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Abstract

The dynamic nature of many asset price processes and the lack of
perfect hedging assets can lead to unstable hedge ratios over time, ne-
cessitating the re-estimation and rebalancing of cross-hedges. Cross-
hedging occurs when a portfolio or asset is hedged with a statistically
related yet not identical underlying derivative. Ordinary Least Squares
regression is an oft applied method for estimating constant minimum-
variance hedge ratios to curb price volatility or manage a market-neutral
porfolio. However, constant estimates are often unsuitable under cross-
hedging where the dependence structure between the two assets change
over time. Rather than traditional correlation-based hedging, this paper
focuses on cointegration-based cross-hedging with respect to the equilib-
rium between asset prices. We apply and test the out-of-sample efficacy
of models that enable the cointegrating vector, or hedge ratio between
two nonstationary price series, to vary over time. Models are estimated
across daily data for selected equity, bond and commodity pairs. Rolling-
window regression, exponentially-weighted moving average and Dynamic
Linear Models (Gaussian Linear State-Space Models) are investigated.
Results show that time-varying parameter models have superior out-of-

sample hedging performance compared to constant parameter methods.
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This finding is confirmed through extensive Monte Carlo simulation. In
practice, this reduction in basis risk comes with incurred transaction

costs from routine hedge reblancing.

Keywords: Market Neutral; Cointegration; Time-Varying Model; Dynamic
Linear Model; Kalman Filter; Hedging

1 Introduction

Ordinary Least Squares (OLS) regression is an oft applied statistical method
for estimating constant minimum-variance hedge ratios to curb price volatility
or manage a market-neutral portfolio. However, the dynamic nature of many
asset price processes and the lack of perfect hedging assets can lead to unsta-
ble hedge ratios over time, necessitating the re-estimation and rebalancing of
hedges. In practice, linear hedging between two assets can be estimated based
on the correlation across returns. Instead of correlated returns, this paper ex-
tends another common practice of hedging with cointegrated prices series. We
apply and test the out-of-sample hedge effectiveness of statistical models that
enable the cointegrating vector, or hedge ratio, to vary over time across various
financial instruments. We investigate models with parameters that are allowed
to adapt while absorbing new information (or observations) in an on-line fash-
ion, namely rolling window regression (RWR), exponentially weighted moving
average (EWMA) and Dynamic Linear Models (DLM - also known as Linear
Gaussian State-Space Models). The empirical analysis is conducted on daily

data from the following instruments, with hypothetical use-cases following:

Asset Class Instrument Hedge
Equities Apple Stock (AAPL) Powershares QQQ Trust (QQQ)
Bonds High-Yielding Bond Low-Yielding Bond

Commodities U.S. Gulf Coast Jet Fuel West Texas Intermediate Crude Oil Futures
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Equities: A trader wishes to neutralize systematic risk to exploit the mean-

reverting spread between the stock and ETF

Bonds: A large bank hedges bond price volatility to capture the interest rate

differential

Commodities: A commercial airline imperfectly hedges jet fuel price volatil-
ity by participating in highly liquid W'TT crude oil futures markets The im-
portance of effective hedging bears significant relevance in portfolio and risk
management. When constructing portfolios to mitigate certain risks or iso-
late particular exposures, maintaining market-neutrality is a challenging yet
important objective. Hedging linear relationships can be viewed as a regres-
sion problem, that is, we aim to minimize the variance of such a portfolio to
maximize the benefits of correlation between the pair. The practical value of
hedging solutions has led to deep literature on this subject. Traditionally, con-
stant hedge ratios are estimated via ordinary least squares (OLS) regression
on returns, with the slope coefficient equaling the hedge ratio (e.g. Edering-
ton (1979); Anderson and Danthine (1980)). However, this procedure is only
appropriate if the assumption of constant variance in the distribution of asset
returns holds true- an overwhelmingly large body of literature shows that it
does not. There is well established evidence of heteroskedasticity often encoun-
tered in asset returns (Park & Bera (1987)). This non-constant variance leads
to non-constant covariation in multivariate settings such as that of hedge esti-
mation, therefore an interest in extending the traditional OLS hedging model
to those which can account for time-varying variance and covariation exists.
Triantafyllopoulos & Montana (2009) apply state-space modeling and Kalman

