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1 Introduction

Reduced form credit risk models provide a versatile platform to model

credit risk and credit security prices. These models cannot only be used to

model risks from a financial market practitioner’s perspective but they can also

be used to analyze a wide range of questions in the field of financial market

research. This article gives a brief introduction to the technical foundations

required to understand and to work with reduced form credit risk models.

Based on this, it is in detail elaborated how the interplay between a possibly

stochastic variation of default probabilities and the level of credit spreads can

be quantified by estimating these models under different probability measures.

This approach has been applied by [1] for the first time and they show for

three sovereigns’ credit spreads, that the risk premium which refers to this

“second” risk dimension is a highly relevant driver of these spreads. A similar

study has been presented by [2] and they also come to the conclusion that the

stochastic variation of the default probability is a very important driver of the

credit spreads included in their sample.

These studies provide very interesting insights into credit spreads’ develop-

ment and the results suggest to pursue further financial market research based

on the applied approach as well as to extend existing credit risk models to

account for the relevance of the “second dimension” risk premium. Accord-

ingly, a understanding of this approach would be very helpful for researchers

and practitioners from wide range of professional backgrounds. The mentioned

articles do however not elaborate on the details of the applied approach but

focus on the application. For many readers and potential applicators who do

not have a strong academic focus on quantitative credit risk models, this dis-

cussion of the basic approach itself is not detailed enough to get the necessary

understanding which is required to interpret related results or to pursue new

research within the applied modelling framework. This article is intended to

fill this gap and to provide researchers and practitioners a understanding of

the doubly stochastic credit risk models and especially of second dimension

risk premium analysis in this framework.

The second section gives a general introduction to doubly stochastic reduced

form credit risk models. Cox-Ingersoll-Ross (CIR) diffusions (c.f. [3]) are intro-

duced as possible modelling choice for the second stochastic dimensions. The
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third section shows how pricing formulas can be derived based on that model.

In the fourth section, it is elucidated how second dimension risk premium anal-

ysis can be conducted based on doubly stochastic reduced form models. The

last section discusses a possible estimation strategy for the presented model

framework.

This presentation is based on the characteristics of the CIR type diffusion.

This diffusion type has been chosen for the presentation of examples because

it is very easy to handle and formulas for the first two moments are well known

in closed form. However, the results can directly be transferred to differently

specified models. The model setting is applied to credit default swaps (CDS)

as an example for credit securities which has also be chosen for the model

estimation in [1] and [2].

2 Doubly stochastic reduced form framework

2.1 Basic ideas

Reduced form credit risk models go back to [4], [5] and [6]. The basic idea

of the reduced form approach is to model a default as a jump of a stochastic

(Poisson) process. This implies that default time is viewed as the stopping

time of that process. A helpful feature of this class of “reduced form” models

is the direct link between the underlying Poisson parameter and the default

probability. The following introduction builds on [7] and [8].

To establish the basic setting of a reduced form model a measure

space (Ω1,F1, P1) with the corresponding filtration F1,s, a measurable space

(M1,M1) and an index set S 6= ∅ be defined. In addition, a Poisson process

Poi = (Pois, s ∈ S) (1)

is defined as a family of measurable mappings between probability and measure

space:

Pois : (Ω1,F1, P1) → (M1,M1) (2)

ω1 7→ Pois(ω1) (3)
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with ω1 ∈ Ω1. Pois counts the number of events up to time s. In the present

case, Pois = 1 means that a credit event has already occurred at time s,

while Pois = 0 denotes that it has not. The increments Pois1 − Pois0 are

for s0, s1 ∈ S and s1 − s0 ≥ 0 independently Poisson distributed, the Poisson

parameter depends on the length of the respective period [s0, s1] only and

Markov property is satisfied accordingly. At the first point in time, the process

value be almost surely zero and the process be supported by the probability

space introduced above. The intensity parameter of this Poisson process is

denoted by λs with s ∈ S. The probability distribution PrPoi(Pois0+t =

0|Pois0 = 0) of the process value in [s0, s0 + t] ⊂ S conditioned on Pois0 = 0 is

accordingly given by the poisson probability distribution POI(j|ev) for j = 0

with ev denoting the expected value. This implies in closed form:

PrPoi(Pois0+t = 0|Pois0 = 0) = POI(j = 0|ev = λs0,s0+t) = e−λs0,s0+t . (4)

This implies in turn (as the default time denoted as τ ∈ S is in this context

also stopping time for Pois
2) that

PrPoi(Pois0+t > 0|Pois0 = 0) = 1− e−λs0,s0+t . (5)

If λs is constant for all s ∈ [0, t], one can rewrite λs0,s0+t = λt̂ × t for all

t̂ ∈ [s0, s0 + t]. For non constant λs, one rewrites

λs0,s0+t =

∫ s0+t

s0

λsds. (6)

The filtration F1,s is generated by realizations of the underlying process

Poi prior to time s:

F1,s = σ{Poit : 0 ≤ t ≤ s}. (7)

So far, the intensity has been assumed to be deterministic. This does

not seem to be plausible for real world applications. Therefore a second

stochastic dimension is added and diffusions are introduced as stochastic

drivers of the default intensities. Diffusions are stochastic differential equations

characterized by a specific functional form, which will be introduced in detail

2It is assumed that the model holds only up to the first credit event.
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later. A Poisson process with stochastic intensity is called “Cox” process and

the framework then becomes “doubly stochastic” (c.f. [9]).

To introduce this “second stochastic dimension” in the model set up, a

probability space (Ω2,F2, P2) with corresponding filtration F2,s and a measur-

able space (M2,M2) with M2 ⊆ Rn for n ∈ N+ denoting a multivariate state

vector be defined. The index set S 6= ∅ is still the same as in the subsection

before. Finally, a Brownian motion Bs ∈ Rn and the following “diffusion” pro-

cess Y = (Ys, s ∈ S) is defined as a family of measurable mappings between

probability and measure space:

Ys : (Ω2,F2, P2) → (M2,M2) (8)

ω2 7→ Ys(ω2). (9)

Ys be moreover distinguished by the family of transition probability laws

PrY(Ys0+t|Ys0+t−1, .., Ys0) and satisfies the Markov law, i.e.

