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Abstract 

This paper attempts to codify a standard nomenclature for similarity measures 

based on recent literature and to advance the field of similarity measures through 

the introduction of non-binary similarity between more than two attribute vectors. 

The nomenclature standardization is accomplished through the integration of 

common terminology into non-binary similarity measures, and the refinement of 

the terminology with regard to k-vector binary and non-binary measures. This 

nomenclature standardization lays the groundwork for the introduction of k-vector 

percentage normalized similarity measures that follow the same fundamental form 

as pre-existing binary measures; a method not previously documented. 
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1  Introduction  

 Numerous papers have been written detailing methods to measure the 

similarity of two or more vectors (series) of binary attributes. This paper attempts 

to codify a standard nomenclature for similarity measures based on recent 

literature and to advance the field of similarity measures through the introduction 

of non-binary similarity between more than two attribute vectors. The first part of 

the paper, following the literature review, introduces the standardized 

nomenclature, while the second part builds the case for similarity measures of 

percentage normalized attributes, both in two and k-vector formulations. This 

includes a proposed method for evaluating any size group of vectors. For a 

detailed discussion concerning the application of the many similarity measures, 

how they are derived, and the similarities and differences between them Matthijs 

Warrens’ 2008 paper: “Similarity Coefficients for Binary Data” is a great resource. 

Warrens provides a thorough treatment of the subject through multi-variable 

measures and where a more detailed understanding of certain measures is desired, 

this paper will defer to his. 

 

 

1.1 Literature Review 

 As stated above Warrens [1] provides a thorough treatment and remains the 

go-to reference for similarity measures. Warrens details the relationship between 

the different families of binary similarity metrics and generalizes most to a 

k-vector model. The treatment of non-binary measures is limited to basic distance 

measures (dissimilarity), and doesn’t delve much beyond discussing Euclidean 
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distance as the complement to Sokal-Michener (simple matching) for binary data 

(2 vector only); indeed, Warrens refers his readers to other sources for non-binary 

treatments. Warrens does include several interesting proofs. Especially relevant to 

this paper is his proof concerning the relative value of various averages; 

specifically a comparison of the various averages of SDice1 (a/p1) and SDice2 (a/p2) 

shows that the square of the geometric mean (Sorgenfrei) is always less than 

Jaccard, which is always less than the minimum, harmonic mean, geometric mean, 

arithmetic mean, and maximum in that order. This holds for all formulations, and 

helps inform the decision concerning whether to use the arithmetic or quadratic 

mean when later discussing non-binary k-vector percentage normalized metrics. 

Warrens also provides a detailed explanation for methods employed to correct for 

chance agreement between two vectors. It should be possible to employ these 

correction methods with k-vector percentage normalized non-binary measures, 

however that assertion is not tested in this paper.  

 Whereas Warrens is the most detailed, Choi, Cha, & Tappert [2] is easily the 

most accessible with regard to explaining the four cases of 

agreement/disagreement among two vectors. Choi, et al develop a fairly 

comprehensive list of formulations for common similarity measures and is one of 

the best first resources for any practitioner or novice in the field. 

 Warrens and others [2] &[3] use a somewhat standardized terminology for 

the various cases of agreement or disagreement between two vectors. Warrens 

switches back and forth between using each term to indicate the raw value (count 

of cases of agreement) versus the arithmetic average (cases of agreement divided 

by number of attributes n). Although he attempts to indicate each time which he is 

using, and often the formulation results in their being no difference in the outcome, 

the few times that it does matter become especially confusing. To address this 

shortfall this paper uses a,b,c,d for raw values and a′,b′,c′,d′ for the arithmetic 

average over n; this notation applies for all levels of discussion, and each time the 

prime version of a measure is seen it is the arithmetic average over n of the raw 
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measure.  

 Zhang and Srihari [4] lay a fair groundwork for treating similarity as the 

complement to distance (or dissimilarity) and make one of the clearer cases for 

defining a measure as metric if it meets the four criteria of: non-negativity, 

commutativity, reflexivity, and satisfying the triangle inequality. Other researchers 

(e.g. Warrens [1]) focus on the triangle inequality and rarely mention reflexivity.  

