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Abstract 

In this study, the problem of classifying a new observation vector into one of the 

known groups ( 2,1, =iiπ ) distributed multivariate normal when the mean vectors 

are equal and the training data contaminated with outliers to be non-normal. Four 

classification rules are considered for equal and unequal prior probabilities and 

non-normality based on: Bartlett and Please method (BPM), Bayesian Posterior 

Probability Approach (BPP), the Quadratic Discriminant Function (QDF) and the 

Absolute Euclidean Distance Classifier method (AEDC). Female liked sex twins 

extracted from Stocks (1933) twin data is used for analysis and performance 

evaluation is based on Cross Validation (CV) and Balanced Error Rate (BER). 

While all four functions recorded higher error rates, BPM method was very 

sensitive to outliers. The QDF performed better with the least error rate under 

non-normality. BPM outperformed all the other classification rules under unequal 
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prior probabilities. Similar results were obtained from the simulation study. 

 

Keywords: Mean Error Rates; Bartlett and Please Method; Absolute Euclidean 

Distance Classifier; Outliers. 

 

 

1 Introduction  

We consider the problem of zero mean difference classification of a new 

p-variate observations into two known groups 1π  and 2π  of independently 

distributed multivariate normal with mean vectors 2,1, =iiµ and positive definite 

variance covariance matrix, pnpp ≥Σ × , . The mean vectors are assumed equal 

with a zero mean difference and 21 Σ≠Σ . The population parameters are replaced 

by their sample estimates in the functions. Manjunath et al (2012) indicated that 

classical discriminant analysis focuses on Gaussian and non-parametric models 

where the unknown densities were replaced by their kernel densities.  

Okamoto (1961) one of the earliest contributors to the subject, studied the 

problem of discrimination with common mean and different covariance structure 

of two multidimensional normal populations. This was followed by the study of 

Bartlett and Please (1963) where uniform covariance matrices were used to obtain 

a linear discriminant function an assumption of equal and unequal correlation 

coefficient for classification. The optimal discriminant rule has to be based on the 

difference between the group covariance matrices with some authors assuming 

uniformity in covariance matrices. (McLachlan, 2004). Geisser and Desu (1968) 

assumed various structures of uniform covariance matrices with application of 

several classification methods. Another school of thought is the Bayesian 

approach pioneered by Geisser and Desu (1968, 1975). Lachenbruch (1975) 

absolute linear rule performed well for two group classification with contaminated 

training data while QDF performed poorly. Ganeslingam (2006) compared the 
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performance of QDF and AEDC with zero mean difference vector assumption 

resulting in AEDC outperforming the QDF. 

In evaluating the classification functions, one of the ways of judging the 

performance of several classification procedures is to calculate their error rates or 

misclassification probabilities. Some of the error rate estimation methods are the 

optimal error rates (OER), the apparent error rate (APER), the balanced error rate 

(BER) and the leaving-one-out method (LOO). (Lachenbruch, 1968). An 

assessment of error rate estimators was studied by (Lachenbruch, 1968) and 

(Krzanowski and hand, 1997) paying special attention to the leave-one-out method. 

The leave-one-out rule seeks to overcome the drawback of re-substitution by 

process of cross-validation. The estimator was investigated in simulation study, 

both in absolute terms and in comparison with a popular bootstrap estimator. 

Several comparative studies on the QDF and Linear Discriminant Function 

(LDF) for two group classifications have been considered. Lachenbruch et al 

(1975) and Lachenbruch et al (1977) studied the robustness of LDF and effects of 

non-normality on the QDF. Their results indicated that the actual error rates were 

considerably larger than the optimal rates in the case of zero mean difference. 

Also, non-normal samples generally under the QDF did not do substantially worse 

than when applied to normal samples. In our study we consider the zero mean 

classification problem for non-normal training data and unequal prior probabilities. 

The sample size ratios were set at 1:1, 1:2, 1:3 and 1:4. 

