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Abstract 

This study examines the interdependence of four stock prices namely (KOSPI, 

NIKKEI225, SSE and MSCI). The aim of this paper is to examine how the 

dynamics of correlations between the major stock prices evolved from January 01, 

2000 to December10, 2013. To this end, we adopt a dynamic conditional 

correlation (DCC) model into a multivariate Fractionally Integrated Asymmetric 

Power ARCH (FIAPARCH) framework, which accounts for long memory, power 

effects, leverage terms and time varying correlations. The empirical findings 

indicate the evidence of time-varying comovement, a high persistence of the 

conditional correlation and the dynamic correlations revolve around a constant 
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level and the dynamic process appears to be mean reverting. Moreover, the 

univariate FIAPARCH models are particularly useful in forecasting market risk 

exposure for synthetic portfolios of stocks and currencies. 
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1  Introduction  

Modeling volatility is an important issue of research in financial markets. 

Leptokurtosis and volatility clustering are common observation in financial time 

series (Mandelbrot, 1963). It is well known that financial returns have non-normal 

distribution which tends to have fat-tailed. Mandelbrot (1963) strongly rejected 

normal distribution for data of asset returns, conjecturing that financial return 

processes behave like non-Gaussian stable processes (commonly referred to as 

“Stable Paretian” distributions). 

Many high-frequency financial time series have been shown to exhibit the 

property of long-memory and Financial time series are often available at a higher 

frequency than the other time series (Harris &Sollis, 2003).The long range 

dependence or the long memory implies that the present information has a 

persistent impact on future counts. Note that the long memory property is related 

to the sampling frequency of a time series. 

To circumvent the drawbacks of this literature, recent research on stock 

market returns linkages focuses on their dynamic conditional correlations in a 

time-varying GARCH framework (see Engle et Sheppard, 2001; Tse etTsui, 2002; 

Engle, 2002). The dynamic conditional correlation (DCC) GARCH approach 

provides a robust analysis of time-varying linkages by allowing conditional 

asymmetries in both volatilities and correlations, while investigates the second 
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order moments dynamics of financial time-series and overcomes the 

heteroskedasticity problem (see Perez-Rodriguez, 2006; Kitamura, 2010; 

Antonakakis, 2012). Other sophisticated techniques, which avoid the limitations 

of the standard approaches, are regime switching models (see Boyer et al., 2006), 

copulas with and without regime-switching (see Patton, 2006; Boero et al., 2011) 

and nonparametric approaches (see Rodriquez, 2007; Kenourgios et al., 2011). 

In this paper, we empirically investigate the time-varying linkages of four 

daily stock prices, namely KOSPI composite index (Korea), NIKKEI225 (Japan), 

SSE composite index (Chine) and MSCI word index (MSCI) from January 01, 

2000 until December 10, 2013. We use a DCC model into a multivariate 

fractionally integrated APARCH framework (FIAPARCH-DCC model), which 

provides the tools to understand how financial volatilities move together over 

time and across markets. Conrad et al. (2011) applied a multivariate fractionally 

integrated asymmetric power ARCH (FIAPARCH) model that combines long 

memory, power transformations of the conditional variances, and leverage effects 

with constant conditional correlations (CCC) on eight national stock market 

indices returns. The long-range volatility dependence, the power transformation 

of returns and the asymmetric response of volatility to positive and negative 

shocks are three features that improve the modeling of the volatility process of 

asset returns. We extend their model by estimating time varying conditional 

correlations among the stock prices. 

The flexibility feature represents the key advantage of the FIAPARCH model 

of Tse (1998)since it includes a large number of alternative GARCH 

specifications. Specifically, it increases the flexibility of the conditional variance 

specification by allowing an asymmetric response of volatility to positive and 

negative shocks and long-range volatility dependence. In addition, it allows the 

data to determine the power of returns for which the predictable structure in the 

volatility pattern is the strongest (see Conrad et al., 2011). Although many studies 

use various multivariate GARCH models in order to estimate DCCs among 
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markets during financial crises (see Chiang et al., 2007; Celic, 2012; Kenourgios 

et al., 2011), the forecasting superiority of FIAPARCH on other GARCH models 

is supported by Conrad et al. (2011), Chkili et al. (2012) and Dimitriou and 

Kenourgios (2013). 

The present study investigate dynamics correlations among stock prices from 

January 01, 2000 until December 10, 2013. We provide a robust analysis of 

dynamic linkages among stock markets that goes beyond a simple analysis of 

correlation breakdowns. The time-varying DCCs are captured from a multivariate 

student-t-FIAPARCH-DCC model which takes into account long memory 

behavior, speed of market information, asymmetries and leverage effects.  

The rest of the paper is organized as follows. Section 2 presents the 

econometric methodology. Section 3 provides the data and a preliminary analysis. 

Section 4 displays and discusses the empirical findings and their interpretation, 

while section 5 provides our conclusions. 

 

 

2  Econometric methodology 

2.1  Univariate FIAPARCH model 

The AR(1) process represents one of the most common models to describe a 

time series 𝑟𝑡 of stock returns. Its formulation is given as 

 (1 − 𝜉𝐿)𝑟𝑡 = 𝑐 + 𝜀𝑡,   𝑡 ∈ ℕ                                     (1)                                                                                              

with 

 𝜀𝑡 = 𝑧𝑡�ℎ𝑡                                                   (2)                                                                                                                         

where |𝑐| ∈ [0, +∞[ , |𝜉| < 1  and {𝑧𝑡}  are independently and identically 

distributed (𝑖. 𝑖.𝑑. )  random variables with 𝐸(𝑧𝑡) = 0 . The variance ℎ𝑡  is 

positive with probability equal to unity and is a measurable function of Σ𝑡−1, 
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which is the 𝜎 −algebra generated by {𝑟𝑡−1, 𝑟𝑡−2, … }. Therefore, ℎ𝑡 denotes the 

conditional variance of the returns {𝑟𝑡}, that is: 

 𝐸[𝑟𝑡/Σ𝑡−1] = 𝑐 + 𝜉𝑟𝑡−1                                         (3)                                                                                                    

 𝑉𝑎𝑟[𝑟𝑡/Σ𝑡−1] = ℎ𝑡                                             (4)                                                                                                              

Tse (1998) uses a FIAPARCH(1,d,1) model in order to examine the conditional 

heteroskedasticity of the yen-dollar exchange rate. Its specification is given as 

 (1 − 𝛽𝐿)�ℎ𝑡
𝛿/2 − 𝜔� = [(1 − 𝛽𝐿) − (1 − 𝜙𝐿)(1 − 𝐿)𝑑](1 + 𝛾𝑠𝑡)|𝜀𝑡|𝛿    (5)                              

where 𝜔 ∈ [0,∞[ , |𝛽| < 1 , |𝜙| < 1 , 0 ≤ 𝑑 ≤ 1 , 𝑠𝑡 = 1  if 𝜀𝑡 < 0  and 0 

otherwise, (1 − 𝐿)𝑑  is the financial differencing operator in terms of a 

hypergeometric function (see Conrad et al., 2011), 𝛾 is the leverage coefficient, 

and 𝛿 is the power term parameter (a Box-Cox transformation) that takes (finite) 

positive values. A sufficient condition for the conditional variance ℎ𝑡  to be 

positive almost surely for all 𝑡 is that 𝛾 > −1 and the parameter combination 

(𝜙,𝑑,𝛽) satisfies the inequality constraints provided in Conrad et Haag (2006) 

and Conrad (2010).When 𝛾 > 0, negative shocks have more impact on volatility 

than positive shocks. 

