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Abstract 

This paper proposes a new model selection criterion for choosing the number of 

discontinuity points in piecewise constant frequency-domain models for stationary 

time series. In order to facilitate the use of this criterion in practice, penalties are 

calculated for various levels of complexity and sample sizes using an efficient 

algorithm which is based on the principle of dynamic programming. Moreover, it 

is shown how the selected frequency-domain model can be used to estimate in a 

first step the autocovariances via their spectral representation and then, in a second 

step, also the parameters of autoregressive models via the Durbin-Levinson 

algorithm. In an empirical study with macroeconomic data, the forecasts based on 

these restricted autoregressive models strikingly outperform conventional ARMA 

forecasts. 
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1  Introduction  

Like in the time domain, where abnormal time periods are usually excluded from 

the analysis, it makes also sense in the frequency domain to focus on certain 

frequency bands and disregard others. In the case where the relationship between 

variables depends on the frequency, the method of band-spectrum regression (see 

[1]-[2]) can be used (e.g. [3]-[6]). Of particular interest in this context are spectra 

which exhibit breaks. Taniguchi [7] developed the asymptotic estimation theory 

for piecewise continuous spectra. However, even in the simplest case of piecewise 

constant spectra (see [8]), the determination of the number of discontinuity points 

is still an unresolved problem. Just as in the case of a simple autoregressive model, 

there is one integer-valued parameter K determining the complexity of the model 

and K real-valued parameters that can be used to optimize the fit to the data. But 

there is one important difference. In the case of the step function, there are not 

only the K real-valued parameters determining the heights of the steps but 

additionally also 1−K  integer-valued parameters determining the subsets of 

Fourier frequencies where the step function is constant. Like in the time domain, 

where we assume that structural breaks occur only at time points where 

observations are made, we assume that the jump discontinuities of the step 

function occur only at those frequencies where our frequency-domain data are 

observed. We do not really care what happens between two successive 

time-domain observations 1−ty  and ty , nt ,...,2= , or between two successive 

frequency-domain observations )( 1−kI ω  and )( kI ω , ]2/)1[(,...,2 −== nmk , 

where 
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is the value of the periodogram at the k th Fourier frequency nkk /2πω = .  

      It is a priori not clear how the location parameters should be penalized. 

Ninomiya's [9] suggestion that the penalty of an integer-valued location parameter 
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should be three times as large as that of a regular real-valued parameter is based 

on asymptotic arguments and the critical assumption that the number of 

breaks/steps is fixed and does not increase as the sample size increases. Similarly 

restrictive assumptions have been used for the derivation of consistent estimators 

for the number of jump discontinuities of a step function (e.g. [10]-[12]). 

Unfortunately, assumptions of this type are implausible in most applications. For 

example, economic time series typically exhibit structural breaks which occur 

every few years or decades.  

      A probably more promising approach is to eliminate all integer-valued 

location parameters by reducing the problem of determining the number of steps 

to the problem of selecting a suitable submodel of the linear regression model 
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For the latter task, several subset selection criteria are available (e.g. [13]-[16]). 

Unfortunately, these criteria have been derived under quite restrictive assumptions, 

including that of normality, and can therefore not be applied to the 

frequency-domain observations )( 1ωI ,..., )( mI ω  which approximately have 

independent exponential distributions with means )( 1ωf ,..., )( mf ω , where f is 

the spectral density of the stationary process y. Any subset selection criterion that 

does not take into account the fact that extreme observations are much more likely 

in exponential samples than in normal samples would inevitably overestimate the 

number of steps and possibly even waste separate steps for individual outliers.  

      The next section therefore designs a new subset selection criterion for 

exponential samples and provides a table of penalties which have been calculated 

with the help of an efficient algorithm based on the principle of dynamic 

programming (see [17]). In Section 3, this criterion is used for choosing 
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parsimonious frequency-domain models. Associated time-domain models are 

obtained from estimates of the autocovariances implied by the selected 

frequency-domain models. Section 4 compares the forecasting performance of 

these restricted time-domain models with that of conventional ARMA models. 

Section 5 concludes. 

  

 

2  A Subset-Selection Criterion for Exponential Samples  

In the simplest case, the time-domain observations 1y ,..., ny  are i.i.d. N(0, 2σ ) 

and the frequency-domain observations )( 1ωI ,..., )( mI ω  are therefore i.i.d. 