 

 

2 Methods and Materials  

2.1 Zero Mean Classification Functions 

Here we discuss the classification functions evaluated in this study.  
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2.1.1 Bartlett and Please approach to Equal mean discrimination 

Bartlett and Please (1963) addressed the problem of equal mean 

discrimination for two populations using the well-known twins data of Stocks 

(1933). They adopted the general uniform covariance structure  

                  

(1) 

Where 1 is a column vector of 1's and ρ is the population correlation coefficient 

between any two variables. This pattern of equal covariance and equal variances 

in Σ is variously referred to as uniformity, compound symmetry. Bartlett and 

Please standardised the first covariance matrix corresponding to the monozygotic 

twins as;  

                             (2)     

They further assumed that, 2Σ  could not be simultaneously standardised to unit 

variances and was given by;  

                     (3) 

 
2

1σ  was set equal to 1 with ρρρ == 21 where 2σ  is obtained as the ratio of 

the sum of squares of the Dizygotic twins 2π  to that of the Monozygotic twins 

1π . With reference to the two uniform covariance matrices above, the inverses of 

1Σ  and 2Σ  are given below.  
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With Epp =′11 , E is the matrix with entries equal to unity. Therefore using the log 

likelihood (likelihood ratio) )()( 21 xfxf  and ignoring the additive constants 

gives the optimal discriminant function for equal mean vectors and correlations 
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( ρρρ == 21 ) . The ideal discriminant function involves only 1Z  and 2Z  so 

that these two quantities are plotted and gives a resulting straight line boundary. 

The classification rule becomes: assign z  to 1π  if and only if  

             
cpZ
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)1(

)1(1 221 −
−
−

≤
−+

− −σ
ρ

ρ
ρ                       (6)                                                 

Otherwise assign z to 2π  where p=the number of independent variables, 

12 qqc =  with 2q  and 1q being the prior probabilities for the two respective 

groups, )(1 zztrZ ′=  and )(2 zEztrZ ′=  with z being the observational vector 

belonging to either 1π  or 2π . 

  

2.1.2 Bayesian Posterior Probability Approach for Classification 

Let jπ  denote the proportion of units in the total observations/units in 

population j . We denote jπ  as the prior probability of membership in 

population j . Considering the probability of unit u belonging to group j, given that 

the unit has a particular observation vector uX . This probability, denoted 

by )|( uXjP , is the posterior probability of membership in population j. Hence,   
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By using equation (10), the total number of misclassification errors is minimized. 

And unit u is assigned to population j if  

      )|()|( uu XjPXjP ′>            (Huberty and Olejnik, 2006). 

    

2.1.3 Quadratic Discriminant Function: Normal Populations with 21 Σ≠Σ     

  From equation (2), (3) the classification rule for assigning 0x  to 

1π (otherwise to 2π ) is given as, classify 0x as  iπ  if  
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classification regions are defined by quadratic functions of x. When 21 Σ≠∑ , 

equation (11) reduces to  
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The awkward nature of the Quadratic discriminant function occurs in more than 

two dimensions and can lead to some strange results. (Johnson and Wichern, 

2007). 

 

 2.1.4 The Absolute Euclidean Distance Classifier (AEDC)} 

The Euclidean distance classifier cannot be used when 21 µµ = . The AEDC is 

used when the absolute values of the components of the observations in Euclidean 

Distance Classifier (EDC) is considered. It is expected that, this approach does 

well in a high dimensional data set. AEDC is mostly used and applicable in 

situations when 21 Σ≠Σ . AEDC and QDF are always used as an alternative to 

LDF. The Euclidean distance classifier (EDC) will allocate an observed vector X 

to population 1π  if 

      
0).()(
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T

x                 (10)  

Otherwise to 2π  

 For 21 µµ =  the absolute values of X, YX =|| , for a three dimensional vector 

becomes: allocate Y to 1π  if  
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Where )(k
iµ  is the mean of the thi component of Y in the thk population. In 

general, we allocate observation vector X to 1π  if  
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2.2 Evaluating Classification functions for two groups 

To judge the performance of a sample classification procedure, we calculate 

its misclassification probability or error rate. Some of the measures of 

performance that can be calculated for any classification procedure are the Cross 

Validation (CV) method and the Balanced Error Rate (BER). 