filtering in a real-time statistical arbitrage framework to capture the cointe-
grated nature between two exchange traded funds. Park & Jei (2006) and
Bera et al (1997) studied the hedging effectiveness of corn and soybean futures
contracts on spot prices with bivariate GARCH models and found that the
variance of hedge ratios is inversely related to hedging effectiveness. Kroner &
Sultan (1993) also estimate time-varying hedge ratios for foreign exchange fu-
tures using a bivariate error correction model with a GARCH error structure.
The authors found that time-varying hedge ratios outperform the conventional

models both in-sample and out of sample. By applying various constant and
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time-varying hedge ratios to Indian stock and commodity futures markets,
Kumar et al. (2008) finds further evidence of time-varying hedge ratios re-
ducing variance compared to constant hedge ratio models. Myers (1991) ana-
lyzes hedging in futures markets and concludes that both simple and relatively
complex models that take advantage of all relevant conditioning information
available to traders, e.g. time-varying parameter models lead to better hedging

compared to traditional OLS hedging.

While hedge ratios are traditionally constructed on asset returns due to
their stationary nature, we assess hedge ratios on prices under the local coin-
tegration framework. Local cointegration, also defined as time-varying or func-
tional cointegration, has been explored in the literature, though not as thor-
oughly as returns-based hedging. Park & Hahn (1999) model U.S. automobile
demand using cointegration with time-varying coefficients, such that the coef-
ficient evolves smoothly over time and is estimated nonparametrically. More
recently, Bierens & Martins (2010) apply time-varying vector error correction
models to the purchasing power parity hypothesis of international prices and
nominal exchange rates, and find evidence of time-varying cointegration. The
authors estimate the time-varying coefficients using Chebyshev time polyno-
mials. Xiao (2009) proposes a functional cointegration model, which allows
the cointegrating vector to vary stochastically through both kernel and local
polynomial estimation. Wagner (2010) applies cointegration in a state-space
setting. The objective of this paper is to provide further evidence of the utility
of time-varying models to manage financial risk by applying three practical
models that allow the cointegrating vector to vary over time under the local
cointegration framework. The first section briefly discusses spurious regres-
sion and cointegration. The second section of this paper provides detail on
the three time-varying models of interest, namely rolling-window regression,
exponentially weighted moving average, and dynamic linear models. Section 3
summarizes the empirical analysis and performance evaluation. In this section,
daily, every other day, and weekly (5 day) hedge rebalancing performance are
evaluated with results documented for comparison between dynamic models
and against the traditional OLS. Results show that these methods can greatly
reduce the variance of the of the hedging model residuals, also known as basis
risk. This performance improvement, however, is only possible in a practice by

incurring increased transaction costs due to portfolio rebalancing. Section 4
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contains extensive results from simulation studies to confirm the robustness of
model estimates and hedge effectiveness of locally cointegrating prices. Lastly,

we conclude with a summary of the research and findings.

2 Overview of Cointegration

Cointegration, popularized by the work of Engle and Granger (1987), is a
model-free phenomenon which occurs when two (or more) stochastic processes
are non-stationary, but some linear combination of said processes is stationary.
Let {y1,y2,...yp} denote a set of p vectors, each with an equal number of
observations ¢y, %, ...tp. Then the set p is said to be cointegrated if each vector
{y1,92, ...y} taken individually is I(1), e.g. integrated of order 1; a non-
stationary process that becomes stationary when differenced once, while some
linear combination of the series ~'p is 1(0), or stationary for some non-zero
vector 7. Specifically, a set of series, all integrated of order n, (in our case
integrated of order 1), are said to be cointegrated if and only if some linear
combination of the series, with non-zero weights, is integrated of order less
than n (Murray, 1994). For example, take the bivariate case where processes

y; and x; both follow non-stationary random walks.
ye ~ 1(1), x ~I(1). (2.1)
If these series are cointegrated, there exists
2=y —yxy 2z ~ 1(0), (2.2)

such that z follows a stationary I(0) process. The 7 parameter, known as
the cointegrating vector, can be estimated by 74 via least-squares spurious
regression through the origin (note the lack of an intercept term) of one random
walk onto another:

Ye = YTy + 2. (2.3)

t
Zijl :Bti/t <2.4)
Zi:l Ty

3 =
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In application, y;, z;, and z; can all be tested for unit roots (or lack thereof
in the case of z if y; and z; are actually cointegrated) using statistical tests for
stationarity. The Engle-Granger Representation Theorem states that z;and
yieointegrate if and only if there exists an error correction model (ECM) for
either x;, y;, or both. For example, let z; = y;, — Yx; be a stationary relation
between (1) variables as shown above. Then there exists a stationary ARMA

model for z;. Assume for simplicity an AR(2),
2t = Q1241 + P221-2 + €, p(1) =1—¢1—¢2>0. (2.5)
This is equivalent to