The advantage of this class of models is its flexibility since it includes a large 

number of alternative GARCH specifications. When 𝑑 = 0, the process in Eq. (5) 

reduces to the APARCH(1,1) oneof Ding et al. (1993), which nests two major 

classes of ARCH models. In particular, a Taylor/Schwert type of formulation 

(Taylor, 1986;Schwert, 1990)is specified when 𝛿 = 1, and a Bollerslev(1986) 

type is specified when 𝛿 = 2.When 𝛾 = 0and 𝛿 = 2, the process in Eq. (5) 

reduces to the 𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1,𝑑, 1) specification (see Baillie et al., 1996;Bollerslev 

and Mikkelsen, 1996) which includes Bollerslev's (1986) GARCH model (when 

𝑑 = 0) and the IGARCH specification (when 𝑑 = 1) as special cases. 
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2.2  Multivariate FIAPARCH model with dynamic conditional 

correlations 

In what follow, we introduce the multivariate FIAPARCH process 

(M-FIAPARCH) taking into account the dynamic conditional correlation (DCC) 

hypothesis (see Dimitriou et al., 2013) advanced by Engle (2002). This approach 

generalizes the Multivariate Constant Conditional Correlation (CCC) FIAPARCH 

model of Conrad et al.(2011). The multivariate DCC model of Engle (2002) and 

Tse and Tsui (2002) involves two stages to estimate the conditional covariance 

matrix 𝐻𝑡. In the first stage, we fit a univariate FIAPARCH(1,d,1) model in order 

to obtain the estimations of �ℎ𝑖𝑖𝑡. The daily stock returns are assumed to be 

generated by a multivariate AR(1) process of the following form: 

 𝑍(𝐿)𝑟𝑡 = 𝜇0 + 𝜀𝑡                                              (6)                                                                                                                    

where 

- 𝜇0 = [𝜇0,𝑖]𝑖=1,…,𝑛: the 𝑁 −dimensional column vector of constants; 

- �𝜇0,𝑖� ∈ [0,∞[; 

- 𝑍(𝐿) = 𝑑𝑖𝑎𝑔{𝜓(𝐿)}: an 𝑁 × 𝑁 diagonal matrix ; 

- 𝜓(𝐿) = [1 − 𝜓𝑖𝐿]𝑖=1,…,𝑛 ; 

- |𝜓𝑖| < 1 ; 

- 𝑟𝑡 = [𝑟𝑖,𝑡]𝑖=1,…,𝑁: the 𝑁 −dimensional column vector of returns; 

- 𝜀𝑡 = [𝜀𝑖,𝑡]𝑖=1,…,𝑁: the𝑁 −dimensional column vector of residuals. 

The residual vector is given by 

 𝜀𝑡 = 𝑧𝑡⨀ℎ𝑡
⋀1/2                                               (7)                                                                                                                   

where 

- ⨀: the Hadamard product; 

- ⋀: the elementwise exponentiation. 

ℎ𝑡 = [ℎ𝑖𝑡]𝑖=1,…,𝑁isΣ𝑡−1 measurable and the stochastic vector 𝑧𝑡 = [𝑧𝑖𝑡]𝑖=1,…,𝑁 is 

independent and identically distributed with mean zero and positive definite 

covariance matrix 𝜌 = [𝜌𝑖𝑗𝑡]𝑖,𝑗=1,…,𝑁  with 𝜌𝑖𝑗 = 1  for 𝑖 = 𝑗 .Note that 
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𝐸(𝜀𝑡/ℱ𝑡−1) = 0and 𝐻𝑡 = 𝐸(𝜀𝑡𝜀𝑡′/ℱ𝑡−1) = 𝑑𝑖𝑎𝑔(ℎ𝑡
⋀1/2) 𝜌 𝑑𝑖𝑎𝑔(ℎ𝑡

⋀1/2). ℎ𝑡is the 

vector of conditional variances and 𝜌𝑖,𝑗,𝑡 = ℎ𝑖,𝑗,𝑡/�ℎ𝑖,𝑡ℎ𝑗,𝑡∀ 𝑖, 𝑗 = 1, … ,𝑁 are the 

dynamic conditional correlations. 

The multivariate FIAPARCH(1,d,1) is given by 

 𝐵(𝐿)�ℎ𝑡
⋀𝛿/2 − 𝜔� = [𝐵(𝐿) − Δ(𝐿)Φ(𝐿)][Ι𝑁 + Γ𝑡]|𝜀𝑡|⋀𝛿                (8)                                                   

where|𝜀𝑡| is the vector 𝜀𝑡 with elements stripped of negative values. 

Besides, 𝐵(𝐿) = 𝑑𝑖𝑎𝑔{𝛽(𝐿)}  with 𝛽(𝐿) = [1 − 𝛽𝑖𝐿]𝑖=1,…,𝑁 and |𝛽𝑖| < 1 . 

Moreover, Φ(𝐿) = 𝑑𝑖𝑎𝑔{𝜙(𝐿)} with 𝜙(𝐿) = [1 − 𝜙𝑖𝐿]𝑖=1,…,𝑁and |𝜙𝑖| < 1. In 

addition, 𝜔 = [𝜔𝑖]𝑖=1,…,𝑁  with 𝜔𝑖 ∈ [0,∞[  and Δ(𝐿) = 𝑑𝑖𝑎𝑔{𝑑(𝐿)} with 

𝑑(𝐿) = [(1 − 𝐿)𝑑𝑖]𝑖=1,…,𝑁  ∀ 0 ≤ 𝑑𝑖 ≤ 1 . Finally, Γ𝑡 = 𝑑𝑖𝑎𝑔{𝛾⨀𝑠𝑡}  with 

𝛾 = [𝛾𝑖]𝑖=1,…,𝑁 and 𝑠𝑡 = [𝑠𝑖𝑡]𝑖=1,…,𝑁 where 𝑠𝑖𝑡 = 1 if 𝜀𝑖𝑡 < 0 and 0 otherwise. 