PrY (Ys0+t = m2,s0+t|Ys0+t−1 = m2,s0+t−1, Ys0+t−2 = m2,s0+t−2, · · ·, Ys0 = m2,s0)

(10)

= PrY (Ys0+t = m2,s0+t|Ys0+t−1 = m2,s0+t−1) (11)

with s0, s0 + 1, · · ·, s0 + t ∈ S, t ≥ 2 and m2s0
, m2,s0+1, · · ·, m2,s0+t ∈ M2 with

F2,s0 ⊆ F2,s0+1 ⊆ · · · ⊆ F2,s0+t. Intuitively, one can say that the filtration

F2,s0 – containing the information provided by all realization of Ys up to time

s0 ∈ S – does not provide more information on the future development of Ys

than the single realization of Ys0 .

The change in the process is moreover determined by a stochastic differen-

tial equation of the following form:

dYs = µYsds + σYsdBs (12)

with µ : M2 → Rn and σ : M2 → Rn×n. The change in the “diffusion”

process Ys is therefore explained by a deterministic part consisting of a so

called drift parameter µYs , which is weighted by the respective time horizon,

and a stochastic part. The stochastic component is driven by the change in

the previously introduced Brownian motion Bs. The diffusion process Ys is the

solution to the stochastic differential equation of the diffusion type.

In the doubly stochastic framework, the intensity λs is assumed to depend on
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the “state vector” Ys in linear form:

λs = ρ̃0 + ρ̃1Ys, (13)

with ρ̃0 ∈ R1 and ρ̃1 ∈ Rn. In the most simple and therefore most frequently

applied case, the state vector is one dimensional, respectively Ys = λs. λs itself

is then the only state variable driven by the underlying diffusion. This implies

Ys ∈ R and one dimensionality of both the drift and the diffusion coefficients

in the underlying stochastic differential equation.

2.2 Modelling the intensity process

The set of possible specifications of a diffusion – i.e. the functional forms

the coefficients µYs and σYs are assumed to be defined by – is rather large.

In this article we introduce one special specification which is very frequently

applied in Quantitative Finance: the square root model by Cox-Ingersoll-Ross

(CIR) which has a rather simple form and is particularly popular for short

term interest rate modelling:

dλs = (µ0 − µ1λs) + σ1

√
λsdBs (14)

with Bs denoting a Brownian motion and µ0, µ1 and σ1 being constant coeffi-

cients. This complies with µYs = µ0 − µ1λs and σYs = σ1

√
λs.

The CIR process is only defined for positive process values. Moreover, the

process is non-negative for i) µ0 > 0 and ii) µ1 > 0. Then, the stochastic

differential equation also has a “unique strong solution”3 for every starting

point Y0 ([12]) and the conditional distribution of Yt approaches the gamma

distribution for large t ([3]). A CIR process satisfying the “Feller”-condition

iii) 2µ0 > σ2
1 is also strictly positive ([13]). For iv) 0 < µ0 < σ2

1, the zero

bound can be reached, but it is directly reflecting ([12]). Because the diffusion

coefficient σ1 tends to zero when the process values approaches to zero. The

change in the process then becomes deterministic with the mean reverting

drift part being the only relevant determinant. The zero bound is, moreover,

“absorbing” ([12]) for µ0 = 0. For µ0 < 0, the process is “pushed” out of

3This means: E
[∫ s0+t

s0
|Y 2

s |ds < ∞
]

for all s ∈ [s0, s0 + t] with s ∈ S (c.f. [9] or [11]).
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the defined domain ((R+)N). This makes CIR diffusions with negative drift

coefficients a rather abstract concept and will not be discussed in this section.

For CIR processes, satisfying conditions i), ii) as well as condition iv) or

condition iii), the probability distribution of the process value conditioned

on a previous value is known in closed form ([3]). For univariate cases, the

conditional first two moments are known in closed form. This can be very

helpful for analyzing estimated models with respect to the second dimension

risk premium. The respective formulas for the conditional expectations and

the conditional variance can be found in [3] or in [11]:

E (Ys+t|Ys) =
µ0

µ1

+

(
Ys −

µ0

µ1

)
e−µ1t (15)

V ar (Ys+t|Ys) = Ys
σ2

0 (e−µ1t − e−2µ1t)

µ1

+
µ0σ

2
0 (1− e−2µ1t)

2µ2
1

(16)

Cov (Ys+t1 , Ys+t2|Ys) = Ys0

σ2
0

2µ1

e−µ1(t1+t2)
(
e2µ1t2 − 1

)
(17)

for t2 ≥ t1. The conditional expectations are linear in ys and the coefficient

multiplied with Ys is exp−µ1t. This reflects a stronger persistence of the process

for weak mean reversion. Moreover, the level of the conditional variance is

proportional to σ2
0 and the persistence of the conditional variance increases

with µ1/σ
2
0.

3 Pricing formulas in the doubly stochastic re-

duced form framework

For the derivation of pricing formulas, the filtration F2,s needs to be spec-

ified in more detail, similar to F1,s. It is the σ-algebra generated by the

realization of the diffusion process Y prior to s:

F2,s = σ{Yt : 0 ≤ t ≤ s} (18)

So far, two different probability spaces have been introduced: one referring

to stochastic movement in the underlying intensity λs and one directly referring

to the random jumps of the Poisson process. Both probability spaces are now
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combined to a single one. This is necessary for the calculation of expected

values, which depend both on possible jumps given certain jump intensities,

and on the future (stochastic) developments of the underlying intensity. A

new sample space Ω = Ω1 × Ω2, a new sigma algebra F = σ{F1 ∨ F2}4 and

the respective filtration Fs are introduced. Moreover, a probability measure

P is introduced which satisfies all general requirements regarding probability

measures with respect to F and Fs, i.e.: P (Ω) = 1, P (F ) < ∞ for all F ∈ F
as well as countable additivity for disjoint collections (c.f. [14]).