(v —v2e) = P1(Yi—1 — Y2i1) + P2 (Y2 — YT1—2) + & (2.6)

Yt = VT + QrYs—1 — Q1YTe—1 + P2Y—2 — P2 VTe—2 + €4, (2.7)

or
Ayy = YAz 4 Goy Az — G2 Ay;1 — (1 — 1 — o) {1 — Y211} + €. (2.8)

Unlike hedging based on correlation, cointegration-based hedging provides
a robust alternative. Correlated hedging requires assets to move in tandem
while cointegration implies that two price series cannot wander off in opposite
directions for very long without eventually reverting to a mean distance. It
does not necessarily require that on a daily basis the two prices have to move
in synchrony - what it implies is that there exists some long run equilibrium

relationship between the two series.

2.1 Local Cointegration

The objective of this paper is to provide robust and practical evidence that
minimum-variance hedging based on prices can be improved by increasing the
flexibility of our models. Specifically, by allowing for time-varying covariance
structure between nonstationary price series, we capture information that lets

one routinely update their knowledge of the underlying process. In this paper,
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we define Local Cointegration as cointegration that holds under a time-varying

cointegrating vector, or simply,

Zitq = Ytrq — ViTirq  Ztaqr~ 1(0)  Ypyq ~ I(1) g ~ 1(1), (2.9)

where ¢ denotes g-periods ahead. This can be be any number in theory, but we
study and assess the domain of ¢ = {0,1,2,5}. When ¢ = 0, the cointegrating
vector updates contemporaneously while ¢ > 0 holds a constant cointegrating
vector 7y, for ¢ periods before updating. Under such circumstances, if the resid-
ual series z; is stationary, we define the process as locally cointegrating. Even
if tests for constant cointegration fail (or marginally pass), the multivariate
process between two nonstationary series may be cointegrated under short du-
rations which the time-varying nature of v, captures - leading to a stationary
residual series. Though structurally and intuitively simple, this time-varying
coefficient approach to price-based hedging has valuable practical implications

for risk management and trading as evidenced by our study.

3 Time-Varying Parameter Models

Under theoretical assumptions of covariance-stationarity or fixed long run
equilibria, constant model parameters can be estimated to determine whether
or not a cointegrating relationship exists to implement a hedge. Particularly
with financial time series, these relationships and therefore static model param-
eter estimates are not constant. This introduces complexity to the estimation
problem. To estimate hedge performance of time-varying model parameters,
Rolling Window Regression (RWR), Exponentially Weighted Moving Average
(EWMA) models and Dynamic Linear Models (DLM) are investigated. In this
section we provide an overview of the models and how the cointegration-based

hedges are constructed.

3.1 Rolling Window Regression

Often referred to as the “poor man’s” time-varying parameter model, a

rolling linear regression is simply the moving-average counterpart to linear
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regression. For a window with n < T, the rolling window linear regression
(RWR) model may be expressed as (Zivot & Wang, 2003)

yi(n) = z¢(n)y(n) + z(n), t=mn,..T, (3.1)

Where y;(n) is an n X 1 vector of observations (asset prices) on the response,
x(n) is an n x k matrix of explanatory variables (in our case, the n x 1 vector
of hedging asset’s price observation), v,(n) is a k x 1 cointegrating vector (or
hedge ratio) and z;(n) is the n x 1 vector of stationary error/residual terms,
e.g. the hedge basis. The n observations are the n most recent observations
from time t —n + 1 to time ¢, akin to an n-period moving average, but here we

have an n period moving regression. The parameters can be estimated (Zivot
& Wang, 2003) such that

i) = () () a(n) (), (32)

53n) = —— 2 3n) = ——l(n) — 2] i () — (),
(3.3)
VAR () = 320 weln)m(m)] (34)

3.2 Exponentially Weighted Moving Average

In terms of the traditional OLS model, the hedge ratio can be estimated as

GOV(‘Th yt)

VAR(z;) (3:5)