In the second stage, we estimate the conditional correlation using the 

transformed stock return residuals, which are estimated by their standard 

deviations from the first stage. The multivariate conditional variance is specified 

as follows: 

 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                 (9)                                                                       

where 𝐷𝑡 = 𝑑𝑖𝑎𝑔�ℎ11𝑡
1/2, … , ℎ𝑁𝑁𝑡

1/2 � denotes the conditional variance derived from 

the univariate AR(1)-FIAPARCH(1,d,1) model and 𝑅𝑡 = (1 − 𝜃1 − 𝜃2)𝑅 +

𝜃1𝜓𝑡−1 + 𝜃2𝑅𝑡−1 is the conditional correlation matrix4. 

In addition, 𝜃1  and 𝜃2  are the non-negative parameters satisfying (𝜃1 +

𝜃2) < 1 , 𝑅 = �𝜌𝑖𝑗�  is a time-invariant symmetric 𝑁 × 𝑁  positive definite 

parameter matrix with 𝜌𝑖𝑖 = 1 and 𝜓𝑡−1 is the 𝑁 × 𝑁 correlation matrix of 𝜀𝜏 

4 Engle (2002) derives a different form of DCC model. The evolution of the correlation in 
DCC is given by: 𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄� + 𝛼𝑧𝑡−1 + 𝛽𝑄𝑡−1 , where 𝑄 = (𝑞𝑖𝑗𝑡)  is the 
𝑁 × 𝑁  time-varying covariance matrix of 𝑧𝑡 , 𝑄� = 𝐸[𝑧𝑡𝑧𝑡′ ]  denotes the 𝑛 × 𝑛 
unconditional variance matrix of 𝑧𝑡 , while 𝛼  and 𝛽  are nonnegative parameters 
satisfying (𝛼 + 𝛽) < 1. Since 𝑄𝑡 does not generally have units on the diagonal, the 
conditional correlation matrix 𝑅𝑡  is derived by scaling 𝑄𝑡  as follows: 
𝑅𝑡 = (𝑑𝑖𝑎𝑔(𝑄𝑡))−1/2𝑄𝑡(𝑑𝑖𝑎𝑔(𝑄𝑡))−1/2. 
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for 𝜏 = 𝑡 − 𝑀, 𝑡 − 𝑀 + 1, … , 𝑡 − 1. The 𝑖, 𝑗 − 𝑡ℎ element of the matrix 𝜓𝑡−1 is 

given as follows: 

 𝜓𝑖𝑗,𝑡−1 =
∑ 𝑧𝑖,𝑡−𝑚𝑧𝑗,𝑡−𝑚
𝑀
𝑚=1

��∑ 𝑧𝑖,𝑡−𝑚
2𝑀

𝑚=1 ��∑ 𝑧𝑗,𝑡−𝑚
2𝑀

𝑚=1 �
,      1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁                (10) 

where𝑧𝑖𝑡 = 𝜀𝑖𝑡/�ℎ𝑖𝑖𝑡 is the transformed stock return residuals by their estimated 

standard deviations taken from the univariate AR(1)-FIAPARCH(1,d,1) model. 

The matrix 𝜓𝑡−1 could be expressed as follows: 

 𝜓𝑡−1 = 𝐵𝑡−1−1 𝐿𝑡−1𝐿𝑡−1′ 𝐵𝑡−1−1                                       (11) 

where 𝐵𝑡−1 is a 𝑁 × 𝑁 diagonal matrix with 𝑖 − 𝑡ℎ diagonal element given by 

�∑ 𝑧𝑖,𝑡−𝑚2𝑀
𝑚=1 �  and 𝐿𝑡−1 = (𝑧𝑡−1, … , 𝑧𝑡−𝑀)  is a 𝑁 × 𝑁  matrix, with 𝑧𝑡 =

(𝑧1𝑡, … , 𝑧𝑁𝑡)′. 

To ensure the positivity of 𝜓𝑡−1 and therefore of 𝑅𝑡, a necessary condition is 

that 𝑀 ≤ 𝑁.Then, 𝑅𝑡 itself is a correlation matrix if 𝑅𝑡−1is also a correlation 

matrix. The correlation coefficient in a bivariate case is given as: 

 𝜌12,𝑡 = (1 − 𝜃1 − 𝜃2)𝜌12 + 𝜃2𝜌12,𝑡 + 𝜃1
∑ 𝑧1,𝑡−𝑚𝑧2,𝑡−𝑚
𝑀
𝑚=1

��∑ 𝑧1,𝑡−𝑚
2𝑀

𝑚=1 ��∑ 𝑧2,𝑡−𝑚
2𝑀

𝑚=1 �
      (12) 

 

 

3  Data and preliminary analyses  

The data comprises daily stock indexes: KOSPI (Korea), NIKKEI225 (Japan), 

SSE (China) and MSCI (Morgan Stanley Capital International). MSCI market 

classification consists of following three criteria: size and liquidity, market 

accessibility and economic development. All data are sourced from the 

(http//www.econstats.com). The sample covers a period from January 01, 2000 

until December 10, 2013, leading to a sample size of 3639 observations. For each 

indexes, the continuously compounded return is computed as 𝑟𝑡 = 100 × 𝑙𝑛(𝑝𝑡/

𝑝𝑡−1) for 𝑡 = 1,2, … ,𝑇, where 𝑝𝑡is the price on day 𝑡. 

Summary statistics for the stock market returns are displayed in Table 1(Panel 
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A). From these tables, KOSPI is the most volatile, as measured by the standard 

deviation of 1.6544%, while MSCI is the least volatile with a standard deviation 

of 1.4641%. Besides; we observe that NIKKEI225 has the highest level of excess 

kurtosis, indicating that extreme changes tend to occur more frequently for the 

stock price. In addition, all stock market returns exhibit high values of excess 

kurtosis. To accommodate the existence of “fat tails”, we assume student-t 

distributed innovations. Furthermore, the Jarque-Bera statistic rejects normality at 

the 1% level for all stock prices. Moreover, all stock market return series are 

stationary, I(0), and thus suitable for long memory tests. Finally, they exhibit 

volatility clustering, revealing the presence of heteroskedasticity and strong 

ARCH effects. 

In order to detect long-memory process in the data, we use the 

log-periodogram regression (GPH) test of Geweke and Porter-Hudak (1983) on 

two proxies of volatility, namely squared returns and absolute returns. The test 

results are displayed in Table 1 (Panel D). Based on these tests’ results, we reject 

the null hypothesis of no long-memory for absolute and squared returns at 1% 

significance level. Subsequently, all volatilities proxies seem to be governed by a 

fractionally integrated process. Thus, FIAPARCH seem to be an appropriate 

specification to capture volatility clustering, long-range memory characteristics 

and asymmetry. 