 Several authors approach similarity as either a function of sets or with a 

Bayesian approach [5] & [3]. DeSarbo, De Soete, & Eliashberg [6] posit that 

similarity measures can be treated as a Probit regression model based on the result 

being a probability of agreement between vectors. These methods are not explored 

here. However Novak & Pap’s discussion of a similarity between a single vector 

and k-1 other vectors forms the basis for the k-vector approach discussed later.  

 Lastly, Wilson and Martinez [7] establish the Heterogeneous 

Euclidean-Overlap Metric (HEOM) which forms the basis for the decision model 

posited as part of the k-vector percentage normalized metric. They also do a fair 

job of explaining the various distance measures with regard to averaging and how 

they interrelate (especially Minkowsky versus all others). 

 There exists a veritable cornucopia of thoughtful analyses concerning 

measures of distance and similarity, especially when limited to binary attributes 

among two vectors. The depth of analysis decreases with the introduction of 

k-vector formulations, and the analysis is nearly non-existent for non-binary 

k-vector formulations. Discussion of normalization is almost completely limited to 

Wilson and Martinez [7], and even then it is somewhat of a side note. 

 

 

2  Preliminary Notes 

 Among the many papers written on this subject, most authors, especially of 

the more recent treatments, have tacitly agreed upon a somewhat standardized 
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nomenclature, however there is some variation, especially when evaluating the 

defined measures as the arithmetic average over n. Warrens [1] and Choi, et al [2] 

interchangeably use a, b, c, and d to indicate the raw values of those measures and 

the averaged versions of the same.  

 

Definition 2.1 Two Vector Binary Similarity 

 Suppose there are two objects (X1 and X2) each defined by a series of binary 

attributes such that they could be expressed as: 

 

 Table 1: Binary Attributes (values are to show the possible options) 

 X1  X2 
Attribute 1 1 1 
Attribute 2 1 0 
Attribute 3 0 1 
Attribute 4 0 0 
…   
Attribute n 1 1 

 

Where 1 indicates the presence of the attribute. There exist within Table 1, four 

distinct situations, defined as: 

 

           Table 2: Attribute Measures 

 X1=1 X1=0  
X2=1 a c a+c=p2 
X2=0 b d b+d=q2 
 a+b=p1 c+d=q1 a+b+c+d=n 

 

Utilizing the measures defined in Table 2 it can be seen from Table 1 that these 

values can be defined in several ways; for a single attribute, a can be defined as: 

the result of the Boolean expression 1, 2,j ja X X= × , the arithmetic expression 

1, 2,j ja X X= ∗ , or in set notation as 1, 2,
1
2j ja X X= ∩  . When expanded to 
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include all attributes it becomes 1, 2,
1
( )

n

j j
j

a X X
=

= ∗∑ . Including all measures 

yields: 

 

Table 3: Definitions of Measures 

 Boolean Arithmetic Set 

a= 1 2X X×  1 2X X∗∑  1 2X X∩  

b= 
1 2X X×  1 2(1 )X X∗ −∑  1 2\X X  

c= 
1 2X X×  1 2(1 )X X− ∗∑  2 2\X X  

d= 
1 2X X×  1 2(1 ) (1 )X X− ∗ −∑  1 2\ ( )U X X∪  

p1= 1X  1X∑   1X  

p2= 2X  2X∑   2X  

q1= 
1X  1(1 )X−∑  1\ ( )U X  

q2= 
2X  2(1 )X−∑  2\ ( )U X  

n= 
1 1X X+  

 

1 1 2 2p q p q a b c d+ = + = + + +  1 2 1 2( ) ( )X X X X∪ − ∩  

 

 

The formulation for n  in Table 3 assumes that the number of attributes measured 

for each X is the same (if they weren’t the same, the whole concept of a similarity 

measure falls apart), this value can easily be found within R using length(X1). 

 For those values used by Warrens [1] and Choi, et al [2] where the measure is 

averaged over n, the nomenclature a′ (or b′, c′, d′, etc.) will be used going forward, 

such that:  

a aa
n a b c d

′ = =
+ + +
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This reduces several existing similarity measures to single character expression, 

e.g.  