ﬁ/ =
We apply this approach to determining time-varying hedge ratios in an expo-
nentially weighted setting via EWMA. The unconditional covariance matrix
of our two series represented can be estimated as
L &
X = ﬁZ(yt —y)(we — 7)), (3.6)

t=1

where Y denotes the covariance matrix of x; and ;. Time-variation in the



Rashad Ahmed 99

covariance matrix is introduced by weighting more recent observations heavily

relative to past observations through exponential smoothing,

S = (1= Ny — )z — &) + NS, (3.7)

/\2 ~
i] B O'y Umy
t— ~ ~9
ny g

T

2

where 0 < A < lis the weight parameter, 572, o

and 0., are the variance
of y, x, and their covariance estimates at time ¢, respectively. The larger A,
the more weight is given to previous observations and less to the most recent
observation. Financial risk institution RiskMetrics’™™ implements EWMA
with A = 0.94, as we shall in our hedge performance testing. To initialize the
EWMA the estimate of the entire sample covariance matrix 3, = 3 is used.
For a given A and an initial estimate 31, 3 can be computed recursively. Under
the assumption that the joint distribution of the observed asset prices z; and
Ys, is multivariate normal with mean zero and covariance matrix >;, where the
mean i, is a function of parameter ©, then A\ and © can be estimated jointly
via Maximum Likelihood because the log-likelihood function of the data is
1 7

InL(©, ) —% Z 2] — 2 Z(yt —y) (@ — f)lzt_l(yt —y)(x —7), (3.8)

which can be evaluated recursively by substituting 5, for &, (Tsay, 2010).

3.3 Dynamic Linear Models & The Kalman Filter

Dynamic Linear Models (Kalman ,1960 and Anderson & Moore, 1979) fol-
low a Bayesian estimation philosophy for estimating time-varying parameters.
This method, theorized quite some time ago, has gained recent popularity
dude to advances in technology and computing power. Recent treatments of
Dynamic Linear Models and Kalman Filtering (Kalman, 1960) were developed
in 2001 (see Durbin & Koopman, 2001). The idea is that an observation y;
at time t depends on an underlying state vector (hedge ratio) ~, and the in-

dependent variable X;. We treat ~, as a random state rather than a constant
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coefficient as done in simple linear regression, and this state can vary over time.
Under the Kalman Filter, this is a Gaussian Process where the joint distribu-
tion of all parameters (...7;—g, Vi1, Ve, Vea1,Ve42:+> Vem2s Vi1, Us Y11, Y2, ---) 18
multivariate normal. The Gaussian assumption can be relaxed under exten-
sions of the Kalman Filter such as the Particle Filter. We refer the reader to
Bishop (2006) and Kitagawa & Gersch (1996) for further treatment of filtering
methods. Modified from Tsay’s (2010) treatment of state-space models and
the Kalman Filter, the linear Gaussian state-space DLM can be written as a

hierarchical model given by

Yo = + ey + 20, 2~ N(0, Pr), (3.9)
Qy = Ro + Wy Wy ~~ N(O, Qw); (310)
Ve = T/yt—l +u, U~ N(Oy Qu)7 (311)

such that z;, w; and u; are two independent Gaussian white noise series, and
are independent of both E(y;), E(oy) and E(v) at time t > 0, respectively.
The estimation of the parameters that specify a Dynamic Linear Model is quite
involved. Taken from Shumway & Stoffer (2000), here we use Maximum Like-
lihood Estimation (MLE), where 6 denotes the parameter set. The likelihood

is computed using innovations €y, €, ..., €, defined by

2=y — Eyelye—1) = v — o — X[, (3.12)

with covariance matrix ¥; = var(z). Ignoring the constant, we can write the

log likelihood function to be maximized, Ly (6) as

n

Ly (0) = % S log|5(0)] + % S 2 (0)54(0)2(6). (3.13)

t=1

Solving this function is not a trivial task, hence various recursive and algo-
rithmic approaches have been presented (Gupta and Mehra,1974). For deeper
detail, we refer the reader to Shumway & Stoffer (2000).

DLM parameters can be estimated with the Kalman Filter, a forwards-
backwards recursive algorithm. Essentially, the Kalman Filter is the continuous-
state-space analogue of the Hidden Markov Model, which deals with a discrete

state-space. For extensive treatment of the Kalman Filter algorithm there is
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deep literature on the subject, one referral is Kitagawa & Gersch (1996). The
following is a high level treatment of the Kalman Filter algorithm, taken from
West & Harrison (1997).