Figure 1 illustrates the evolution of stock indexes during the period from 

January 1, 2000 until December 10, 2013. The figure shows significant variations 

in the levels during the turmoil, especially at the time of Lehman Brothers failure 

(September 15, 2008). Specifically, when the global financial crisis triggered, 

there was a decline for all prices. Figure 2 plots the evolution of stock market 

returns over time. The figure shows that all stock indexes trembled since 2008 

with different intensity during the global financial and European sovereign debt 

crises. Moreover, the plot shows a clustering of larger return volatility around and 

after 2008. This means that foreign exchange markets are characterized by  
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Table 1 

Summary statistics and long memory test’s results. 

  KOSPI   NIKKEI225   SSE   MSCI 
Panel A: descriptive statistics 
Mean 1.81E-02 

 
-0.0053 

 
0.0135 

 
-1.77E-05 

Maximum 11.284 
 

13.235 
 

9.4008 
 

6.5246 
Minimum -12.805 

 
-12.111 

 
-9.2562 

 
-9.936 

Std. Deviation 1.6544 
 

1.5304 
 

1.5456 
 

1.4641 
Skewness -0.54142*** 

 
-0.4348*** 

 
-0.0887*** 

 
-0.241*** 

 (0,0000) 
 

(0,0000) 
 

-0.0287 
 

(0,0000) 
ExcessKurtosis 5.7577*** 

 
6.8355*** 

 
4.7723*** 

 
3.0688*** 

 (0,0000) 
 

(0,0000) 
 

(0,0000) 
 

(0,0000) 
Jarque-Bera 5204.3*** 

 
7199.2*** 

 
3458*** 

 
1463.2*** 

 
(0,0000) 

 
(0,0000) 

 
(0,0000) 

 
(0,0000) 

        Panel B: Serial correlation and LM-ARCH tests 
𝐿𝐵(20)  31.6153** 

 
14.4001 

 
44.7177*** 

 
72.6072*** 

 (0.0475) 
 

(0.8096) 
 

(0.0012) 
 

(0,0000) 
𝐿𝐵2(20)  1339.54*** 

 
3792.44*** 

 
695.483*** 

 
1433.72*** 

 (0,0000) 
 

(0,0000) 
 

(0.0000) 
 

(0,0000) 
ARCH 1-10 48.134*** 

 
141.66*** 

 
25.233*** 

 
44.144*** 

 
(0,0000) 

 
(0,0000) 

 
(0,0000) 

 
(0,0000) 

Panel C: Unit Root tests 
ADF test statistic -35.3164*** 

 
-36.819*** 

 
-33.7277*** 

 
-33.1275*** 

 
(-1.9409) 

 
(-1.9409) 

 
(-1.9409) 

 
(-1.9409) 

Panel D: long memory tests (GPH test−𝑑 estimates) 
Squared returns 

        𝑚 = 𝑇0.5  0.4238 
 

0.2687 
 

0.4593 
 

0.5946 

 [0.0698] 
 

[0.0573] 
 

[0.0813] 
 

[0.0900] 
𝑚 = 𝑇0.6  0.3486 

 
0.4649 

 
0.3690 

 
0.3955 

 [0.0464] 
 

[0.0498] 
 

[0.0620] 
 

[0.0580] 
        Absolute returns 

       𝑚 = 𝑇0.5  0.5047 
 

0.3403 
 

0.4781 
 

0.5623 

 [0.0742] 
 

[0.0812] 
 

[0.0838] 
 

[0.1050] 
𝑚 = 𝑇0.6  0.4157 

 
0.4487 

 
0.37002 

 
0.4381 

 
[0.0509]   [0.0570] 

 
[0.0568]   [0.0697] 

Notes: Stock market returns are in daily frequency. 𝑟2 and |𝑟| are squared log 
return and absolute log return, respectively. 𝑚  denotes the bandwith for the 
Geweke and Porter-Hudak’s (1983) test. Observations for all series in the whole 
sample period are 3639. The numbers in brackets are t-statistics and numbers in 
parentheses are p-values. ***, **, and * denote statistical significance at 1%, 5% 
and 10% levels, respectively. 𝐿𝐵(20)  and 𝐿𝐵2(20)  are the 20th order 
Ljung-Box tests for serial correlation in the standardized and squared standardized 
residuals, respectively. 
 
 

volatility clustering, i.e., large (small) volatility tends to be followed by large 
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(small) volatility, revealing the presence of heteroskedasticity. This market 

phenomenon has been widely recognized and successfully captured by 

ARCH/GARCH family models to adequately describe stock market returns 

dynamics. This is important because the econometric model will be based on the 

interdependence of the stock markets in the form of second moments by modeling 

the time varying variance-covariance matrix for the sample. 

 
 

 
Figure 1: Stock prices behavior over time 

 

 

4  Empirical results 

4.1 The univariate FIAPARCH estimates 

In order to take into account the serial correlation and the GARCH effects 

observed in our time series data, and to detect the potential long range dependence 

in volatility, we estimate the student5-t-AR(0)-FIAPARCH(1,d,1)6 model defined 

5 The 𝑧𝑡 random variable is assumed to follow a student distribution (see Bollerslev, 
1987) with 𝜐 > 2 degrees of freedom and with a density given by: 

 𝐷(𝑧𝑡 , 𝜐) =
Γ(𝜐+12)

Γ(𝜐2)�𝜋(𝜐−2)
(1 + 𝑧𝑡2
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)
1
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by Eqs. (1) and (5). Table 2 reports the estimation results of the univariate 

FIAPARCH(1,d,1) model for each stock market return series of our sample. 

The estimates of the constants in the mean are statistically significant at 1% 

level or better for all the series except for the NIKKEI225. Besides, the constants 

in the variance are significant except for KOSPI and MSCI currencies. In addition, 

for all currencies, the estimates of the leverage term (𝛾)  are statistically 

significant, indicating an asymmetric response of volatilities to positive and 

negative shocks. This finding confirms the assumption that there is negative 

correlation between returns and volatility. According to Patton (2006), such 

asymmetric effects could be explained by the asymmetric behavior of central 

banks in their currency interventions. In other words, Patton (2006) argues that 

when central banks emphasize on competitiveness over price stability, the 

exchange rates may display higher volatility during periods of depreciation 

compared to periods of appreciation. 