))2/((Exp 2 πσ .  Hence,  
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where 1e ,..., me  are i.i.d. Exp(1). In this case, the spectral density f is constant 

and therefore only the first column of the design matrix X is needed. However, if f 

can be adequately described by a piecewise constant function and both the number 

and the location of the discontinuity points is unknown, a suitable submatrix of X 

must be selected.  

      Let )(SX  denote that submatrix of X, the columns of which are 

determined by the proper subsequence ),...,( 1 KSSS =  of ),...,1( m . For any 

fixed S,  

           ( ) 2

)(ˆ

1 )'()()'()()(
  

S
Km
Km SXSXSXSXSFPE

λ

ℑ−ℑ= −
−
+          (4)               

is an unbiased estimator of the mean squared prediction error  
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where *ℑ  is an independent sample which has the same distribution as ℑ . 

According to Rothman [18] and Akaike [19] that S should be selected which 

minimizes )(SFPE . In our case, it is required that 11 =S  because Kolmogorov's 

formula  

                      







= ∫

−

π

π
π ωωπσ df ))(log(exp2 2
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would imply a vanishing innovation variance if the spectral density were zero on 

an interval.  

     The data-snooping bias of the naive estimator  

                            
2

)(ˆ SE ℑ−ℑ                         (7) 

of the mean squared prediction error (5) will clearly be much larger if S is not 

fixed but is rather found by minimization over all subsequences of length K. In 

this case, the criterion  
2

)1,1(1
)1,1(1* ))(ˆ(ˆ))(ˆ(

1
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where ),(1 mKζ  is the expected value of the sum of the K largest of m 

independent )1(2χ -variables, would be more appropriate if the data were 

normally distributed and the regressors were orthogonal  (see [20]). But since 

neither of these two assumptions is satisfied in (2), appropriate penalty factors for 

each K are obtained as   
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or, computationally more efficiently, as 
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where )( jℑ , )(* jℑ , j=1,…,r, are independent samples of size m from a standard 

exponential distribution and )(ˆ jKℑ  is the best fit for )( jℑ  among all {1}⊆S of 

size K. The efficient algorithm in [17] is used for the calculation of the penalty 

factors. Table 1 gives the increments Pa(K)−Pa(K-1), K=2,…,10, of the additive 

penalties                                                      

))(log()( KPnKPa =                      (11) 

for m=20,30,40,…,250. Each table entry is based on r=100,000 random samples 

generated with the software R (see [21]). 

      At first sight, the non-monotonicity of the increments in the penalties is 

surprising because conventional criteria penalize new regressors to be included in 

a model either in the same way (e.g., AIC and BIC) or milder (e.g., MRIC and 

FPE-sub) than already included variables. However, Reschenhofer et al. [16], who 

investigated structural breaks in time-domain models, argued that clusters of 

unusual observations will not always occur just at the begin or at the end of the 

observation period but rather somewhere in the middle. In the latter case, two 

breaks are required for the description of each cluster. Consequently, the penalties 

for the second, fourth, and sixth break should be higher than those for the first, 

third and fifth break, respectively.   
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Table 1: Increments Pa(K)−Pa(K-1), K=2,…,10, of the additive penalties Pa for 

different sample sizes m. Each value is based on 100,000 random samples of size 

m from a standard exponential distribution. 