&Rusell RaoS a′=  

Appendix A contains several common similarity measures in 2 and k-vector 

formulations.  

 At this point an important heuristic should be presented regarding the choice 

between measures that account for d (co-non-occurrence or negative overlap) 

versus those that do not account for d. When the number of available attributes is 

finite and limited, those measures that account for d are more representative, as 

the non-occurrence of an attribute can be considered important when it is one of 

few possible attributes; when the number of attributes is large (including infinite) 

the measures that do not account for d should be used as the co-non-occurrence of 

one of an infinite number of possible attributes is of little meaning. 

 

Definition 2.2: k-Vector Binary Similarity 

  To expand the similarity measures discussed it is necessary to establish 

a set of k vectors (Xi for i=1 to k), within each of these vectors Xi is described by n 

attributes (Xi,j is the attribute value for vector i for attribute j).  

        Table 4: Three Variables 

 X1 X2 X3 
a 1 1 1 
? 1 1 0 
? 1 0 1 
? 1 0 0 
? 0 1 0 
? 0 1 1 
? 0 0 1 
d 0 0 0 

 

Adding additional columns to Table 1 for additional X variables creates some 

problems when defining b and c. It remains easy to define a as all instances of an 

attribute being present in all Xs and d as all instances of an attribute being not 
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present in all Xs. More Xs creates more options in the middle that do not cleanly 

fall into the definition of either b or c from the 2 variable formulation. 

First, c is abandoned in favor of multiple formulations of b and rewrite Table 

4 as follows: 

      Table 4a: Three Variables with b’s 

 X1 X2 X3 
a 1 1 1 
b1 1 1 0 
b2 1 0 1 
b3 1 0 0 
b4 0 1 0 
b5 0 1 1 
b6 0 0 1 
d 0 0 0 

 

This resolves the limitations of the b/c nomenclature but creates extensive 

formulations. Upon examination of the many similarity measures in existence it 

becomes apparent that most use some function of  p1 and/or  p2  in the 

denominator. From Table 3 we can see that p1 is simply the sum of X1 over all 

attributes, from that we expand the p measures to include one for each column and 

the q measures simply become the complement of the p’s, i.e. q1=n-p1. This 

formulation allows for multi-variable approaches to existing measures such as (for 

three variables): 

1 3
3

2

3
Dice

aS
p p p− =
+ +

 

This works because the denominator for Dice (in the two variable format) is made 

up of (a+b)+(a+c) or p1+p2. Dice (and other similar measures) lends itself nicely 

to expansion in this form and results in (for k variables): 

1 2 k
Dice k

kaS
p p p− =
+ + +

 

and 
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1 2
Sorgenfrei

k
k

kaS
p p p− =
∗ ∗ ∗

 

In the case of similarity measures that do not use such a formulation like Jaccard, 

some other form can be used, e.g. Jaccard
aS

n d
=

−
 , where n  remains the 

number of attributes; in fact this formulation of Jaccard works for any number of 

vectors. The simple matching measure even retains its original form: 

Socal Michener
a dS a d

n−

+ ′ ′= = +  

 These multi-variable similarity measures yield the similarity between all 

vectors; as such it is advisable to only compare three way measures with three way 

measures when evaluating for which group is more similar than another, as 

three-way measures will always be smaller than two-way measures, etc. of similar 

vectors (as 1 2 kp p p+ + +  goes up S goes down).  

 

 

3  Main Results  

 Until now the vast majority of the proposed measures of similarity have been 

based on the presence or absence of binary attributes. There exist, however, 

countless instances of attributes being present within an individual that are not 

expressed completely. These cases represent a problem for traditional similarity 

measures; should the partial presence be treated as presence or absence, or is there 

some third option? 

 

 

3.1 Conceptual formulation 

 Consider two vectors, X1 and X2, each described by n  attributes; each 

attribute can be expressed as a percentage at which it is expressed in the vector, 
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e.g. X1 expresses 27% of attribute 1. The sum of the strengths of the individual 

attributes within each vector do not necessarily add up to 100%, nor do the sum of 

strengths across vectors add to 100%. This type of test data was used to evaluate 

potential measures of similarity and distance. 

