters, Vol.2, No.1 (2015), 15-22. 

[15] P. D. Quang, Ruin Probability in a Generalised Risk Process under Rates of 

Interest with Homogenous Markov Chains, East Asian Journal on Applied 

Mathematics, Vol.4, No.3 (2014), 283-300. 

[16] B. Sundt and J. L. Teugels, Ruin estimates under interest force, Insurance: 

Mathematics and Economics, 16 (1995), 7-22. 

[17] B. Sundt and J. L. Teugels, The adjustment function in ruin estimates under 

interest force. Insurance: Mathematics and Economics, 19 (1997), 85-94. 

[18] L. Xu and R. Wang, Upper bounds for ruin probabilities in an autoregressive 

risk model with Markov chain interest rate, Journal of Industrial and 

Management optimization, Vol.2 No.2 (2006),165- 175. 

[19] H. Yang, Non – exponetial bounds for ruin probability with interest effect 

included, Scandinavian Actuarial Journal, 2 (1999), 66-79. 

 

 

 

  

 

 