 

2.2.1 Cross Validation Procedure 

The leave-one-out method was introduced by Lachenbruch and Mickey (1968) 

and it stipulates as follows. Let CM
Mn1 and CV

Mn2  be the number of left-out 

observations misclassified in groups 1 and 2 respectively.  A good estimate of the 

actual error rate is given by: 

 
21

21

nn
nnCV

CV
M

CM
M

+
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2.2.2 The Balanced Error Rate Procedure (BER) 

The Balanced Error Rate (BER) statistics is the average of the 

misclassification can be derived as:     



  18                                   Some Zero Mean Classification functions 

             






+
+

+
=

dc
c

ba
bBER

2
1                              (14)                                                  

Where a ,b, c and d are entries in the confusion matrix. 

 

 

2.3 Simulation design and stocks data 

A multivariate normal distribution data, ),( iiN Σµ , 2,1=i from the groups 

1π , 2π  and sample size 2,1,50 == ini , using the estimates of 1ρ  and 2ρ from 

the female like sex twin data to be 0.0478 and 0.2194 respectively with ten 

variables depicting the behaviour of female like sex twins from Stock twin data 

was simulated. Fifteen (15) pairs of observations were sampled from each group 

after 10 replications using simple random sampling without replacement. Mean 

estimates of 21
2 ,, ρρσ  and ρ  were computed after the 10 replications and was 

used to generate the classification functions and rules. The simulated 10 variate 

normally distributed data was further contaminated to assume non normality by 

introducing outliers into both the monozygotic and dizygotic twin groups. The 

process was therefore repeated and was applied to the already outlined 

classification methods and their performances were evaluated. 

 

2.3.1 Stocks Female liked sex Data 

Female like sex twins comprising thirty (30) pairs of monozygotic twins and 

25 pairs of dizygotic twins was used for the data analyses. A sample size of fifteen 

(15) from each group were selected after 10 replications based on simple random 

sampling and the estimates of 21
2 ,, ρρσ  were estimated from the mean estimates 

from the 10 replicated samples. The final sample size 1521 == nn was selected 

based on the closeness of the estimated parameters to that of the mean values of 

the 10 replicated estimates. The 10 variables selected included: Height (Ht), 

Weight (Wt), Head length (HL), Head breadth (HB), Head circumference (HC), 
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Interpupillary  distance (ID), Systolic blood  pressure (SBP),Pulse interval (PI), 

Strength  of left(SGL) grip, Strength of right grip (SGR). Stocks twin data was 

contaminated to assume non normality after the introduction of outliers into the 

two twin groups. 

 

 

3 Main Results  

Under the assumption of unequal prior probabilities and equal 

misclassification cost and non-normality contamination, four classification 

functions were derived under several varying sampling degrees. The varying 

degrees of sample selections used based on the groups ratio in the order of 

Monozygotic: Dizygotic were; 1:2, 1:3, 1:4 and the ratio order of Dizygotic: 

Monozygotic were 1:2, 1:3, 1:4. 

 

3.1 Bartlett and Please Classification Method for ):(, 2121 nnnn ≠  

The summary of classification rules under each of the various sampling ratios 

(1:2, 1:3, 1:4) are presented in the table below. 

Table 1: Classification rules under the various sampling ratios 

 

 

Sample 
Ratios Classification rules Cut-off 

21 : nn    
1:2 96.140655.0 21 ≤− ZZ  14.96 
1.3 90.120660.0 21 ≤− ZZ  12.90 
1:4 70.170709.0 21 ≤− ZZ  17.70 

12 : nn  
  1:2 90.150702.0 21 ≤− ZZ  15.90 

1:3 91.180230.0 21 ≤− ZZ  18.91 
1:4 99.170158.0 21 ≤− ZZ  17.99 



  20                                   Some Zero Mean Classification functions 

Based on the above derived classification rules, the following discriminant scores 

were obtained as summarised in Table 3. 