Based on this framework, pricing formulas for future payoffs, which depend

on the respective credit risks, are now derived. This can be used to deduce

pricing formulas for credit securities. One important input for net present

values5, which will be used for deriving pricing formulas, is still missing: the

discount rate rs and the respective discount factor for any t ∈ R+:

νs0,s0+t = e
−

∫ s0+t
s0

rsds
. (19)

The expected return is however usually not observable and is therefore usually

substituted by the risk free-rate. The concept of risk neutrality is applied.

This presumption implies that the expected payoffs can be discounted by

the risk free rate in order to obtain market prices. This may seem odd at first

glance as real world investors are usually assumed to be risk averse and the

real world market prices should ceteris paribus be inferior to the ones obtained

from a model based on the risk free rate. It will be shown that the assumption

of risk neutral investors is only a hypothetical auxiliary construct, not leading

to model prices which generally are below real market prices. Instead, the

pricing formulas are further adapted.

The mechanics behind this are shown based on the value of a zero bond

ZBs0,s0+t in time s0 with an underlying default process driven by λs, a payment

Cs summing to the face value c at maturity s0 + t, if no default has occurred.

It is assumed that the payoffs sum up to zero in the case of default. In other

words, there is no recovery. The rate expected by risk averse market investors

4In this context, “∨” denotes the union of σ-fields.
5Net present value refers to the current value of future payoffs
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be rs for all s ∈ [s0, s0 + t]. Therefore, the following equation holds :

ZBs0,s0+t = Es0

[
e
−

∫ s0+t
s0

rsds
Cs0+t|Fs0

]
= Es0

[
e
−

∫ s0+t
s0

rsds
e
−

∫ s0+t
s0

λsds
c|Fs0

]
= e

−
∫ s0+t

s0
rsds

cEs0

[
e
−

∫ s0+t
s0

λsds|Fs0

]
= e

−
∫ s0+t

s0
rsds

cEs0

[
e
−

∫ s0+t
s0

λsds|F2,s0

]
(20)

The final transformation basically says that the current price of the zero bond

ZBs0,s0+t equals the discounted expected payoff. The expectation still included

does not directly refer to the question whether a default occurs, but it refers

to the future development of λs. The expectation is therefore only conditioned

on the part of the filtration which refers to the development of λs, namely

F2,s. The return is factored out because it is assumed to be deterministic. A

detailed proof was presented by [5].

This equation includes several unknown variables: both λs and rs are - in

opposition to rf
s - not directly observable for any s ∈ S. Just substituting

rs by rf
s is not an appropriate approach to reduce the numbers of unknown

variables to one, because the equation then should not hold anymore since

Es0

[
e
−

∫ s0+t
s0

λs+rsds|F2,s0

]
c < Es0

[
e
−

∫ s0+t
s0

λs+rf
s ds|F2,s0

]
c. (21)

A standard trick in the context of risk neutral pricing is to adapt λs in a

way that the expected payoffs discounted by the risk free discount rate are in

accordance with the observed market prices of the respective zero bonds ([9]).

For the presentation of this step in the present model framework, the intensity

is assumed to be deterministic.

The risk premium, which is originally defined as the difference between

expected return and risk free return, is roughly speaking assigned to the default

intensity which is then denoted as “risk neutral”-default intensity λQ
s , whereas

the actual default intensity is denoted as λP
s . λQ

s is the intensity process which

would be implied as true intensity process in market prices of zero bonds, if

these were observed in a risk neutral world. λQ
s should ceteris paribus be higher

than λP
s to counterbalance the lower discount rate and one has

Es0

[
e
−

∫ s0+t
s0

λP
s+rsds|F2,s0

]
c = Es0

[
e
−

∫ s0+t
s0

λQ
s +rf

s ds|F2,s0

]
c (22)
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with λQ
s ≥ λP

s and rs ≥ rf
s for all s ∈ S. The pricing formula for the zero bond

is then given by

ZBs0,s0+t = Es0

[
e
−

∫ s0+t
s0

λQ
s +rf

s ds|F2,s0

]
c (23)

So far, the difference in measures applies in a framework with a determinis-

tic intensity. The original framework originally is, however, doubly stochastic

and that implies a second source of risk: this “second dimension” risk refers

to the uncertainty regarding current and future default intensity levels. Risk

averse investors may expect a risk premium for this kind of uncertainty in

addition to a premium for the risk of a default given certain intensity levels.

From the perspective of a bond buyer, it is not guaranteed – in this context

– that this source of risk leads to an increase in the expected return. The

respective uncertainty is also relevant for (short) sellers of credit securities or

investors in credit securities as a sudden drop in default probabilities should

ceteris paribus lead to an increase the prices of bonds and to a decrease of in-

surance prices. The “second dimension” risk premium could – in other words

– become negative. This may rather be the case for units with particular low

anticipated default probabilities: Investors may – for example – rather insure

people against the unlikely default of such a unit instead of insuring themselves

or instead of betting on the occurrence of a credit event. The risk premium

for the parties that profit from higher intensities might then dominate the risk

premium from the other side. The main part of the debate in this chapter is,

however, restricted to increases in returns due to the second dimension of risk

respectively a positive second dimension risk premium because the empirical

results in [1] and [2] suggest this to be the more relevant case.

It seems reasonable to consider both kinds of risk and the respective premia

separately as they are indeed related, but not in 1:1 relation. It might, for

example, be the case that the expected intensity levels and the respective

default risk premium are particularly low, while the variance of the intensity

and the respective “second dimension” risk premium are very high. On the

other hand, it might be the case, that the expected intensity levels and the

respective risk premium are very high, while the uncertainty regarding the

intensity level respectively the second dimension risk premium is very low.