The “Generation Step”

Without loss of generality, suppose a; = 0. At time ¢, calculate a “prior”
mean and variance for the quantities at time ¢. The expectation of v, at time
t is b; so the expectation of ~; at time ¢ — 1 is by = T;b,—1. The value of the
state vector is not observable, but at any time there exists a mean vector and
covariance matrix for it. The variance of v; at time ¢ is S}, so the variance of
Y at time ¢ — 1is Syp—1 = T3S, 1 T) + Q4. At time ¢ — 1 the expectation of Y} is

Ft = xtbt|t—l7 (314)

the variance of y; is
Dt = .thSﬂt,lx; + Pt, (315)

and the covariance of v, and Y} is

Ot = St|t—1x;- (316)

E Ty _ bet—1 ’ (3.17)
Yt F
Var [ 1) = Sﬂtjl Al (3.18)
Yt Ct D,

The “Observation Step”

So, at time t — 1,

and

At time ¢, y; is observed. Beliefs about ~,; are updated. Under the Gaussian
assumption, then this is done by applying Baye’s rule. The updated mean for
Ve 18

by = by—1 + CeDy H(ye — Fy), (3.19)
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and the updated variance matrix for -, is
St - St|t—1 - CtD;1C£ (320)

Note that the variance matrices P; and @); are known/given. Although they

have t subscripts, P, @), x, and T would often remain constant.

Updating

When some new data is observed, first a generation step then an observation

step is carried out to update the state vector.

Forecasting

A generation step on its own gives a one-step-ahead forecast. Forecasts can
be generated further into the future by a sequence of generation steps without
observation steps. For example, suppose the data at time ¢ is observed. One-

step-ahead forecasts can be found.

Tb
E 1) _ t ’ (3.21)
yt+1 JfTbt

Var V1| _ St—/&-l\t Cir1 . (3.22)
Yt+1 Ciy1 Din

Then the two-step ahead forecasts can be calculated, and so on.

E Y1) T 0 Tb, _ TTb, (3.23)
Y1 zI 0 zT'b; zTTh, |’ '
Var [ 772) T 0\ (S Cina T T4 ‘ (3.24)
Yit2 zT" 0 t/+1 Dy 0 0

Alternative derivations of the Kalman Filter algorithm can be found ex-
tensively in the literature (Tsay 2010, Bishop 2006, Kitagawa & Gersch 1996,

are just a few that we refer to). By implementing DLM, functional coefficients

and
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will enable the modeling of dynamic systems. By estimating a functional coin-
tegrating vector, the relationship between two non-stationary series can be
considered dynamic, and an optimal hedge can be generated when traditional

models are not suitable.

4 Empirical Analysis & Testing Hedge Effective-

ness

In this section, we discuss the applications of time-varying hedges and the
data? on which it will be tested upon. Out-of sample testing is done on 3
pairs of assets from different markets. The equity market pair consists of
the NASDAQ index tracking exchange-traded fund (QQQ) and Apple, Inc.
stock (AAPL). With AAPL being a constituent of the QQQ itself, the two
equity assets bear considerable correlation in their return series. For fixed in-
come markets, exchange traded funds iShares iBoxx High Yield Corporate Bd
(HYG) and iShares Core US Aggregate Bond (AGG) are used. A trader aim-
ing to capture the nominal yield differential between the two bond portfolios,
or more generally high-yield and investment-grade bonds, could go long HYG
and hedge the market risk with AGG. From the commodities space we model
the hedge ratio between West Texas Intermediate Crude Oil Front-Month Fu-
tures and U.S. Gulf Coast Jet Fuel Spot prices. WTT Crude futures, being one
of the most liquid energy markets globally, provides ease of hedging against
fluctuating Jet Fuel prices, and other petroleum-based products that may not
have liquid futures markets, given that these products exhibit structural de-
pendency.