 

3.1.1 Data generation and testing.  

First, a random data set was created to assess various trial similarity measures. 

Two vectors of n=100 were generated in Excel; the first vector using rand() and 

the second vector as a function of the first vector. A weight of between 0.7 and 1.0 

was applied to the first vector randomly to create the second vector such that it is 

no more than 30% less in all values than the first. Since this weighting was via a 

uniformly distributed random number (Appendix B), it is expected that X2 will be 

15% less than X1 on average. Therefore should yield a similarity approximately 

equal to 0.85 by city-block distance. 

 The first attempt at a percentage similarity measure began with calculating 

the Pearson Product Moment for the two vectors. This test yielded a result of 

r=0.983. The Pearson correlation breaks down in cases of one vector attribute 

value equaling zero with the other vector having some non-zero value (b or c cases 

from binary similarity). Pearson reduces the numerator for each b or c, however 

since the other vector may be very near zero there is no reason why close 

proximity (e.g. between 0 and 0.1) should be treated differently than between 0.8 

and 0.9. This indicates that a similarity measure that does not separate out b and c 

cases but calculates distance regardless of the values is required. 

 

3.1.2 Negative overlap.  

The question of how to approach negative overlap, the condition d in the 

binary measures should be answered before getting too deep into evaluating 

proposed measures. In cases where the co-non-occurrence (negative overlap) of an 

attribute is important to the overall picture, then d must be accounted for. This 
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situation is likely to occur when there are a small finite number of attributes. If 

two vectors each have ten attributes and four of them are negative overlaps it 

indicates that within those four descriptive areas the two vectors are the same. If 

two vectors have the potential to include infinite attributes but only ten are 

reported, those four negative overlaps are probably a very small percentage of 

total negative overlaps, and are much less likely to be indicative of an overall 

similarity. Going forward this decision rule will be applied; if the number of 

attributes is small and from a finite population, then d will be included, if the 

number of attributes is large and/or from an infinite (or very large) population, 

then d will be discounted. Most formulations throughout the remainder of this 

paper will specifically address d by removing it from the similarity (a) value 

(distance based measures often result in calculating a+d, so d needs to be 

subtracted when it adds no value). 

 

3.1.3 Further testing of proposed measures.  

The second attempt at non-binary similarity involves a percentage similarity.  

A percentage similarity ,max ,min

,max

x x
x

j j

j

−
  or  1, 2,

1,

x x
x
j j

j

−
  will vary 

depending upon where the values lie between 0 and 1. Previously it was discussed 

that the difference between 0.9 and 0.8 should be treated with equal weight to the 

difference between 0.1 and 0.2. The closer to 1 the more weight the relationship 

will be given, as such this method can be eliminated from consideration (although 

in the case of this specific data it does come close to our target of 85% at 85.58%, 

however this is more a function of the data specification than the quality of the 

method). A distance measure does not weight differences at the 1 end of the 

spectrum more. At their most basic, a measure of distance is simply the difference 

between the two values. By applying some treatment to that value, either absolute 

value, or squaring, a positive value can be arrived at regardless of the larger value. 

This method (when the absolute value is taken) would yield 0.1 in both of the 
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scenarios above, thus treating them as the same difference. 

 Advancing the absolute value method to calculate the arithmetic mean over n 

attributes yields:  

1 2X X
D

n
−

′ =∑  

 (with similarity being simply the complement, 1S D′= − ). This is the arithmetic 

average city-block or Manhattan distance between the two vectors and will be 

seen more in this paper. Other distance measures can also be used here as well. 

Euclidean Distance can be used as it treats the differences similarly (although 

squared instead of as an absolute value) giving: 2
1 2( )D X X= −∑  the 

arithmetic average of which is: 
2

1 2( )X X
D

n
−

′ = ∑  . 

Interestingly, the common formulation of 
2

1 2( )X X
D

n
−

′ = ∑   represents the 

quadratic mean of the Euclidean distances (as opposed to the arithmetic mean used 

above) this value is the same for the quadratic mean of the city-block distance 

2
1 2X X

D
n
−

′ = ∑ . A choice to use the quadratic mean over the arithmetic mean 

eliminates the choice between city-block and Euclidean distance. 