The presented approach therefore has to be further adapted to equate the

expected payoff of the zero bond, which is discounted based on the risk free
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rate, and the observed market prices. Consequently, two new measures with

respect to λQ
s respectively two different versions of P2 are introduced which

both refer to the variation in the risk neutral intensity λQ
s but not – at least

not directly – to the actual intensity λP
s . The measure P̂ refers to the actual

movement of the risk neutral intensity λQ
s . The measure Q̂, on the other hand,

refers to the distribution of λQ
s , which the expectations in pricing equation

23 are built on, so the pricing formula still holds in the context of stochastic

intensities. It refers, in other words, to the expectations with respect to λQ
s ,

that would be implied by market spreads in a world that is second dimension

risk neutral.

Under the new (second dimension) risk neutral measure Q̂, the expectations

with respect to future λQ
s are from now on denoted as EQ̂

s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
.

This term differs only from EP̂
s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
, if market participants’ ex-

pected returns change due to the uncertainty regarding λQ
s . If a risk premium

is only demanded by investors for taking the default risk per se – i.e. the risk

existing no matter whether the default probability is deterministic or not –

there should only be a difference between λQ
s and λP

s , but not between the two

expectations with respect to the future development of λQ
s .

With a discount factor based on the risk free rate rf
s based on that frame-

work the pricing formula of this zero bond becomes:

ZBs0,s0+t = Es0

[
e
−

∫ s0+t
s0

λs+rsds|F2,s0

]
c

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
s +rf

s ds|F2,s0

]
c

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
ZBf

s0,s0+tc. (24)

The next section discusses how an estimated model can be analyzed with

respect to the second dimension risk premium. In this section, the type of

payoffs to be priced is extended first:

So far, the valuation of credit payments was based on the assumption of zero

payments in the case of default, i.e. there was no recovery. This will be

different now and the pricing of recovery payments is introduced. In this

context, one has to think about the valuation of a payment that is executed in

the case of default right after the default occurred. This be exemplified based

on a payment obligation with payoff Zτ . This obligation pays the amount z

if the underlying unit defaults before maturity s0 + t and nothing otherwise.
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The payment is moreover supposed to be executed right after default time τ .

The value of that default payment DPs0,s0+t at time s0 is

DPs0,s0+t = Es0

[
e
−

∫ s0+τ
s0

rsds
Zτ |Fs0

]
. (25)

The payoff of this obligation may be positive at each point in time until ma-

turity because a default may occur in each point in time. The expectation

therefore refers at each particular point in time until maturity to the question

whether a default occurs just at that time and not to the question whether a

default occurs anytime until maturity. This implies an expectation regarding

the level of the intensity at each point conditioned on the fact that no default

hast occured yet.

[5] shows that the discounted expectation of the payment can be rewritten

as

Es0

[
e
−

∫ s0+τ
s0

rsds
Zτ |Fs0

]
= EQ̂

s0

[∫ s0+t

s0

λQ
s e

−
∫ s

s0
λQ

u+rf
udu

zds|F2,s0

]
= zEQ̂

s0

[∫ s0+t

s0

λQ
s e

−
∫ s

s0
λQ

u+rf
udu

ds|F2,s0

]
(26)

The expectations denoted by EQ̂
s now again only refer to the future develop-

ment of λQ
s . Again the expectation based on the true distribution law of λQ

s

would only equate this pricing formula if market participants’ return expec-

tations did not change because of the uncertainty with respect to λQ
s . Based

on this formula, one can easily derive an equation, which links the previously

introduced risk neutral pricing formula and the value DPs0,s0+t of a contract

with maturity s0 + t paying off Zs in all s ∈ [s0, s0 + t] with Zs = z if s = τ

and Zs = 0 otherwise:

DPs0 = Es0

[(∫ s0+t

s0

Zse
−

∫ s
s0

rudu

)
|Fs0

]
(27)

=

∫ s0+t

s0

Es0 [Zs|Fs0 ] e
−

∫ s
s0

rudu
(28)

= z

∫ s0+t

s0

EQ̂
s0

[(
λQ

s e
−

∫ s
s0

λQ
u+rudu

)
|F2,s0

]
(29)

= z

∫ s0+t

s0

ZBf
s0,sEQ̂

s0

[(
λQ

s e
−

∫ s
s0

λQ
udu

)
|F2,s0

]
, (30)
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with discount factor ZBf
s0,s denoting a risk-free zero bond issued in s0 and with

maturity s. Now, the pricing of credit default swaps (CDS) is discussed

as an example. Before this specific functional link between default intensity λs

and CDS spreads is presented, the functionality of this class of credit securities

is introduced.

CDS are insurance contracts between two parties with respect to the default

of a third party. This basically means that the insurer or CDS seller pays

a certain amount to the insurance or CDS buyer if the third party defaults.

The insured party in return pays a semi- or quarter-annual payment – which

is usually called “spread” payment (denoted by SPs0(M) for a CDS issued in

s0 and maturity M in years) – until the contract ends. This is either the case

when maturity s0 + M is reached or after a possible default of the respective

third party. The spread is constant for one single CDS contract. Historical

data of CDS spreads usually refer to newly issued contracts. Accordingly, s0

usually complies with the index for CDS spread time series.

The amount to be paid by the insurance seller in the case of default depends

on the proportion of debt which is not repaid by the third party in the context

of default. This share is called the “loss rate” LR. In the present framework,

LR is defined with respect to the face value of an ordinary bond. If a third

party is, for example, only able to pay back 50% of the issued bonds’ face

value, the seller of a CDS referring to this defaulting unit as third party has

to pay 50% of the respective CDS contract’s face value. This would usually

lead to a payment of 50 cents per contract as the face value of an ordinary

CDS contract is one. LR is in the following assumed to be constant for the

respective third party6. LR is identical for all CDS contracts with respect to

the same third party. It is finally important to notice that the insured person

does not necessarily hold a security issued by the respective third party.