Table 3: Discriminant scores 
1:2 1:3 1:4 

96.14<MD  96.14≥DD  90.12<MD  90.12≥DD  70.17<MD  70.17≥MD  
1.53 15.79 1.53 17.79 1.52 15.69 
5.01 28.74 5.01 28.74 5.01 28.72 
1.57 16.52 1.57 16.52 1.56 16.38 
2.81 50.15 2.81 50.08 2.79 49.48 
4.95 60.19 4.94 60.17 4.84 59.96 

 
14.36 

 
14.36 

 
14.36 

 
63.99 

 
63.98 

 
63.84 

 
38.40 

 
38.38 

 
38.18 

 
15.58 

 
15.58 

 
15.58 

 
15.51 

 
15.51 

 
15.43 

   
132.50 

 
131.49 

   
44.85 

 
44.19 

   
80.76 

 
79.83 

   
43.42 

 
42.97 

   
18.04 

 
17.90 

     
20.76 

     43.98 
     19.67 
     59.67 
     34.88 
 

 

3.2 Bayesian Posterior Probability approach 

The posterior probability approach for classification using Bayes rule was 

applied when the prior probabilities were assumed to be unequal. The sample 

ratios in the order of 21 : nn  and 12 : nn were used as already spelt out in the 

above section. 
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Taking the sample ratio, 2:1: 21 =nn  

The main idea of these varying samples from each respective twin group was to 

find out the effect of unequal prior probabilities on the classification of the 

observations into their respective groups based on their scores. Table 4 below 

summarises the Bayes rule of posterior probabilities. Two (2) out of the ten 

selected observations from the dizygotic group were misclassified. In all, 80 

percent correct classification was observed. 

Taking the sample ratio 3:1: 21 =nn  

From Table 4, none of the monozygotic observations were misclassified. However 

six (6) observations were misclassified from the dizygotic twin group with 30 

percent error rate of misclassifications. 

Table 4: Posterior probability for the sample ratios 2:1 21 == nn , 3:1 21 == nn  
and 4:1 21 == nn  
                           1:2                        1:3  

)|( MxjP  )|( MxjP ′  )|( DxjP ′  )|( DxjP  )|( MxjP  )|( MxjP ′  )|( DxjP ′  )|( DxjP  
8.7E-01 1.3E-01 6.8E-01 3.2E-01 5.8E-01 4.2E-01 9.1e-01 9.2E-02 
6.7E-01 3.3E-01 7.4E-01 2.6E-01 9.1E-01 9.0E-02 7.3E-01 2.7E-01 
6.1E-01 3.9E-01 9.3E-01 7.4E-02 7.4E-01 2.6E-01 6.8E-01 3.2E-01 
8.3E-01 1.7E-01 3.2E-01 6.8E-01 6.2E-01 3.8E-01 9.9E-01 1.4E-02 

  
6.1E-01 3.9E-01 7.9E-01 2.1E-01 2.7E-01 7.3E-01 

  
9.9E-01 9.9E-03 

  
4.8E-01 5.2E-01 

  
3.7E-01 6.3E-01 

  
9.1E-01 8.9E-02 

  
8.8E-01 1.2E-01 

  
6.9E-01 3.0E-01 

  
6.1E-01 3.9E-01 

  
5.5E-01 4.5E-01 

      
1.6E-01 8.4E-01 

      
2.5E-01 7.5E-01 

      
8.8E-01 1.2E-01 

      
7.3E-01 2.7E-01 

      
3.9E-01 6.1E-01 

      
2.9E-01 7.1E-01 
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Table 4: continued 

1:4 
)|( MxjP  )|( MxjP ′  )|( DxjP ′  )|( DxjP  

6.9E-01 3.1E-01 9.2E-01 8.2E-02 
9.2E-01 8.3E-02 6.7E-01 3.4.2E-02E-01 
7.7E-01 2.4E-01 6.5E-01 3.5E-01 
6.4E-01 3.6E-01 9.9E-01 1.5E-02 
8.6E-01 1.4E-01 2.5E-01 7.5E-01 