 Minkowsky distance is a generalization of Euclidean distance where 

1 2
rrD X X= −∑ . Minkowsky distance forms the Euclidean distance for 2r = , 

the city-block distance for 1r =  and the Chebychev distance for r = ∞  (for 

Chebychev distance, 1 2maxD X X= −∑ ). Additional distance measures, such 

as Chi-square, Mahalanobis, Quadratic, or Canberra can also be used. 

Mahalanobis distance ( 1
1, 2, 1, 2,( ) ( )T

j j j jd X X S X X−= − −  tends to be very 

resource intensive to calculate for large data sets. Chord distance, which is a 

transformation of Cosine distance can overcome the problems in non-normalized 
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Euclidean distance. Without percentage normalization, Euclidean distance is 

sensitive to outliers (large values of attributes mask smaller values), and even with 

normalization, if attributes repeat they will be more heavily weighted. 

 For the purposes of this analysis, attribute values are percentage normalized, 

thus eliminating the outlier issue with Euclidean distance (the same issue arises in 

Minkowsky distance for all values of r). To normalize individual values: for 

attribute j the value attributed to X1 is equal to the raw value minus the minimum 

divided by the range for that attribute (the range being equal to the max possible 

value if the minimum is zero) thus giving:  

1, 1, ,min
1,

1, ,max 1, ,min

x xˆ
x x

j j
j

j j

X
−

=
−

. 

 For situations where the minimum is zero, Xmin can obviously be removed. 

Alternately the value can be divided by the standard deviation of the attribute 

instead of its range to trim outliers, this may require mapping values that exceed 

either end (0,1) to the limits [7] (this method will not be explored in this analysis). 

By treating all attributes as percentages, it eliminates the weight problem 

discussed, provides a standard reference for all attribute values (0,1), and allows 

for selective weighting of attributes down the road. 

 

 

3.2 k-vector percentage normalized metric 

 To turn the above discussed distances into a metric measure that can be 

treated as the complement of similarity a decision point needs to be addressed first. 

Since the states of overlap (positive and negative) can still exist in a non-binary 

situation, they need to be addressed as either both cases of zero distance, or as 

something else. Building from the Heterogeneous Euclidean-Overlap Metric 

(HEOM) [7] and replacing Euclidean distance with Minkowsy distance (allowing 

for adjustment in r to yield several various distance measures) provides a distance 

measure to start from. Since the distance between attributes is important in all 
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cases (and not just the case of complete positive overlap) the b and c measures are 

moot. Distance will yield 0 for both the previously defined a or d case.  

 Positive overlap (a) can be ignored as all cases that are not negative overlap 

are some form of dissimilarity that can be measured by the distance between 

vectors (a having zero distance). Cases of all vectors having some value are 

fundamentally no different from cases where one vector has a value and the 

remaining k-1 vectors are all zero; there is still a distance between them that can 

be measured and represents their dissimilarity.  

 Negative Overlap can be ignored when a small finite number of attributes are 

in question. If the number of possible attributes is small and finite the situation of 

negative overlap indicates that the vectors are similar in the non-presence of that 

attribute. If the number of possible attributes is large (or infinite) negative overlap 

may not be important in understanding similarity (or dissimilarity) between the 

vectors. If for example the degree to which k vectors represent the attribute 

“Tastes like Chicken” is included and the vectors each represent a planet in the 

solar system, then the negative overlap tells us nothing and should be discarded. If 

a large number is in question then the decision to discard negative overlaps should 

be made. This case is the d measure from binary similarity which can be 

calculated in R by d=(Sum(Trunc((1-X1)*…*(1-Xk)), na.rm=TRUE)) this returns 

the number of cases where all X=0. This value can be subtracted from the 

numerator in the distance measure utilized to discount those cases of negative 

overlap resulting in a=n-(D+d), using city-block distance (D). 

 Conveniently this formulation works whether the variables are binary or 

percentage normalized. This reduces HEOM to a single decision from the two it 

started with. That decision, whether to specifically discount negative overlap, 

remains. 