For the pricing of newly issued CDS contracts, the single spread payment

claims can be considered as 2×M zero bonds, with maturity n
2

and face values

SPs0(M), with n ∈ {1, · · · , 2·t} for a CDS maturity of s0+M , [s0, s0+M ] ⊂ S,

M ∈ N+ ∪ {0.5} and semi-annually spread payment. n denotes the number

of the respective spread payment. This set up implies sn − sn−1 = 0.5 for all

6This is of course a simplifying assumption and assuming the loss rate to be stochastic
and uncertain would be more realistic. An additional risk premium for uncertainty with
respect to the loss rate would then be possible. This might be a field for future research.
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n ≥ 1. The value SVs0,sn of one single payment obligation to be paid in sn is

in s0 based on the pricing formulas for defaultable zero bonds:

SVs0,sn = EQ̂
s0

[
e
−

∫ sn
s0

λQ
s ds|F2,s0

]
ZBf

s0,sn
SPs0(s0 + t). (31)

The value SV total
s0

(M) of the whole set of spread payments SPs0(s0+t) referring

to a CDS contract issued in s0 with maturity s0 + t is then in s0:

SV total
s0

(M) = SPs0(M)
2t∑

n=1

(
EQ̂

s0

[
e
−

∫ sn
s0

λQ
s ds|F2,s0

]
ZBf

s0,sn

)
. (32)

For valuation of the spread payment counterpart, i.e. the insurance obli-

gation, one can go back to the recovery payments presented in the previous

section. The insurance obligation again refers to a possible payment at each

point in time until maturity. This payment sums up to zero, if the respective

third party has not defaulted yet and it is positive right at the point in time the

default occurs. The payoff is now denoted by INSs. The amount paid in this

case of default is LR. The value of the insurance claim from the perspective

of the CDS buyer is denoted by V INSs0 (M) and can be obtained based on

the following formula:

V INSs0 (M) = Es0

[∫ s0+t

s0

e
−

∫ s
s0

rsds
INSs|Fs0

]
(33)

= LR

[∫ s0+t

s0

ZBf
s0,sEQ̂

s0

[
λQ

s e
−

∫ s
s0

λQ
udu|F2,s0

]
ds

]
. (34)

The “market” spread SPs0(M) is then the one that equates the values of

both payment sides, namely the value of total spread payments SV total
s0

(M),

and the value of the insurance claim V INSs0 (M). The following equation is

supposed to hold accordingly (c.f. [8]):

SPs0(M)
2M∑
n=1

(
EQ̂

s0

[
e
−

∫ s0+0.5n
s0

λQ
s ds|F2,s0

]
ZBf

s0,s0+0.5n

)
= LR

[∫ s0+M

s0

ZBf
s0,sEQ̂

s0

[
λQ

s e
−

∫ s
s0

λQ
udu|F2,s0

]
ds

]
. (35)

So far, two versions of P2 have been introduced: Q̂ and P̂. Now, the

notation of the CIR diffusions, which determine the distribution law of λQ
s , is

extended to distinguish between the diffusions under both measures (c.f. [1]).
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This is done referring to the CDS pricing formula. Then, it is shown in the

context of the CDS pricing formula 35, how the coefficients of the respective

stochastic differential equation can be interpreted with respect to the second

dimension risk premium.

4 The second dimension risk premium and dif-

fusions under both measures

In the previous section, the difference between Q̂ and P̂ has already been

discussed. The difference between both measures refers to the distribution law

of λQ
s . The distribution law of the diffusion process λQ

s is generally determined

by an underlying stochastic differential equation like the CIR diffusion. Con-

sidering these two ingredients of the model set up, it seems to be reasonable

to adjust the notation of the respective diffusion accordingly. The diffusion

determining the distribution law under Q̂ is denoted in the following way:

dλQ
s =

(
µQ̂

0 − µQ̂
1 λQ

s

)
ds + σ1

√
λQ

s dBQ̂
s . (36)

The true distribution law of λQ
s is given by:

dλQ
s =

(
µP̂

0 − µP̂
1λ

Q
s

)
ds + σ1

√
λQ

s dBP̂
s . (37)

Drift coefficients and Brownian motion differ in both equations, while the

diffusion coeffient is identical. The reason for that lies in equation 15: only

the drift coefficient and the respective value of the process itself go into the

formula for the conditional expectation. And the expectations regarding the

intensities are what matters in the “second dimension” risk premium context.

This is shown based on the CDS pricing formula 35 and the idea of a positive

second dimension risk premium introduced before:

The “first dimension” risk premium, i.e. the premium with respect to the

default risk per se (i.e. given a specific deterministic series of intensities), is al-

ready taken into account by substituting λP
s by λQ

s . Because of the uncertainty

with respect to λQ
s , the discount factor ZBf

s,s+t may, however, still be larger

(or smaller) than the discount factor based on the expected return, even after

this substitution. In other words, the discount factor ZBf
s,s+t might only be
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the appropriate one without any further adjustments, if there is no “second di-

mension” risk premium in this model. In the following, this is shown referring

to the case of positive second dimension risk premia. To adjust for the effect

of the lower discount factor respectively the higher discount rate, positive pay-

offs have to get lower weights and negative payoffs have to get higher weights7.

This is the case, if the expectations regarding future intensities, which are con-

ditioned on the current intensity levels, tend to be higher. Then, the negative

payoff in the default case is more likely and the actual payment of all single

spreads is more unlikely. The reasoning for a negative second dimension risk

premium works accordingly.

This can be shown based on the expectations with respect to functions

depending on the intensity process, which are included in formula 35 as well.

The expectation with respect to the first function (e
−

∫ s0+0.5n
s0

λQ
s ds

) refers to the

probability that a default has not occurred yet at the point in time chosen

as higher boundary of the included integral. This figure is lower if expected

future intensities are higher – both intuitively and based on mathematical

reasoning8. Accordingly, single positive payoffs are weighted by lower weights

if the expected future intensities are higher – which is in accordance with the

presented economic reasoning.