A “Fast” Rolling-Window Regression (RWR) is implemented with a win-
dow size of n = 2. As such, the hedge ratio is effectively the slope between
the two most recent observations. Empirically, this small window size out-

performs longer window sizes. The Exponentially Weighted Moving Average

2AAPL & QQQ daily prices were collected from Yahoo! Finance, dating from 4/1,/2005
to 4/1/2015. HYG & AGG daily prices were also taken from Yahoo! Finance, dating
from 4/11/2007 to 4/1/2015. WTI Crude Oil Front Month Futures prices were taken from
Quandl, Inc. and the Wiki Continuous Futures Database. U.S. Gulf Coast Jet Fuel spot
prices are sourced from the U.S. Department of Energy. The two energy price series consist
of daily data dating from 4,/1/2005 to 4/1/2015.
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model will hold a decay parameter A\ = .94, which is the industry standard
set by RiskMetrics™ . As mentioned, the initial observation variance for the
Dynamic Linear Model (DLM) is estimated using Maximum-Likelihood based
optimization and the state variance is set to 1. The out-of sample testing is
based on three scenarios: daily rebalancing, rebalancing every 2 days, and re-
balancing every 5 days (or business week). No contemporaneous information is
used to estimate hedge ratios to satisfy out-of-sample requirements such that

the general model follows the equation

Ytrk = Ntk + Zetk- (4.1)

The hedge ratio ¥ is estimated recursively, using only data up to but not
including the current value for the one-step ahead test, e.g. k = {1}. Similarly,
the estimated 4 uses data k = {1, 2} when rebalancing every two days. Weekly
rebalancing is emulated by estimating 4 using k = {1,2,3,4,5} such that the
hedge ratio estimate is carried forward throughout the 5 day period before
re-estimating and repeating. Why not rebalance daily and minimize the basis
variance? Simply because of the practical costs of trading incurred with daily
rebalancing. Rebalancing every 2 days would hypothetically increase the basis
risk, though cost of hedging would be cut in half. Rebalancing weekly would
further reduce costs of hedging. For these out-of-sample tests, the statistics for

performance evaluation are the Root Mean Squared Error and Mean Absolute

Deviation,
J
RMSE = E(; G — )2, (4.2)
MAD—lir | (4.3)
T — Yt — Y|, .

where g, is the model fitted value at time t. We omit the first 500 observations
from the out-of-sample analysis as a burn-in phase for the models, namely
EWMA and DLM which estimate recursively. The remaining 8 years of daily
observations are used for testing hedge effectiveness. Hedging effectiveness
under the classic OLS / Spurious Regression framework is shown in Table 1.
With AAPL trading in the $100’s, HYG trading in the $50’s and Jet Fuel

trading in the $2’s, in-sample deviation statistics are roughly 10% across the
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Table 1: Constant Estimates (OLS), in-sample RMSE/MAD
Pair OLS Equation RMSE MAD
AAPL & QQQ AAPL = —36.56 + 1.4590Q0 10.95  9.10
HYG & AGG  HYG = —43.09 + 1.584AGG 582 4913
Jet Fuel & WTI Jet = 0.017 4+ 0.029W'T1 0.21 0.16

board. Tables 2 to 4 show hedge effectiveness for the pairs under a time-
varying framework. The hedge ratios of AAPL/QQQ and HYG/AGG are
characterized by heavy drift, suggesting that the dependence structure changes
considerably over time. Jet Fuel/WTI, however, has a relatively stable time-
varying hedge ratio, implying that the relationship between the two petroleum
derivatives is structural and that the relationship could be modeled with a

static model reliably (evidence that the two series are truly cointegrated).

A peculiar benefit of cointegration-based hedging with price series is that
the RMSE and M AD can be interpreted in dollar terms which lets us attach
a hard value to the basis risk. All three models vastly outperform even the in-
sample performance of the static OLS model, while the simple RWR performs
surprisingly well and DLM outperforms under all rebalancing schemes. The
resulting residual z; based on time-varying models are all highly stationary,
with ADF tests rejecting the null hypothesis of a unit-root in all cases (k =

0,1,2,5) across all models.

Table 2: AAPL & QQQ
RMSE k=1 k=2 k=5 MAD k=1 k=2 k=5

RWR 083 098 137 RWR 052 061 0.85

EWMA 216 223 241 EWMA 151 1.55 1.68

DLM 0.74 094 134 DLM 0.46 0.57 0.81
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Table 3: HYG & AGG
RMSE k=1 k=2 k=5 MAD k=1 k=2 k=5