  
3.3E-01 6.7E-01 

  
8.8E-01 1.3E-01 

  
7.9E-01 2.1E-01 

  
5.1E-01 4.9E-01 

  
1.1E-01 8.9E-01 

  
2.1E-01 7.9E-01 

  
9.1E-01 8.7E-02 

  
7.3E-01 2.7E-01 

  
3.3E-01 6.7E-01 

  
2.7E-01 7.3E-01 

  
2.7E-01 7.3E-01 

  
2.8E-01 7.2E-01 

  
1.0E+00 1.5E-04 

  
9.7E01 3.2E-02 

  7.4E-01 2.6E-01 

 
Taking the sample ratio 4:1: 21 =nn  

From Table 4, the posterior probabilities used as a classification rule was hugely 

affected by the unequal prior probabilities as the sample size of the dizygotic 

group increased to 20. As a result of this, we observed eight (8) misclassified 

observations from the dizygotic group. No observation was misclassified from the 

monozygotic twin group. Hence the classification rule affects the population with 

larger sample size.  
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3.3 The QDF approach for 21 nn ≠  

Assuming equal misclassification cost and unequal prior probabilities for 

21 nn ≠ , the QDF can be written in this particular case as 

{ } { } 658.1)()()()( 2
1

221
1

11 <−Σ′−−−Σ′− −− µµµµ xxxx            (15) 

For sampling ratios, 1:3 and 1:4, the functions derived were 

{ } { } 204.1)()()()( 2
1

221
1

11 <−Σ′−−−Σ′− −− µµµµ xxxx                   (16) 

{ } { } 585.1)()()()( 2
1

221
1

11 <−Σ′−−−Σ′− −− µµµµ xxxx            (17) 

and resulted in 70 percent and 84 percent correct classification respectively. (see 

the discriminant scores in Table 5). The Table below summarises the discriminant 

scores for the QDF obtained from the three sampling ratios explained above. From 

Table 5, the discriminant scores for the sample ratio 1:2 recorded two 

misclassified observations from the dizygotic group. One (1) and five (5) 

observations from both the Monozygotic and Dizygotic twin groups were found to 

be misclassified from their groups respectively for the sample ratio of 1:3. For the 

sample ratio of 1:4, we observed 6 twin pair observations being misclassified from 

the dizygotic twin group. The QDF's performance was similar to that of the 

Bayesian Classifier with the number of misclassified observations increasing, as 

the sample size selection for the dizygotic group increased.  

 

Table 5: Discriminant scores for the three sample ratios 

1:2 1:3 1:4 
65.1<MD  65.1≥DD  20.1<MD  20.1≥DD  58.1<MD  58.1≥DD  

-0.786 -0.429 1.177 6.381 0.855 7.256 
-4.780 3.026 -2.828 3.743 -2.392 3.85 
-0.425 1.885 -0.257 3.301 0.054 3.622 
-1.636 7.692 0.783 10.338 1.226 10.837 
-1.744 0.026 -0.858 -0.194 -1.163 0.258 

 
2.531 

 
1.644 

 
0.965 

 
4.589 

 
6.457 

 
6.302 
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3.453 

 
5.102 

 
2.304 

 
2.213 

 
2.482 

 
-2.845 

 
-1.515 

 
-1.701 

   
-0.381 

 
-0.261 

   
5.808 

 
7.11 

   
3.789 

 
4.371 

   
0.868 

 
0.991 

   
0.035 

 
0.402 

     
3.456 

     
4.756 

     
3.112 

     
1.876 

     
4.476 

 

 

Table 6: Discriminant scores for the sample ratios, 2:1 12 == nn  

1:2 1:3 1:4 
65.1<MD  65.1≥DD  20.1<MD  20.1≥DD  58.1<MD  58.1≥DD  

-0.536 14.666 -1.078 14.666 -1.175 12.921 
-5.851 4.948 -5.769 4.948 -5.316 4.552 
-0.691 4.761 -0.621 4.761 -0.537 3.218 
-0.726 15.191 -0.984 15.191 -1.364 12.742 
-3.811 -3.115 -3.602 -3.115 -3.104 -2.173 
-0.161 