Moreover, the estimates of the power term (𝛿) are highly significant for all 

currencies and ranging from 1.4582 to 1.9252. Conrad et al. (2011) show that 

when the series are very likely to follow a non-normal error distribution, the 

superiority of a squared term (𝛿 = 2) is lost and other powertransformations 

may be more appropriate. Thus, these estimates support the selection of 

where Γ(𝜐) is the gamma function and 𝜐 is the parameter that describes the thickness of 
the distribution tails. The Student distribution is symmetric around zero and, for 𝑣 > 4, 
the conditional kurtosis equals 3(𝑣 − 2)/(𝑣 − 4), which exceeds the normal value of 
three. For large values of 𝑣, its density converges to that of the standard normal. 
For a Student-t distribution, the log-likelihood is given as: 𝐿𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑇 �𝑙𝑜𝑔Γ �𝑣+1

2
� −

𝑙𝑜𝑔Γ �𝑣
2
� − 1

2
𝑙𝑜𝑔[𝜋(𝑣 − 2)]� − 1

2
∑ �log(ℎ𝑡) + (1 + 𝑣)𝑙𝑜𝑔 �1 + 𝑧𝑡2

𝑣−2
��𝑇

𝑡=1  
where 𝑇 is the number of observations, 𝑣 is the degrees of freedom, 2 <  𝜐 ≤

∞ and 𝛤(. ) is the gamma function. 

6 The lag orders(1,𝑑, 1)and (0,0) for FIAPARCH and ARMA models, respectively, are 
selected by Akaike (AIC) and Schwarz (SIC) information criteria. The results are 
available from the author upon request. 
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FIAPARCH model for modeling conditional variance of stock market returns. 

Besides, all stock indexes display highly significant differencing fractional 

parameters(𝑑), indicating a high degree of persistence behavior. This implies that 

the impact of shocks on the conditional volatility of stock market’ returns 

consistently exhibits a hyperbolic rate of decay. Interestingly, the highest power 

term is obtained for NIKKEI225 stock index, one is characterized by the highest 

degree of persistence. In all cases, the estimated degrees of freedom parameter 

(𝑣) is highly significant and leads to an estimate of the Kurtosis which is equal to 

3(𝑣 − 2)/(𝑣 − 4) and is also different from three. 

In addition, all the ARCH parameters (𝜙) satisfy the set of conditions which 

guarantee the positivity of the conditional variance. Moreover, according to the 

values of the Ljung-Box tests for serial correlation in the standardized and squared 

standardized residuals, there is no statistically significant evidence, at the 1% level, 

of misspecification in almost all cases except for the MSCI stock index. 

Numerous studies have documented the persistence of volatility in stock and 

exchange rate returns (see Ding et al., 1993; Ding et Granger, 1996, among 

others).The majority of these studies have shown that the volatility process is well 

approximated by an IGARCH process. Nevertheless, from the FIAPARCH 

estimates reported in Table 2, it appears that the long-run dynamics are better 

modeled by the fractional differencing parameter. 
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Table 2 

Univariate FIAPARCH(1,d,1) models (MLE). 

  

KOSPI   NIKKEI225   SSE   MSCI 

Coefficient t-prob 

 

Coefficient t-prob 

 

Coefficient t-prob 

 

Coefficient t-prob 

Estimate 

           𝑐  0.0652*** 0.0004 

 

0.0269 0.1760 

 

0.0291* 0.0946 

 

0.0483*** 0.0046 

𝜔  0.0334 0.4514 

 

0.1353*** 0.0014 

 

0.2771*** 0.0080 

 

0.0450 0.2037 

𝑑  0.2359*** 0.0024 

 

0.4102*** 0.0000 

 

0.3146*** 0.0000 

 

0.3132*** 0.0000 

𝜙  0.1152 0.1572 

 

0.1116** 0.0368 

 

-0.1097 0.3816 

 

0.1731*** 0.0091 

𝛽  0.3142*** 0.0134 

 

0.4919*** 0.0000 

 

0.1428 0.3486 

 

0.4571*** 0.0000 

𝛾  0.8930 0.0235 

 

0.4465*** 0.0010 

 

0.3323*** 0.0000 

 

0.5574*** 0.0032 

𝛿  1.5594*** 0.0000 

 

1.4582*** 0.0000 

 

1.9252*** 0.0000 

 

1.6832*** 0.0000 

𝑣  5.8608*** 0.0000 

 

8.2601*** 0.0000 

 

3.6846*** 0.0000 

 

6.1827*** 0.0000 

Diagnostics 

           𝐿𝐵(20)  19.2243 0.5072 

 

11.7653 0.9239 

 

53.5749*** 0.0000 

 

45.0142*** 0.0010 

𝐿𝐵2(20)  22.5678 0.2077 

 

31.2876** 0.0266 

 

10.6958 0.9068 

 

29.9101** 0.0383 

Notes: For each of the five exchange rates, Table 2 reports the Maximum Likelihood Estimates (MLE) for the 
student-t-FIAPARCH(1,d,1) model. 𝑳𝑩(𝟐𝟎) and 𝑳𝑩𝟐(𝟐𝟎) indicate the Ljung-Box tests for serial correlation in 
the standardized and squared standardized residuals, respectively. 𝒗 denotes the the t-student degrees of 
freedom.parameter ***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively.
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To test for the persistence of the conditional heteroskedasticity models, we 

examine the Likelihood Ratio (LR) statistics for the linear constraints 𝑑 =  0 

(APARCH(1,1) model) and 𝑑 ≠  0 (FIAPARCH(1,d,1) model). We construct a 

series of LR tests in which the restricted case is the APARCH(1,1) model 

(𝑑 = 0) of Ding et al. (1993). Let 𝑙0 be the log-likelihood value under the null 

hypothesis that the true model is APARCH(1,1) and 𝑙 the log-likelihood value 

under the alternative that the true model is FIAPARCH(1,d,1). Then, the LR 

test,2(𝑙 − 𝑙0), has a chi-squared distribution with 1 degree of freedom when the 

null hypothesis is true. 

For reasons of brevity, we omit the table with the test results, which are 

available from the author upon request. In summary, the LR tests provide a clear 

rejection of the APARCH(1,1) model against the FIAPARCH(1,d,1) one for all 

stock prices. Thus, purely from the perspective of searching for a model that best 

describes the volatility in the stock price series, the FIAPARCH(1,d,1) model 

appears to be the most satisfactory representation. This finding is important since 

the time series behavior of volatility could affect asset prices through the risk 

premium (see Christensen and Nielsen, 2007; Christensen et al., 2010;Conrad et 

al., 2011). 

With the aim of checking for the robustness of the LR testing results discussed 

above, we apply the Akaike (AIC), Schwarz (SIC), Shibata (SHIC) or 

Hannan-Quinn (HQIC) information criteria to rank the ARCH type models. 