 

3.2.1  k-vector distance.  

City-block distance for a three vector formulation reduces to max minus min. 
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Assuming that the first vector contains the max value, the second vector a value in 

the middle, and the third vector the minimum value the distance becomes the sum 

of the individual distances between 1 and 2 and 2 and 3, or: 

(X1-X2)+(X2-X3)=X1-X3. Since the city-block formulation includes the absolute 

value of those differences, the location of the min, max, and middle values 

becomes irrelevant, and the three vector version reduces to |max-min|, or simply 

max-min. From there it is an easy leap to a k-vector formulation, since the end 

result is the same. City-block benefits from simplicity in this case, and for that 

reason alone should be considered when evaluating a best distance measure for 

any k-vector data set. 

 The quadratic mean of city-block was previously shown to equal the 

quadratic mean of Euclidean distance, that holds true here as well. The arithmetic 

mean is equal to the quadratic mean times n0.5, so by multiplying the quadratic 

mean of the k-vector city block distance by n0.5 the result is the arithmetic mean of 

the Euclidean distance for k-vectors. This is a round-about way of getting there, 

but a useful tool to understand the interrelation between the two distance measures 

and the two means. 

 To equate city block distance back to 2-vectors, the distance calculated is 

equal to n-(a+d), where a and d are as defined before. Since city-block equals zero 

whenever the two vectors have the same value, it equals zero for both positive and 

negative overlap (positive and negative co-occurrence). Sokal-Michener in 

k-vector becomes (a+d)/n, and is the arithmetic mean of n-D when D is calculated 

via city-block distance, therefore the multi-vector percentage normalized version 

retains the same form with ( )1 (max min)a d+ = − −∑ . The only need for a 

decision point in the modified HOEM is for the case of all X=0 (negative overlap), 

and that is only required when n is large or in specific cases of small n where the 

co-non-occurrence (negative overlap) doesn’t yield valuable information. 

 This max-min formulation does not account for variation (beside the 

difference between max and min) within each attribute j. The variation is hidden 
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within the variation between the outliers on either end, as such, it is not an 

accurate way of measuring the distance among the vectors, instead acting as a 

distance between tails.  

 By using standard deviation for a population within each attribute j we can 

account for all of the variance present between all Xs. Using population instead of 

sample because; although there may be more Xs in the universe, only the ones 

being evaluated are being evaluated, and thus are assumed to be the only ones in 

existence or at least the only ones that matter. Since this eliminates Bessel's 

correction it force normalizes the range to (0,1). This makes  

2
,

1

1

( )
2

k

i j in
i

j

X X
a d n

k
=

=

−
+ = − ∗

∑
∑  

 using arithmetic average city block distance. The 2 normalizes to a max value of 

1 since 

2
,

1
( )

max 0.5

k

i j i
i

X X

k
=

−
=

∑
 for X≤1 and d remains 

1

( ( (1 )))
k

i
i

d trunc X
=

= −∑ ∏  just as before. Utilizing the Minkowsky formulation 

for distance as the method for averaging the standard deviation derived distance 

produces an equation that is customizable in results through modification of the 

exponent term (r), thus allowing a single equation to yield arithmetic, quadratic, 

and geometric (among other) averages.  

2
,

1

1

( )
2

1

r
k

i j in
i

j

r

X X

k
a d

n

=

=

 
− 

 ∗
 

′ ′+ = −  
 
 
 
 

∑
∑

 

 This Minkowsky version of the arithmetic average of the sum of standard 

deviations includes all of the variance between vectors over each attribute, is 
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limited to (0,1), and meets the metric rules described by Zhang and Srihari [4]. In 

all, it appears to be the best approach to k-vector percentage normalized similarity, 

as it solves the problems noted with the various other attempted similarity 

measures. Formulations for a, d, p1, p2, etc. can be found in Appendix C. 