 
-1.033 

 
-1.147 

 -2.596 
 

-2.41 
 

-2.379 
 -3.95 

 
-3.467 

 
-2.924 

 -0.524 
 

1.327 
 

2.374 
 -2.495 

 
-2.064 

 
-1.987 

 
  

-1.914 
 

-1.684 
 

  
-0.402 

 
-0.487 

 
  

-1.18 
 

-1.205 
 

  
-3.829 

 
-3.475 

 
  

-2.163 
 

-2.219 
 

    
-2.111 

 
    

-3456 
 

    
-3.993 

 
    

-4.980 
 

    
-2.212 

 



Asamoah-Boaheng et al 25  

Alternating the sample sizes of the two groups to assume unequal prior 

probabilities and study the behaviour of the resulting classification rules derived in 

each case based on effect unequal prior probabilities, the QDF's obtained under 

the sample ratios 1:2 , 1:3 and 1: 4 were 

{ } { } 422.2)()()()( 2
1

221
1

11 −<−Σ′−−−Σ′− −− µµµµ xxxx       (18) 

{ } { } 574.2)()()()( 2
1

221
1

11 −<−Σ′−−−Σ′− −− µµµµ xxxx       (19) 

{ } { } 605.2)()()()( 2
1

221
1

11 −<−Σ′−−−Σ′− −− µµµµ xxxx       (20) 
respectively. The proportions of correct classification were 0.60, 0.40 and 0.52 for 

the three respective functions. The discriminant scores are shown in Table 6. 

 

 

3.4 Evaluating the performance of the Classification Methods for  

21 nn ≠  

Table 7 summarises the error rates of the classification methods and their 

respective sample ratios under each of the three methods which where applicable 

to deriving a classification rule under unequal prior probability situation. 

The results shows that generally unequal prior probabilities influences the 

classification rules of the three methods namely Bartlett and Please, QDF and 

Bayesian Posterior Probability approach. From the Table, it was observed that, the 

error estimates increased appreciably as the size of one group increases relative to 

another. The results show the performance of the functions deteriorating as the 

inequality in sample sizes widened with the QDF recording the highest error rates. 

Comparatively, all the three methods recorded almost similar error estimates in 

both the sample selection ratios and their corresponding alternated sampling ratio. 

Bartlett and Please classification method recorded the least mean error estimates 

as compared to the QDF and the Bayesian Classifier.  
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Table 7: Error rates for the classification method under unequal prior probability 
case 

Classification 
methods Error Rates 

Mean 
Error rate 

 
CV BER 

 Bartlett and Please 
   21 : nn     

1:2 0.133 0.050 0.092 
1:3 0.100 0.000 0.050 
1:4 0.120 0.150 0.135 

12 : nn  
   1:2 0.200 0.250 0.225 

1:3 0.200 0.200 0.200 
1:4 0.160 0.175 0.168 
The Bayesian Rule 

   21 : nn  
   1:2 0.266 0.150 0.208 

1:3 0.300 0.333 0.316 
1:4 0.340 0.234 0.287 

12 : nn  
   1:2 0.133 0.040 0.086 

1:3 0.350 0.433 0.391 
1:4 0.300 0.398 0.349 
The QDF 
 Approach 

   21 : nn  
   1:2 0.440 0.250 0.345 

1:3 0.250 0.167 0.209 
1:4 0.300 0.342 0.321 

12 : nn     
1:2 0.333 0.350 0.342 
1:3 0.150 0.300 0.225 
1:4 0.320 0.425 0.373 

 

 

The QDF recorded the highest mean error rates. This results shows some 

partial linkage with the research work of Ganeslingam et al (2006) where the QDF 
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as compared to the AEDC method performed poorly. Bartlett and Please method 

was observed to perform much better than the other methods for the provision of 

maximum separation between the two populations. These findings conforms to the 

results from the research work of Bartlett and Please (1963), Desu and Geisser 

(1973) where their linear discriminant functions obtained with uniform covariance 

matrix performed better in the provision of maximum separation under equal prior 

probabilities. 