According to these criteria, the optimal specification (i.e., APARCH or 

FIAPARCH) for all stock prices is the FIAPARCH one. The two common values 

of the power term (𝛿) imposed throughout much of the GARCH literature are 

𝛿 = 2  (Bollerslev's model) and 𝛿 = 1  (the Taylor/Schwert specification). 

According to Brooks et al. (2000), the invalid imposition of a particular value for 

the power term may lead to sub-optimal modeling and forecasting performance. 

For that reason, we test whether the estimated power terms are significantly 
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different from unity or two using Wald tests (results not reported). 

We find that all five estimated power coefficients are significantly different 

from unity. Furthermore, each of the power terms is significantly different from 

two. Hence, on the basis of these findings, support is found for the (asymmetric) 

power fractionally integrated model, which allows an optimal power 

transformation term to be estimated. The evidence obtained from the Wald tests is 

reinforced by the model ranking provided by the four model selection criteria 

(values not reported). This is a noteworthy result since He and Teräsvirta (1999) 

emphasized that if the standard Bollerlsev type of model is augmented by the 

‘heteroskedasticity’ parameter, the estimates of the ARCH and GARCH 

coefficients almost certainly change. More importantly, Karanasos and Schurer 

(2008) show that, in the univariate GARCH-in-mean level formulation, the 

significance of the in-mean effect is sensitive to the choice of the power term. 

 

 

 
Figure 2: Stock market returns behavior over time 
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4.2 The bivariate FIAPARCH(1,d,1)-DCC estimates 

The analysis above suggests that the FIAPARCH specification describes the 

conditional variances of the four stock prices well. Therefore, the multivariate 

FIAPARCH model seems to be essential for enhancing our understanding of the 

relationships between the (co)volatilities of economic and financial time series. 

In this section, within the framework of the multivariate DCC model, we 

analyze the dynamic adjustments of the variances for the four stock prices. Overall, 

we estimate six bivariate specifications for our analysis. Table 3(Panels A and B) 

reports the estimation results of the bivariate student-t-FIAPARCH(1,d,1)-DCC 

model. The ARCH and GARCH parameters (𝑎 and 𝑏) of the DCC(1,1) model 

capture, respectively, the effects of standardized lagged shocks and the lagged 

dynamic conditional correlations effects on current dynamic conditional 

correlation. They are statistically significant at the 5% level, except for the ARCH 

parameter between (KOSPI-SSE) and (KOSPI-MSCI),indicating the existence of 

time-varying correlations. Moreover, they are non-negative, justifying the 

appropriateness of the FIAPARCH model. When 𝑎 =  0and 𝑏 =  0, we obtain 

the Bollerslev’s (1990) Constant Conditional Correlation (CCC) model. As shown 

in Table 3, the estimated coefficients 𝑎  and 𝑏  are significantlypositive and 

satisfy the inequality 𝑎 +  𝑏 < 1 in each of the pairs of stock prices. Besides, the 

t-student degrees of freedom parameter (𝑣)is highly significant, supporting the 

choice of this distribution. 

The statistical significance of the DCC parameters (𝑎 and 𝑏 ) reveals a 

considerable time-varying comovement and thus a high persistence of the 

conditional correlation. The sum of these parameters is close to unity. This implies 

that the volatility displays a highly persistent fashion. Since 𝑎 +  𝑏 < 1, the 

dynamic correlations revolve around a constant level and the dynamic process 

appears to be mean reverting. The multivariate FIAPARCH-DCC model is so 

important to consider in our analysis since it has some key advantages. First, it 

captures the long range dependence property. Second, it allows obtaining all 
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possible pair-wise conditional correlation coefficients for the stock market returns 

in the sample. Third, it’s possible to investigate their behavior during periods of 

particular interest, such as periods of the global financial and European sovereign 

debt crises. Fourth, the model allows looking at possible financial contagion 

effects between international foreign exchange markets. 

Finally, it is crucial to check whether the selected stock price series display 

evidence of multivariate Long Memory ARCH effects and to test ability of the 

Multivariate FIAPARCH specification to capture the volatility linkages among 

stock prices. Kroner and Ng (1998) have confirmed the fact that only few 

diagnostic tests are kept to the multivariate GARCH-class models compared to the 

diverse diagnostic tests devoted to univariate counterparts. Furthermore, Bauwens 

et al. (2006) have noted that the existing literature on multivariate diagnostics is 

sparse compared to the univariate case. In our study, we refer to the most broadly 

used diagnostic tests, namely the Hosking's and Li and McLeod's Multivariate 

Portmanteau statistics on both standardized and squared standardized residuals. 

According to Hosking (1980), Li and McLeod (1981) and McLeod and Li (1983) 

autocorrelation test results reported in Table 3 (Panel B), the multivariate 

diagnostic tests allow accepting the null hypothesis of no serial correlation on both 

standardized and squared standardized residuals and thus there is no evidence of 

statistical misspecification. 

Figure 3 illustrates the evolution of the estimated dynamic conditional 

correlations dynamics among international stock markets. Compared to the 

pre-crises period, the estimated DCCs show a decline during the post-crises period. 

Such evidence is in contrast with the findings of previous research on foreign 

exchange and stock markets, which show increases in correlations during periods 

of financial turmoil (see Kenourgios et al., 2011; Dimitriou et al., 2013; Dimitriou 

and Kenourgios, 2013). Nevertheless, the different path of the estimated DCCs 

displays fluctuations for all pairs of stock prices across the phases of the global 

financial and European sovereign debt crises, suggesting that the assumption of 
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constant correlation is not appropriate. The above findings motivate a more 

extensive analysis of DCCs, in order to capture contagion dynamics during 

different phases of the two crises 

 

 
 

Figure3: The DCC behavior over time. 
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Table 3 

Estimation results from the bivariate FIAPARCH(1,d,1)-DCC model. 