 

 

3.3 Application 

 The most readily apparent application for the above distance measure is in 

determining similarity between k non-binary vectors (through four steps). In the 

first step percentage normalize the data as described above. In the second step 

determine r ( 2r =  for Euclidean distance, 1r =  for city-block distance, and 

r = ∞   for Chebychev distance). In the third step determine if negative overlap (d) 

is significant for the similarity being evaluated. In the fourth step, for a 

generalized version of SRussell&Rao apply:  

2
,

1

1 1 1
&

( )
2 ( ( (1 )))

1

r
k

ri j i kn n
i

i
j j i

rR RUniversal r

X X
trunc X

k
S a

n n

=

= = =

 
−    ∗ −    ′= = − −         

 
 

∑
∑ ∑ ∏

 

Alternately, for traditional measures, calculate  

2
,

1

1 1 1

( )
2 ( ( (1 )))

k

i j i kn n
i

i
j j i

X X
a n trunc X

k
=

= = =

−
= − ∗ − −

∑
∑ ∑ ∏  

and all k values for  

,
1
1 ( (1 ))

n

i i j
j

p trunc X
=

= − −∑  

using those values Dice, Jaccard, etc. can be readily calculated. Some measures 
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use a+b+c as the denominator, in those cases either use n-d or 
1

( 1)
k

i
i

p a k
=

  − − 
 
∑  

with the first method producing Jaccard values closer to Dice and the later closer 

to Sorgenfrei.   

 Egghe [8] suggests that a good test of the quality of a similarity measure is 

whether the addition of a constant attribute value to both vectors results in an 

increase in similarity. This test was applied to the SR&R Universal measure calculated 

with the data in Appendix B (two vector) by adding an additional attribute with a 

value of 0.5 to each vector. This addition cause the resultant similarity value to 

increase from 0.93067 to 0.93136, passing the Egghe test.  

 For prediction; utilizing S as a probability of inclusion from X1 to X2 for 

items or attributes exhibited by X1 but not X2 may prove useful. Used in this 

manner S becomes the slope for the new attribute in what amounts to a Probit 

model [6], such that the strength of the attribute in X1 times S yields a value for 

the predicted strength of the same attribute in X2.  

 Similarity measures are typically used to measure a percentage relationship 

between two or more vectors, however these results do not yield a significance 

component and are left up to the researcher to decide whether a relationship exists 

beyond chance and whether that relationship is of value. Since traditional 

similarity measures are nonparametric in nature, there are no distinct criteria for 

significance and no accepted statistical tests. Establishing arbitrary cutoffs (50%) 

allow for some form of hypothesis testing, however care must be taken to define 

the rejection criteria before the test is performed so as not to influence the results 

(p hacking). 

 

 

4  Conclusion 

 The nomenclature utilized for binary similarity measures has been largely 
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accepted within the field, however there has still remained some aspects that were 

not clear. The use of a′ to indicate the average of a over n resolves the problem of 

ambiguity. Although some authors use set or Boolean notation to indicate the 

different agreement conditions, a standardized arithmetic notation eliminates 

confusion across disciplines. 

 Generalizing binary measures of similarity from 2 vectors to k vectors has 

proven to be of relative ease once the conditions of b and c are addressed. By 

ignoring them and treating them as the remainder once a and d are determined, or 

by utilizing measures that do not use them specifically but rather rely on p1 

through pk instead, the problem of their definitions becomes moot. 

 Non-binary attribute values present several problems, most of which are 

addressed through percentage normalization. Once normalized there are several 

distance measures to choose from. The most universal and flexible method 

involves Minkowsky distance, allowing for determination of r as a method of 

moving between city-block and Euclidean distances. This formulation is further 

expandable in the means of averaging over n. An extension of the Minkowsky 

distance formula allows for the average over n to be arithmetic, quadratic, etc. 

proving useful when evaluating amongst the options. 

 Expanding the non-binary measures to k vectors results in the decision to 

abandon max-min in favor of standard deviation, which has been shown to be 

equivalent to the arithmetic average of the Euclidean distance between each vector 

i within each attribute j and the average of same. For a two vector model this 

reduces to a max-min formulation, but for k vectors it includes the variability 

within the attribute (which is not included in max-min), providing a better picture 

of overall within-attribute distance. 