The relation between future intensities and the level of the second func-

tion (λQ
s e

−
∫ s

s0
λQ

udu
) is not directly clear. The intensities’ expected values enter

this function in two ways: the function decreases in the intensity, which goes

into the exponential function negatively, and it increases with the intensity,

by which the exponential function is multiplied. Considering the economic

meaning of this function, this is reasonable: As discussed before, the function

value refers to the probability that the default has not yet occurred at the

point in time chosen as upper border in the included integral, but occurs just

right then. There is, moreover, an integral built over that function. This inte-

gral over the function refers to the probability that the default occurs at any

point in time between the time chosen as lower boundary of the outer integral

7In a risk neutral world, the observed spreads and loss rates would only be reasonable from
a no aribtrage pricing point of view, if the expected values of λQ

s respectively the expected
default probabilities were higher (than they actually are). The actualexpectations regarding
future intensities would be as pessimistic as they are when based under the diffusion referring
to Q̂.

8The intensity goes into the exponential function negatively.
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and the time chosen as higher boundary of the outer integral. The insurance

payment is, in other words, weighted higher if the expectations of the future

default intensity tend to be higher. This is again in accordance with the pre-

sented economic reasoning. The risk neutral expectations regarding the future

values of the intensities therefore have to be higher (compared to expectations

based on the true distribution law), the stronger the expected return (after

taking into account the “first dimension” risk premium) exceeds the risk free

return9.

The established positive relation between the second dimension risk pre-

mium and the expected values of the intensities can also be explained in a

less complicated fashion based on the temporary assumption that there is no

first dimension risk premium (i.e. λP
s = λQ

s ) and the zero bond pricing formula

24, which refers to the price of a zero bond without recovery. If the second

dimension risk premium is zero as well, the following version of the pricing

equation 24 holds:

ZBs0,s0+t = EP̂
s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
ce
−

∫ s0+t
s0

rsds

= EP̂
s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
ce
−

∫ s0+t
s0

rf
s ds

(38)

If there exists a positive second dimension risk premium, the risk-free rate

is not equal to the expected return (rs > rf
s ) and the equation 38 does not hold

anymore. As described before, one can adjust for the difference between the

discount factors resulting from rf
s respectively rs by introducing the risk-free

measure Q̂:

ZBs0,s0+t = EP̂
s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
ce
−

∫ s0+t
s0

rsds
(39)

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
s ds|F2,s0

]
ce
−

∫ s0+t
s0

rf
s ds

. (40)

If the expected return is higher (lower) than the risk-free return because of a

positive (negative) second dimension risk premium, the intensity values which

are expected under the measure Q̂ should exceed (be inferior to)10 the values

expected under P̂.

Accordingly, the difference between the conditional expectations of the in-

tensity under both measures directly measures the “second dimension” risk

9The opposite is the case if the second dimension risk premium is negative.
10The intensity goes into the exponential function negatively.
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premium. Formula 15 shows how the drift coefficients impact the conditional

expectations. If the ratio µ0

µ1
(i.e. the mean reversion) is the same under both

measures, a comparison of the drift parameter µ1 is sufficient to evaluate the

difference in the conditional expectations. A larger value for µ1 implies a larger

conditional expectation (closer to the mean reversion level), if the value of the

intensity, which the expectation is conditioned on, is below the mean reversion

level. The opposite holds if the value of the intensity is above the mean rever-

sion level. If µ0

µ1
is higher and µ1 is smaller under one measure, still not a general

statement can be made. In most cases, the conditional expectation would be

larger under the previously described measure. It might, however, still be the

case that – if the intensity value is below the mean reversion level under both

measures – the conditional expectation is higher under the described measure.

The difference between both measures with respect to the “second dimen-

sion” risk premium is therefore optimally evaluated with reference to the actual

time series of λQ
s . Based on the CIR coefficients under both measures and this

time series, conditional expectations can be calculated for all horizons t. The

difference between the resulting conditional expected values can then be eval-

uated:

EP̂
s0

[
λQ

s0+t|F2,s0

]
− EP̂

s0

[
λQ

s0+t|F2,s0

]
(41)

Another reasonable approach to evaluate the relevance of the “second dimen-

sion” risk premium is the following: the model implied CDS spreads can be

calculated based on the respective time series of λQ
s . The expectations can

be calculated based on both Q̂ leading to “true” model spreads ŜP s0 and P̂

leading to “wrong” model spreads ŜP
P̂
s0

. The latter is calculated based on this

formula:

ŜP
P̂
s0

(M) =
L̂R

[∫ s0+M

s0
ZBf

s0,sEP̂
s0,µ̂P̂

0,µ̂P̂
1,σ̂1

[
λ̂Q

s e
−

∫ s
s0

λ̂Q
udu|F2,s0

]
ds

]
∑2M

n=1

(
EP̂

s0,µ̂P̂
0,µ̂P̂

1,σ̂1

[
e
−

∫ s0+0.5n
s0

λ̂Q
s ds|F2,s0

]
ZBf

s0,s0+0.5n

) (42)

with L̂R, µ̂P̂
0 , µ̂

P̂
1 , σ̂1 denoting estimated coefficients, EP̂

s0,µ̂P̂
0,µ̂P̂

1,σ̂1
denoting the

resulting expectation and λ̂s denoting the estimated intensity process. The

true model spreads are accordingly calculated as
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ŜP
Q̂
s0

(M) =

L̂R

[∫ s0+M

s0
ZBf

s0,sE
Q̂
s0,µ̂Q̂

0 ,µ̂Q̂
1 ,σ̂1

[
λ̂Q

s e
−

∫ s
s0

λ̂Q
udu|F2,s0

]
ds

]
∑2M

n=1

(
EQ̂

s0,µ̂Q̂
0 ,µ̂Q̂

1 ,σ̂1

[
e
−

∫ s0+0.5n
s0

λ̂Q
s ds|F2,s0

]
ZBf

s0,s0+0.5n

) . (43)

A great difference between the true and wrong model spreads implies that the

“second dimension” risk premium is an important driver of credit spreads.