RWR 049 057 0.77 RWR 034 040 0.54
EWMA 108 1.11 119 EWMA 086 0.88 0.95

DLM 0.44 054 0.75 DLM 0.31 037 0.52

Table 4: Jet Fuel & WTI Futures
RMSE k=1 k=2 k=5 MAD k=1 k=2 k=5

RWR  0.06 0.08 0.08 RWR  0.03 0.04 0.04
EWMA 0.10 0.10 011 EWMA 0.06 0.06 0.07
DLM 0.06 0.08 0.08 DLM 0.03 0.03 0.04

5 Simulation

To confirm the robustness of our out-of-sample performance, we refit and
evaluate the RMSE and MAD statistics based on simulated sample distribu-
tions of the statistics. For each pair of securities, 10,000 bootstrapped samples
were tested. Results were unanimously positive, confirming the reliability of
the out-of-sample RMSE and MAD statistics reported in Section 3. Since
time series data is subject to potential short-memory / autoregressive char-
acteristics, we take a Stationary Block Bootstrap (Politis & Romano, 1994)
approach. Traditional Monte Carlo bootstrapped simulation relies on the as-
sumption that observations are independently and identically distributed, thus
the data could be randomly sampled with replacement. Block Bootstrap is
more appropriate for time series since the observations are split into blocks of
a selected length, with the blocks rather than individual observations resam-
pled. Stationary Block Bootstrap extends the Block Bootstrap in that rather
than fixing the block length, it is allowed to vary such that the block length is

random and generated from a geometric distribution with some mean number
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of observations per block - the specified mean block length for this study is 5.

The process undertaken runs over the following steps, for each asset pair:

1. Transform price series pair to logged returns (for stationarity and removing
long-memory).

2. Apply Stationary Block Bootstrap and generate a replicate, resampled with
replacement, with an equal number of daily observations as original data (10
years).

3. Transform the multivariate series back to normalized price series, with
witial value of 1 by taking cumulative products.

4. Re-scale price series to original values by multiplying series by price at time
period 1.

5. Fuvaluate 1-day, 2-day, and 5-day out-of-sample RMSFE and MAD statistics
for each replicate, for all three models: RWR, EWMA, DLM.

6. Repeat steps 2 through 5 10,000 times.

Out of sample performance from Section 3 matches bootstrapped mean
and median statistics closely, with the bootstrapped estimates being slightly
more conservative. The bootstrapped statistics have the benefit of letting us
observe the full sampling distribution of hedge effectiveness under simulated
environments, and robustness of applying time-varying hedge models can be
confirmed. Note that these figures can be interpreted in dollar terms. Though
RWR performs second best, it is by far the slowest with respect to computation
- taking nearly 10 times longer than EWMA, the fastest simulation. DLM
computation takes about 3 times as long as EWMA. When speed is a necessity,
the slight under performance of EWMA may be overlooked for its ease of
computation?. Simulation results can be found in section 6, with histograms
in the Appendix A.

6 Conclusion

Time-varying cointegration models for hedging provide unique insights and
practical benefits in markets where cross-hedges are needed. We test and find

that Dynamic Linear Models prove to be the best performing modeling scheme

3Computations and Simulations were done in the R Statistical Language.
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in terms of stationarity in the residuals, root mean squared error and mean
absolute deviation metrics. Rolling Window Regression and Exponentially
Weighted Moving Average methods also performed well, with all three mod-
els vastly outperforming the static hedge benchmark out-of-sample. EWMA
method, though under performed on a relative basis, has the fastest compu-
tation time. By treating price series as locally cointegrating, the application
of relatively simple yet robust models enable the practitioner to meaningfully
reduce basis risk, improving the practice of cross-hedging when traditional

hedging derivatives are not available or not applicable.
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7 Simulation Results

Table 5: AAPL & QQQ
[RWR]

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE  0.03 0.34 0.64 1.00 1.21 21.84

1-Day MAD  0.02 0.21 0.37 0.55 0.68 11.48

2-Day RMSE  0.03 0.39 0.75 1.19 1.43 25.76

2-Day MAD  0.02 0.25 0.44 0.66 0.80 13.56

5-Day RMSE  0.05 0.54 1.02 1.61 1.94 36.42

5-Day MAD  0.03 0.34 0.61 0.90 1.12 19.70
[EWMA|

Statistic Min 1st Qu. Median Mean 3rd Qu. Max
1-Day RMSE  0.06 0.89 1.64 2.63 3.13 60.30
1-Day MAD  0.04 0.62 1.11 1.67 2.03 30.14
2-Day RMSE  0.06 0.92 1.67 2.71 3.22 62.12
2-Day MAD  0.05 0.64 1.15 1.72 2.09 31.04
5-Day RMSE 0.07 0.99 1.82 2.92 3.47 67.27
5-Day MAD  0.05 0.69 1.24 1.86 2.25 33.64