  

KOSPI-NIKKEI225   KOSPI-SSE   KOSPI-MSCI   NIKKEI225-SSE 

 

NIKKEI225-MSCI 

 

SSE-MSCI 

coefficient t-prob 

 

coefficient t-prob 

 

coefficient t-prob 

 

coefficient t-prob 

 

Coefficient t-prob 

 

coefficient t-prob 

Panel A: Estimates of 

Multivariate DCC 

                 𝑎 0.0248*** 0.0000 

 

0.0042 0.1068 

 

0.0124 0.1353 

 

0.0030*** 0.0003 

 

0.0163** 0.0471 

 

0.0040** 0.0462 

𝑏 0.9682*** 0.0000 

 

0.9956*** 0.0000 

 

0.9875*** 0.0000 

 

0.9969*** 0.0000 

 

0.9833*** 0.0000 

 

0.9959*** 0.0000 

𝑣 8.1989*** 0.0000 

 

5.4434*** 0.0000 

 

6.4155*** 0.0000 

 

6.3523*** 0.0000 

 

8.2822*** 0.0000 

 

5.5042*** 0.0000 

Panel B : Diagnostic 

tests 

                 𝐻𝑜𝑠𝑘𝑖𝑛𝑔(20) 79.0740 0.5082 

 

122.379*** 0.0016 

 

123.804*** 0.0012 

 

108.057** 0.0200 

 

100.927* 0.0569 

 

133.382*** 0.0001 

𝐻𝑜𝑠𝑘𝑖𝑛𝑔2(20) 85.0790 0.2730 

 

81.4598 0.3721 

 

127.368*** 0.0003 

 

68.4734 0.7710 

 

85.6401 0.2592 

 

127.745*** 0.0003 

𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑(20) 79.0597 0.5087 

 

122.266*** 0.0016 

 

123.739*** 0.0012 

 

107.993** 0.0202 

 

100.849* 0.0576 

 

133.274*** 0.0001 

𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑2(20) 85.0561 0.2736   81.4995 0.3709   127.317*** 0.0003   68.4901 0.7705   85.6269 0.2595   127.549*** 0.0003 

Notes: The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% levels, respectively.𝑣indicates the student’s distribution’s 
degrees of freedom. 𝐻𝑜𝑠𝑘𝑖𝑛𝑔 (20)and𝐻𝑜𝑠𝑘𝑖𝑛𝑔2(20) denote the Hosking's Multivariate Portmanteau Statistics on both standardized and squared 
standardized Residuals. 𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑 (20) and 𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑2(20)  indicate the Li and McLeod's Multivariate Portmanteau Statistics on both 
Standardized and squared standardized Residuals.
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In Figure 4, we plot the rolling correlations between each pair of stock prices 

with time spans of four months, eight months, one year, two years and four years, 

respectively. Interestingly, we find more fluctuations of the rolling correlations in 

downward directions between each pair, particularly after 2007, regardless of the 

selected time spans. Moreover, we mainly detect sharp decreases in the 

correlations between each pair since 2010. 
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(b) Eight-month rolling correlation 
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(c) Two-year rolling correlation 
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(d) Two-year rolling correlation 
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(e) Four-year rolling correlation 
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Figure 4: Rolling correlations between stock index pair. (a) Four-month rolling 

correlation. (b) Eight-month rolling correlation. (c) Two-year rolling correlation. 

(d) Two-year rolling correlation. (e) Four-year rolling correlation. 
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4  Conclusion  

The present study examines the dynamic correlations among international 

stock prices namely KOSPI, NIKKEI225, SSE and MSCI. Specifically, we 

employ a multivariate FIAPARCH-DCC model, during the period from January 

01, 2000 to December 10, 2013, focusing on the estimated dynamic conditional 

correlations among the stock markets. This approach allows investigating the 

second order moments dynamics of stock prices taking into account long range 

dependence behavior, asymmetries and leverage effects. 

The FIAPARCH model is identified as the best specification for modeling the 

conditional heteroscedasticity of individual time series. We then extended the 

above univariate GARCH models to a bivariate framework with dynamic 

conditional correlation parameterization in order to investigate the interaction 

between stock markets. Our results document strong evidence of time-varying 

comovement, a high persistence of the conditional correlation (the volatility 

displays a highly persistent fashion) and the dynamic correlations revolve around 

a constant level and the dynamic process appears to be mean reverting. 

More interestingly, the univariate FIAPARCH models are particularly useful 

in forecasting market risk exposure for synthetic portfolios of stocks and 

currencies. Our out-of-sample analysis confirms the superiority of the univariate 

FIAPARCH model and the bivariate DCC-FIAPARCH model over the competing 

specifications in almost all cases. 

 

 

ACKNOWLEDGEMENTS. 

The authors are grateful to an anonymous referees and the editor for many 

helpful comments and suggestions. Any errors or omissions are, however, our 

own. 

 



Riadh El Abed, Zouheir Mighri and Samir Maktouf 25  

References 

[1] Antonakakis, N. Exchange return co-movements and volatility spillovers 

before and after the introduction of euro. Journal of International Financial 

Markets, Institutions and Money, 22, (2012), 1091-1109. 

[2] Baillie, R.T., Bollerslev, T., and Mikkelsen, H.O. Fractionally integrated 

generalized autoregressive conditional heteroskedasticity, Journal of 

Econometrics, 74, (1996), 3-30. 

[3] Bauwens, L., Laurent, S., and Rombouts, J.V.K. Multivariate GARCH: a 

survey. Journal of Applied Econometrics, 21, (2006), 79-109. 

[4] Boero, G., Silvapulle, P., and Tursunalieva, A. Modelling the bivariate 

dependence structure of exchange rates before and after the introduction of 

the euro: a semi-parametric approach. International Journal of Finance and 

Economics, 16, (2011), 357-374. 

[5] Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. 

Journal of Econometrics, 31, (1986), 307-327. 

[6] Bollerslev, T. A conditionally heteroskedastic time series model for 

speculative prices and rates of return. Review of Economics and Statistics, 69, 

(1987), 542-547. 

[7] Bollerslev, T. Modelling the coherence in short-run nominal exchange rates: 

a multivariate generalized ARCH model, Review of Economics and Statistics, 

72, (1990), 498-505. 

[8] Bollerslev, T., and Mikkelsen, H.O. Modeling and pricing long memory in 

stock market volatility. Journal of Econometrics, 73, (1996), 151-184. 

[9] Brooks, R.D., Faff, R.W., and McKenzie, M.D.A multi-country study of 

power ARCH models and national stock market returns. Journal of 

International Money and Finance, 19, (2000), 377-397. 

[10] Celic, S. The more contagion effect on emerging markets: The evidence of 

DCC-GARCH model. Economic Modelling, 29, (2012), 1946-1959. 



26                           Empirical analysis of asymmetries and long memory 
 

[11] Chiang, T.C., Jeon, B.N., and Li, H. Dynamic Correlation Analysis of 

Financial Contagion: Evidence from Asian Markets. Journal of International 

Money and Finance, 26, (2007), 1206-1228. 

[12] Chkili, W., Aloui, C., and Ngugen, D. K. Asymmetric effects and long 

memory in dynamic volatility relationships between stock returns and 

exchange rates. Journal of International Markets, Institutions and Money, 22, 

(2012), 738-757. 

[13] Christensen, B.J., and Nielsen, M.Ø.The effect of long memory in volatility 

on stock market fluctuations. Review of Economics and Statistics, 89, (2007), 

684-700. 