Finally, the difference in the undelying diffusions under both measures can

be – as by [1] – evaluated based on the Girsanov theorem. This standard

theorem is frequently used in the Quantitative Finance stock price- or short

term rate context and is introduced in the next paragraphs:

Consider a measure space
(
Ω̂, P̂ ,F

)
. B̂s be Brownian motion under proba-

bility measure P̂ , Θt be an adapted process to the resulting filtration Fs , the

index set S be the same as before and a process Zt be defined as

Zs = e[−
∫ s
0 ΘtdB̂t− 1

2

∫ s
0 Θ2

t dt] (44)

for t ∈ S and s ≥ t. P̂ be, moreover, related to the second probability measure

P̃ with Zs being Radon-Nykodin derivative linking these two measures:

dP̃
dP̂

= Zs (45)

According to the Girsanov theorem, under mild technical conditions, B̃

defined as B̃s = B̂s +
∫ s

0
Θtdt is a Brownian motion under the measure P̃ .

In equity modelling, the variable Θs is frequently considered to be the market

price of risk. Applying this approach to the presented framework shall elucidate

its reasonability. Θs be in this context denoted by ηs and the Radon-Nykodin

derivative relating Q̂ and P̂ be defined by

Ẑs = e

[
−

∫ s
0 ηtdBQ̂

t −
1
2

∫ s
0 η2

t dt
]

(46)

for t ∈ S and s ≥ t so that
dP̂
dQ̂

= Zs. (47)

This implies that

dλQ
s =

(
µP̂

0 − µP̂
1λ

Q
s

)
ds + σ1

√
λQ

s

(
dBQ̂

s + ηsds
)

. (48)
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σ1

√
λQ

s ηs accordingly gives the difference in change in λQ
s between P̂ and Q̂.

The greater ηs, the greater is the increase of λQ
s under Q̂ compared to the

increase under P̂. ηs is therefore another reasonable measure for the size of

the “second dimension” risk premium. A negative value for ηs would refer

to situations in which the insurance buyer expects a price reduction for the

possibility of changes in the default intensity as the insurance may be worthless

in the case of a sudden decrease in default intensities.

ηs is in the following assumed to depend on λQ
s in a specific functional form.

This step is line with the literature on quantitative equity modelling (c.f. [15],

[16], [17]). The specific form is chosen based on the plausible assumption that

the difference in change should increase linearly in the level of the underlying

intensity (c.f. [18] and [19]). ηs already goes into the change of λQ
s as a factor

multiplied by σ1

√
λQ

s . To obtain a linear form, it is accordingly assumed that

ηs depends on λQ
s in the following way:

ηs =
ρ0√
λQ

s

+ ρ1

√
λQ

s . (49)

This results in the actual difference in change of λQ
s being given by

σ1

(
ρ0 + ρ1λ

Q
s

)
(50)

which is a linear function in λQ
s as it is supposed to be. This implies the

following link between ρ0, ρ1 and the CIR coefficients under both measures:

ρ0 =
µQ̂

0 − µP̂
0

σ1

(51)

ρ1 =
µP̂

1 − µQ̂
1

σ1

. (52)

Accordingly, the coefficients ρ0 and ρ0 can be derived from the CIR co-

efficients and a time-series of the process ηs can be calculated and analyzed.

5 Estimation procedure

The estimation of this model-framework implies the estimation of the fol-

lowing coefficients: {µ̂P̂
0 , µ̂

P̂
1 µ̂

Q̂
0 , µ̂Q̂

1 , σ̂1, L̂R}. After the parameters under Q̂ have
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been estimated, the coefficients under P̂ can be estimated based on frequently

discussed time-series methods for diffusion processes. Therefore, this second

step is not discussed in detail in this paper.

5.1 Estimation of the diffusion parameters under Q̂

To estimate the distribution law of λQ
s under the risk neutral measure

Q̂ is a challenging task since only a set of spread time series SPs0(M) and

approximations for the risk neutral discount factors ZBf
s0,s0+s

11 are directly

observable. A loss rate LR is frequently assumed ex-ante as well. However, [1]

demonstrate that LR is suggest based on the term structure of CDS identifiable

and show that the typically assumed loss rate level of 70 percent is sometimes

far from the loss rate equating the pricing formula in their model12.

The suggested iterative procedure is – as mentioned before – restricted to

models driven by affine diffusion processes (c.f. [21]) since the theory on affine

processes is exploited to substitute the expectations included in formula 55.

[6] show that expectations with respect to transforms of such affine processes

can be depicted in exponential linear form depending on the value of the state

process at the point in time when the expectation is built in. The coefficients

of this function can be obtained as solutions to given ODEs that depend on

the parameters of the underlying diffusions.

Adapting the results in [22] to the expectations included in the CDS pricing

formula, one yields

E
[
e

∫ s1
s0

λQ
s ds|λQ

s0

]
= eαs1−s0+βs1−s0λQ

s0 (53)

E
[
λse

∫ s
s0

λQ
uds|λQ

s0

]
= eαs1−s0+βs1−s0λQ

s0 (As1−s0 + Bs1−s0)λ
Q
s0

(54)

with αs1−s0 , βs1−s0 , As1−s0 and Bs1−s0 being solutions to ODEs. The coeffi-

cients depend on the parameter of the diffusion equation driving λQ
s under the

respective measure.