 Using the standard deviation model a test for significance has been developed 

and shown to produce results consistent with expectations for randomly generated 

data and for modified randomly generated data. When treated as a Probit model as 

suggested by DeSarbo, et al. [6], this new model can help improve understanding 
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with regard to how individuals and groups are interrelated in numerous fields. 
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Appendix A: Common Similarity Measures 
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Appendix B: Development Data 

X1 X2 

 

X1 X2 

 

X1 X2 

0.340602 0.275888 

 

0.306361 0.242026 

 

0.147197 0.108926 

0.68802 0.639858 

 

0.994146 0.845024 

 

0.915749 0.714284 

0.821848 0.821848 

 

0.208921 0.200564 

 

0.158594 0.120531 

0.397286 0.345639 

 

0.985705 0.887134 

 

0.195504 0.138808 

0.263364 0.229127 

 

0.370664 0.329891 

 

0.89086 0.739414 

0.035587 0.035587 

 

0.173636 0.145854 

 

0.714764 0.557516 

0.157219 0.119486 

 

0.435506 0.309209 

 

0.569555 0.438558 

0.213186 0.153494 

 

0.367051 0.308323 

 

0.624775 0.449838 

0.12093 0.111255 

 

0.555638 0.488961 

 

0.025385 0.0231 

0.284669 0.216349 

 

0.785819 0.565789 

 

0.343074 0.298474 

0.288161 0.247818 

 

0.112036 0.110916 

 

0.58016 0.551152 

0.05854 0.057369 

 

0.832574 0.632756 

 

0.249354 0.249354 

0.093149 0.081971 

 

0.12971 0.123225 

 

0.823335 0.691601 

0.071666 0.063066 

 

0.697062 0.648267 

 

0.77277 0.57185 

0.525647 0.37321 

 

0.068136 0.067455 

 

0.706323 0.614501 

0.738247 0.671805 

 

0.785189 0.565336 

 

0.427081 0.345936 

0.208882 0.154573 

 

0.863307 0.699279 

 

0.525702 0.473132 

0.942096 0.923254 

 

0.929838 0.855451 

 

0.94578 0.784997 

0.183399 0.172395 

 

0.400129 0.288093 

 

0.316947 0.250388 

0.548421 0.449705 

 

0.957891 0.919576 

 

0.178148 0.142518 

0.280547 0.238465 

 

0.690108 0.593493 

 

0.244469 0.232245 

0.67324 0.498198 

 

0.450693 0.324499 

 

0.965336 0.888109 

0.597845 0.478276 

 

0.981283 0.922406 

 

0.080829 0.063855 

0.602816 0.548562 

 

0.42387 0.38996 

 

0.060583 0.052102 

0.711556 0.661747 

 

0.044073 0.034377 

   0.968161 0.958479 

 

0.059858 0.051478 

   0.564296 0.49658 

 

0.748699 0.658855 

   0.779835 0.701852 

 

0.61662 0.591955 

   0.296534 0.278742 

 

0.660463 0.647253 
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0.25166 0.186229 

 

0.231882 0.176231 

   0.945287 0.860211 

 

0.788843 0.733624 

   0.71601 0.529848 

 

0.208004 0.158083 

   0.597892 0.538103 

 

0.277543 0.269216 

   0.544292 0.386447 

 

0.082125 0.073091 

   0.182031 0.147445 

 

0.676292 0.64924 

   0.417878 0.338481 

 

0.922073 0.857528 

   0.916226 0.659683 

 

0.936786 0.843107 

   0.715954 0.701635 

 

0.433612 0.403259 

    
Pearson r=0.983238 
Percentage Similarity D’=0.1442,  S=0.8558 
Quadratic Average Euclidean Distance D’=0.0918, S=0.9082 
SR&R Universal  S=0.9307 
SJaccard  S=0.9307 
Modifying the data to replace the last set with 0,0 (negative overlap) 
affects R&R and Jaccard as follows: 
SR&R Universal  S=0.9208 
SJaccard  S=0.9301  
Jaccard does not decrease as much, because, although in both cases the 
numerator decreases, in the case of Jaccard, so does the denominator. 
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Appendix C: k-vector Percentage Normalized Values 
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