 

 

3.5 Performance evaluation under non-normality 

The functions were evaluated and after outliers were introduced to alter the 

normality state of the data and the classification was done with equal and unequal 

prior probabilities. The outliers were introduced into the first five observations in 

each of the twin groups, one at a time and a classification rule was obtained in 

each case. The errors incurred in the classification of the twin pair observations 

are presented in Table 8. Generally the performance of all the classification 

methods with equal and unequal prior probabilities deteriorated after the 

introduction of outliers into the twin data. However the mean error estimates of 

AEDC method performed slightly better than the Bayesian Posterior Probability 

approach with a mean error rate of 0.381 under equal prior probabilities and 0.375 

and 0.350 for unequal prior probabilities based on the predetermined choice of 

sampling ratios. In other words, the AEDC method recorded the least error rate of 

0.339 and hence provides better separation than the remaining methods under non 

normality. This also shows conformation with the study by Ganeslingam et al 

(2006) in comparing the performance of AEDC and QDF with AEDC 

outperforming the QDF. It was also observed that, The Bartlett and Please 

approach performed poorly under non normality assumption with an error 

estimates for both equal and unequal prior probabilities ranging from 0.466 to 

0.667. The QDF performed appreciably better for the equal prior probability case, 
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but the performance under unequal prior probabilities was abysmal, that is with a 

recorded mean error rate for the two sample ratios as 0.523 and 0.625 for the 

sample ratios of 1:2 and 1:3 respectively. (see Table 8).  

 

Table 8: Evaluation of the classification methods under Non-normality 

Classification 
methods Error Rates 

Mean 
Error       
rate 

 
CV BER 

 Bartlett and Please 
   21 nn =  0.466 0.466 0.466 

21 : nn     
1:2 0.800 0.850 0.825 
1:3 0.756 0.757 0.762 
1:4 0.699 0.861 0.780 

12 : nn     
1:2 0.614 0.801 0.708 
1:3 0.600 0.733 0.667 
1:4 0.703 0.788 0.746 
The Bayesian Rule    

21 nn =     
21 : nn     

21 nn =  0.352 0.410 0.381 
1:2 0.400 0.350 0.375 
1:3 0.423 0.422 0.423 
1:4 0.478 0.317 0.398 

12 : nn     
1:2 0.301 0.123 0.212 
1:3 0.333 0.166 0.249 
1:4 0.314 0.107 0.211 
The QDF 
 Approach    

21 nn =  0.300 0.300 0.300 
21 : nn     

1:2 0.446 0.600 0.523 
1:3 0.545 0.555 0.550 
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1:4 0.500 0.689 0.595 
12 : nn     

1:2 0.800 0.607 0.704 
1:3 0.750 0.500 0.625 
1:4 0.713 0.578 0.646 
The AEDC method    

21 nn =  0.333 0.345 0.339 
 

 

 

This result conforms to the Lachenbruch et al (1977) on the effect of 

non-normality on QDF. These results show some conformity with the study by 

Lachenbruch (1975), where after contaminating the twin data, he discovered that, 

the performance of the QDF was very poor, but the absolute linear discriminant 

function performed reasonably well. Lachenbruch et al (1977) work on the effects 

of non-normality on QDF found that the actual error rate for QDF was 

considerably larger than the optimal rate in the case of zero mean difference. 

 

 

 4 Conclusions 

This paper studied the performance of four classification methods after their 

evaluation under unequal prior probabilities and non-normality. The BPM 

outperformed the QDF and BPP under unequal prior probabilities with the QDF 

performing poorly in the classification of the twin pair observations. Generally the 

performance of all the classification methods with equal and unequal prior 

probabilities deteriorated after the introduction of outliers into the data, while the 

BPM was found to be very sensitive to outliers since it performed poorly under 

non-normality. The mean error estimate of AEDC method performed slightly 

better than the BPP with mean error rate of 0.381. The QDF performed 

appreciably better under equal prior probability case and its performance was 
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abysmal under unequal prior probability situation. Similar results were obtained 

after the application of the simulated data in evaluating the performance of the 

classification methods under unequal prior probabilities and under non-normally 

distributed training samples. 
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