11For example based on the yield-curve for AAA-bonds which is published on a daily basis
by the ECB

12Considering for example sovereign data shows that loss rates can strongly vary. Histor-
ical data as published by [20] reflect a wide range of loss rates, ranging from 1.9% in the
case of Belize in 2006, to 82 % in the Russian case.
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Knowledge regarding the diffusion coefficients would therefore allow to sub-

stitute the expectations in the CDS pricing formula by the exponential linear

functions depending on the intensity’s current realization λQ
s0

only. The coeffi-

cients of this exponential linear form are, however, still unknown as the diffu-

sion coefficients are not known either. The set of coefficients {µ̂Q̂
0 , µ̂Q̂

1 , σ̂1, L̂R}
is therefore assumed ex-ante and the resulting ODEs are solved to get a series

of coefficients for the exponential linear form. The expectations in the pricing

formula are then substituted by the respective exponential linear functions de-

pending on the realization of λQ
s0

and an estimation λ̂Q
s0i

can then be obtained

for each observation s0i
∈ [s01 , s02 .., s0N

] with N denoting the respective sample

size: define

f(λQ
s0
|µ̂Q̂

0 , µ̂Q̂
1 , σ̂Q̂

1 , L̂R)

= SPs0(M)
2M∑
n=1

(
EQ̂

s0,µ̂Q̂
0 ,µ̂Q̂

1 ,σ̂Q̂
1

[
e
−

∫ s0+0.5n
s0

λQ
s ds|λQ

s0

]
ZBf

s0,s0+0.5n

)
− L̂R

[∫ s0+M

s0

ZBf
s0,sE

Q̂
s0,µ̂Q̂

0 ,µ̂Q̂
1 ,σ̂Q̂

1

[
λQ

s e
−

∫ s
s0

λQ
udu|λQ

s0

]
ds

]
. (55)

EQ̂
s0,µ̂Q̂

0 ,µ̂Q̂
1 ,σ̂Q̂

1

denotes expectations built in s0 under Q̂ depending on the set of

coefficients {µ̂Q̂
0 , µ̂Q̂

1 , σ̂Q̂
1 }. For each time step s0i

∈ [s01 , s02 .., s0N
], one searches

for λ̂Q
s0i

which satisfies f(λ̂Q
s0i
|µ̂Q̂

0 , µ̂Q̂
1 , σ̂1, L̂R) = 0. The extracted time series

λ̂Q
s0i

is then however depending on the ex-ante determined coefficient set and it

is therefore probably biased. This bias is, however, still going to be corrected:

spreads from contracts with other maturities (i.e. in the present case 1,3,7 and

10 years) are taken and the sum of squared distances between these observed

spreads SPs0i
(M) and the model spreads ŜP s0i

(M) based on the time series

of intensities estimated in our first step is minimized by choosing a new set

of coefficients. Model spreads can in this context be calculated based on this

formula:

ŜP s0i
(M) =

L̂R

[∫ s0i
+M

s0i
ZBf

s0i
,sE

Q̂
s0i

,µ̂Q̂
0 ,µ̂Q̂

1 ,σ̂Q̂
1

[
λ̂Q

s e
−

∫ s
s0i

λ̂Q
udu|λQ

s0i

]
ds

]
∑2M

n=1

(
EQ̂

s0i
,µ̂Q̂

0 ,µ̂Q̂
1 ,σ̂Q̂

1

[
e
−

∫ s0i
+0.5n

s0i
λ̂Q

s ds|λQ
s0i

]
ZBf

s0i
,s0i

+0.5n

) (56)

and the minimization problem is accordingly given by

min︸︷︷︸
{µ̂Q̂

0 ,µ̂Q̂
1 ,σ̂1,L̂R}

∑
M∈{1,3,7,10}

∑
s0i

∈{s01 ,..,s0N
}

[
ŜP s0i

(M)− SPs0i
(M)

]2

. (57)
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This new set of coefficients {µ̂Q̂
0 , µ̂Q̂

1 , σ̂1, L̂R} is, however, again biased as

it depends in turn on the time series of intensities estimated based on the

coefficient values, which were chosen ex-ante. The estimation has therefore

not been completed yet. The new set of coefficients is subsequently used

for estimating a times series λ̂Q
s0i

which is again based on the time series of

SPs0i
(5). The estimated time series λ̂Q

s0i
is in turn used for the estimation of

a new coefficient set by comparing model spreads ŜP s0i
(M) with the actual

spreads SPs0i
(M) for M ∈ [1, 3, 7, 10]. Both steps are afterwards repeated until

the estimates of the coefficients and the intensities converge. All variables are

identified (c.f. [1]). The final estimates of the coefficients and the time-series

of intensities are characterized by approximately equating the pricing formula

in each observation date s0i
for each maturity M . The ODEs resulting in the

coefficients of the exponential linear form for the conditional expectations have

thereby of course to be solved over and over again. On the one hand, this can

be done numerically but there are on the other hand fortunately also analytical

solutions available that were presented by [23].

5.2 Estimation of the diffusion parameter under P̂

After having estimated {µ̂Q̂
0 , µ̂Q̂

1 , σ̂1, L̂R} as well as a times series of inten-

sities λQ̂
s0i

, the set of CIR drift coefficients under the historical measure Q̂ can

be estimated. The diffusion coefficient σ under P̂ is the same as under Q̂
and therefore only {µP̂

0 , µ
P̂
1} are left for estimation under Q̂. There are many

publications which deal with the estimation of stochastic differential equations

based on time-series data. For the CIR case, the estimation is particularly

simple: The transition probability distribution of the CIR process is known

to be a non-central χ2-distribution. [12] present closed form representations

for probability distributions of diffusion process realization λQ
s0+t based on the

underlying CIR coefficient and conditioned on a specific previous realization

λQ
s0

. The set of possible approaches to estimate the drift parameters under the

historical measure based on the times series of extracted risk neutral inten-

sities is accordingly wide, including maximum-likelihood estimators (MLE),

quasi-maximum-likelihood estimators (QML) or methods-of-moments estima-

tors (MoM).
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6 Conclusion

This article introduces doubly stochastic reduced form credit risk models.

Based on this, it shown in detail, how the relevance of the second dimension

risk premium can be assessed based on these models. It is elucidated that

the diffusions driving the stochastic variation of the default intensity can be

interpreted directly, in combination with a time-series of default intensities, or

based on the Girsanov theorem. Moreover, an estimation strategy for reduced

form credit risk models is described. Based on this presentation, the reader is

intended to better understand ongoing research, to conduct related research

on its own or to complement credit risk models used by practitioners.
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