[14] Christensen, B.J., Nielsen, M.Ø., and Zhu, J. Long memory in stock market 

volatility and the volatility-in-mean effect: the FIEGARCH-M model. 

Journal of Empirical Finance, 17, (2010), 460-470. 

[15] Conrad, C. Non-negativity conditions for the hyperbolic GARCH model. 

Journal of Econometrics, 157, (2010), 441-457. 

[16] Conrad, C., and Haag, B. Inequality constraints in the fractionally integrated 

GARCH model. Journal of Financial Econometrics, 3, (2006), 413-449. 

[17] Conrad, C., Karanasos, M., and Zeng, N. Multivariate fractionally integrated 

APARCH modeling of stock market volatility: A multi-country study. 

Journal of Empirical Finance, 18, (2011), 147-159. 

[18] Dimitriou, D., and Kenourgios, D. Financial crises and dynamic linkages 

among international currencies. Journal of International Financial Markets, 

Institutions and Money, 26, (2013), 319-332. 

[19] Dimitriou, D., Kenourgios, D., and Simos, T. Global financial crisis and 

emerging stock market contagion: a multivariate FIAPARCH-DCC 

approach. International Review of Financial Analysis, 30, (2013), 46–56. 

[20] Ding, Z., and Granger, C.W.J. Modeling volatility persistence of speculative 

returns: a new approach. Journal of Econometrics, 73, (1996), 185-215. 



Riadh El Abed, Zouheir Mighri and Samir Maktouf 27  

[21] Ding, Z., Granger, C.W.J., and Engle, R.F.A long memory property of stock 

market returns and a new model. Journal of Empirical Finance, 1, (1993), 

83-106. 

[22] Engle, R.F. Dynamic conditional correlation: a simple class of multivariate 

generalized autoregressive conditional heteroskedasticity models. Journal of 

Business and Economic Statistics, 20(3), (2002), 339-350. 

[23] Engle, R.F., and Sheppard, K. Theoretical and Empirical Properties of 

Dynamic Conditional Correlation Multivariate GARCH. Working Paper, 15, 

(2001), University of California at San Diego. 

[24] Geweke, J., and Porter-Hudak, S. The estimation and application of 

long-memory time series models. Journal of Time Series Analysis, 4, (1983), 

221–238. 

[25] Harris, R., and Sollis, R. Applied time series modelling and forecasting. 

England: John Wiley and SonsLtd, 2003. 

[26] He, C., and Teräsvirta, T. Statistical properties of the asymmetric power 

ARCH model. In: Engle, R.F., White, H. (Eds.), Cointegration, Causality and 

Forecasting, 1999. 

[27] Hosking, J.R.M. The multivariate portmanteau statistic.Journal of American 

Statistical Association, 75, (1980), 602-608. 

[28] Karanasos, M., and Schurer, S. Is the relationship between inflation and its 

uncertainty linear? German Economic Review, 9, (2008), 265-286. 

[29] Kenourgios, D., Samitas, A., and Paltalidis, N. Financial crises and stock 

market contagion in a multivariate time-varying asymmetric framework. 

International Financial Markets, Institutions and Money, 21, (2011), 92-106. 

[30] Kitamura, Y. Testing for intraday interdependence and volatility spillover 

among the euro, the pound and Swiss franc markets. Research in 

International Business and Finance, 24, (2010), 158-270. 

[31] Kroner, K.F., and Ng, V.K. Modeling Asymmetric Comovements of Asset 

Returns. The Review of Financial Studies, 11(4), (1980), 817-844. 



28                           Empirical analysis of asymmetries and long memory 
 

[32] Li, W.K., and McLeod, A.I. Distribution of the residual autocorrelations in 

multivariate ARMA time series models. Journal of the Royal Statistical 

Society, series B (Methodological), 43(2), (1981), 231-239. 

[33] Mandelbrot, B. The variation of certain speculative prices. Journal of 

Business, 36(4), (1963), 394-419. 

[34] McLeod, A.I., and Li, W.K. Diagnostic checking ARMA time series models 

using squared residual autocorrelations. Journal of Time Series Analysis, 4, 

(1983), 269-273. 

[35] Patton, A.J. Modelling asymmetric exchange rate dependence. International 

Economic Review, 47, (2006), 527-556. 

[36] Perez-Rodriguez, J.V. The euro and other major currencies floating against 

the US dollar. Atlantic Economic Journal, 34, (2006), 367-384. 

[37] Rodriquez, J.C. Measuring financial contagion: a copula approach. Journal of 

Empirical Finance, 14, (2007), 401-423. 

[38] Schwert, W. Stock volatility and the crash of '87.The Review of Financial 

Studies, 3, (1990), 77-102. 

[39] Taylor, S. Modeling Financial Time Series. Wiley, New York, 1986. 

[40] Tse, Y.K. The conditional heteroscedasticity of the Yen-Dollar exchange 

rate. Journal of Applied Econometrics, 193, (1998), 49-55. 

[41] Tse, Y.K., and Tsui, A.K.C.A multivariate generalized autoregressive 

conditional heteroscedasticity model with time-varying correlations. Journal 

of Business and Economic Statistics, 20(3), (2002), 351-362. 

 


	Modeling volatility is an important issue of research in financial markets. Leptokurtosis and volatility clustering are common observation in financial time series (Mandelbrot, 1963). It is well known that financial returns have non-normal distributio...
	Many high-frequency financial time series have been shown to exhibit the property of long-memory and Financial time series are often available at a higher frequency than the other time series (Harris &Sollis, 2003).The long range dependence or the lon...
	To circumvent the drawbacks of this literature, recent research on stock market returns linkages focuses on their dynamic conditional correlations in a time-varying GARCH framework (see Engle et Sheppard, 2001; Tse etTsui, 2002; Engle, 2002). The dyna...
	In this paper, we empirically investigate the time-varying linkages of four daily stock prices, namely KOSPI composite index (Korea), NIKKEI225 (Japan), SSE composite index (Chine) and MSCI word index (MSCI) from January 01, 2000 until December 10, 20...
	The flexibility feature represents the key advantage of the FIAPARCH model of Tse (1998)since it includes a large number of alternative GARCH specifications. Specifically, it increases the flexibility of the conditional variance specification by allow...
	The present study investigate dynamics correlations among stock prices from January 01, 2000 until December 10, 2013. We provide a robust analysis of dynamic linkages among stock markets that goes beyond a simple analysis of correlation breakdowns. Th...
	The rest of the paper is organized as follows. Section 2 presents the econometric methodology. Section 3 provides the data and a preliminary analysis. Section 4 displays and discusses the empirical findings and their interpretation, while section 5 pr...