[DLM]

Statistic Min 1st Qu. Median Mean 3rd Qu. Max
1-Day RMSE 0.03 0.31 0.57 0.92 1.09 34.80
1-Day MAD  0.02 0.19 0.33 0.50 0.60 16.91
2-Day RMSE  0.03 0.38 0.70 1.13 1.34 37.42
2-Day MAD  0.02 0.23 0.41 0.61 0.74 17.86
5-Day RMSE  0.04 0.54 0.99 1.56 1.87 42.32

5-Day MAD  0.03 0.33 0.58 0.87 1.05 20.36
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Table 6: HYG & AGG
[RWR]

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE  0.30 0.59 0.71 0.75 0.87 2.54

1-Day MAD  0.18 0.36 0.44 0.45 0.53 1.35

2-Day RMSE  0.36 0.70 0.84 0.88 1.02 3.05

2-Day MAD  0.21 0.43 0.52 0.54 0.63 1.61

5-Day RMSE  0.48 0.94 1.013 1.18 1.37 4.32

5-Day MAD  0.28 0.59 0.71 0.74 0.86 2.30
[EWMA|

Statistic Min 1st Qu. Median Mean 3rd Qu. Max
1-Day RMSE  0.68 1.48 1.80 1.88 2.19 6.71
1-Day MAD  0.47 1.08 1.31 1.37 1.60 4.82
2-Day RMSE  0.70 1.52 1.85 1.93 2.25 6.90
2-Day MAD  0.48 1.11 1.35 1.41 1.64 4.96
5-Day RMSE  0.75 1.64 1.99 2.09 2.43 7.47
5-Day MAD  0.52 1.20 1.45 1.52 1.77 5.36

[DLM]

Statistic Min 1st Qu. Median Mean 3rd Qu. Max
1-Day RMSE  0.22 0.54 0.66 0.68 0.80 2.32
1-Day MAD  0.13 0.33 0.39 0.41 0.47 1.21
2-Day RMSE  0.27 0.66 0.80 0.83 0.96 2.80
2-Day MAD  0.16 0.39 0.48 0.49 0.57 1.47
5-Day RMSE  0.38 0.91 1.10 1.15 1.34 4.02

5-Day MAD  0.23 0.56 0.68 0.71 0.83 2.10
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Table 7: Jet Fuel & WTI Futures
|[RWR|

Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.0015  0.0182 0.0300  0.0421  0.0504  1.7520
1-Day MAD 0.0006  0.0093 0.0155 0.0216  0.0263  0.6343
2-Day RMSE 0.0017  0.0213 0.0351  0.0492  0.0591  1.9760
2-Day MAD 0.0008  0.0109 0.0181  0.0253  0.0308  0.7380
5-Day RMSE 0.0023  0.0281 0465 0.0653  0.0784  2.7520
5-Day MAD 0.0011  0.0147 0.0245 0.0342  0.0418  1.0700

[EWMA|
Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.0036  0.0426 0.0695  0.0977  0.1177  3.304
1-Day MAD 0.0025 0.0267 0.0446  0.0620 0.0754  1.874
2-Day RMSE 0.0037  0.0437 0.0714  0.1005  0.1210  3.387
2-Day MAD 0.0025  0.0274 0.0459  0.0637  0.0775  1.925
5-Day RMSE 0.0040  0.0470 0.0769  0.1081  0.1300  3.625
5-Day MAD 0.0027  0.0295 0.0494  0.0686  0.0835  2.072
[DLM]
Statistic Min 1st Qu. Median Mean 3rd Qu. Max

1-Day RMSE 0.0013  0.0165 0.0272  0.0381  0.0456  1.5880
1-Day MAD 0.0005  0.0082 0.0137  0.0191  0.0233  0.5557
2-Day RMSE 0.0016  0.0199 0.0328 0.0461  0.0554  1.5870
2-Day MAD  0.0007  0.0100 0.0167  0.0233  0.0284  0.6400
5-Day RMSE 0.0023  0.0272 .0450 0.0633  0.0762  2.7410
5-Day MAD 0.0010 0.0140 0.0234  0.0327  0.0399  1.0150
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Appendix A: Simulated RMSE / MAD Distributions
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Appendix B: Time-Varying Coefficient Estimates
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