      K      2   3   4   5   6   7   8   9  10 

   m  

  20 6.3 12.6  5.8  7.8  5.9  6.7  6.2  6.6  6.7 

  30   6.6   15.4  6.2   9.1  6.1  7.2   6.0   6.6   6.1 

  40   6.9   17.6   6.6  10.3   6.3   8.0   6.2   7.0   6.2 

  50   7.2   19.5   6.8  11.3   6.6   8.7   6.4   7.4   6.3 

  60   7.3   21.2   7.1  12.3   6.9   9.4   6.6   7.9   6.5 

  70   7.5   22.7  7.3  13.2   7.1  10.0   6.9   8.4   6.7 

  80   7.6   24.0   7.5  14.0   7.3  10.6   7.1   8.8   6.9 

  90   7.7   25.3   7.6  14.9   7.4  11.2   7.2   9.3   7.0 

 100   7.9   26.5   7.8  15.6   7.6  11.7   7.4   9.7   7.2 

 110   7.9   27.6   7.9  16.3   7.8  12.2   7.6  10.1   7.4 

 120   8.0   28.6   8.1  16.9   7.9  12.7   7.7  10.5   7.5 

 130   8.0  29.5   8.2  17.6   8.1  13.3   7.9  10.9   7.7 

 140   8.1   30.4   8.3  18.2  8.2  13.7   8.0  11.3   7.8 

 150   8.2   31.2   8.4  18.8   8.3  14.1   8.1  11.6   7.9 

 160   8.2   31.9   8.5  19.3   8.4  14.6   8.2  12.0   8.0 

 170   8.2   32.8  8.5  19.8   8.5  15.0   8.3  12.3   8.2 

 180   8.3   33.5   8.7  20.3  8.6  15.3   8.5  12.6   8.3 

 190   8.4   34.2   8.8  20.8   8.7  15.8   8.6  13.0   8.4 

 200   8.4   35.0   8.8  21.3   8.8  16.1   8.7  13.3   8.5 

 210   8.4   35.5   8.8  21.7   8.9  16.5   8.8  13.6   8.6 

 220   8.4   36.1   8.9  22.2   9.0  16.8   8.8  13.9   8.7 

 230   8.5   36.7   9.0  22.6   9.0  17.2   8.9  14.2   8.8 

 240   8.5   37.4   9.0  23.0   9.1  17.5   9.0  14.5   8.9 

 250   8.5   37.8   9.1  23.4   9.2  17.8   9.1  14.7   9.0 
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3 Obtaining Restricted Time-Domain Models from 

Frequency-Domain Models 

The spectral representation of the autocovariance function of a stationary process 

)( ty  with piecewise constant spectral density 
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The parameters pφφ ,...,1  of the minimum-mean-square-error predictor  

                                                  

ptptt yyy −− ++= φφ ...ˆ 11                   (15)            

and the variance 2σ  of the prediction error tt yy ˆ−  can be computed 

recursively from the autocovariances γ(p))γ( ),...,1(,0 γ  with the 

Durbin-Levinson algorithm (see [22]-[23]). However, the autocovariances depend 

on the parameter vector λ which is unknown in practice and must therefore be 

estimated. Each component kλ̂  of the least squares estimator λ̂  is just the 

sample mean of the periodogram ordinates in the respective frequency band. The 

sample mean is of course also the maximum-likelihood estimator of an i.i.d. 
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sample from an exponential distribution. For fixed K, the frequencies 11,..., −Kωω  

are estimated by global minimization of the sum of squared residuals.  

      As a simple example, consider the case where K=2 and p=1. Here the 

restricted estimator of the autoregressive parameter φ1 is given by   

)ˆ(ˆˆˆ
)ˆsin()ˆˆ(

)0(~
)1(~~

1211

121
1 ωπλωλ

ωλλ
γ
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and the conventional unrestricted estimator by 
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4  Empirical Results 

The methods proposed in the previous sections are now used to forecast the 

quarterly real U.S. GDP from 1947Q1 to 2014Q3 (downloaded from FRED, 

Federal Reserve Economic Data, Fed St. Louis). Step functions of the form (12) 

with K≤10 steps are fitted to the periodogram of the first differences of the 

logarithms of this time series and the number of steps is chosen with AIC and BIC 

as well as with the new criterion based on the penalty factor (10). AIC and BIC 

select the maximum number of 10 steps, which is clearly a bad choice since 

macroeconomic time series of this type do not differ very much from white noise. 

Usually, the only apparent feature in their periodograms is a clustering of larger 

values in the low-frequency range. Figure 1.b shows that two steps already 

provide an adequate description of this typical spectral shape. Accordingly, the 

new criterion selects only two steps.  

      A similar spectral shape can be obtained by calculating the 
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autocovariances from the step function and using them for the calculation of the 

parameters of a conventional AR model as described in Section 3. However, this 

would require an absurdly large number of parameters (about 40; see Figure 1.b). 

On the other hand, unrestricted low-order ARMA(p,q) models (with p,q≤3) 

selected by AIC and BIC models imply spectral densities which are possibly too 

rich in detail given that the periodogram is rather featureless with the exception of 

the clustering mentioned above. Moreover, the spectral details of the different 

ARMA models are partly inconsistent with each other (see Figure 1.a).   

 Figure 1.c compares restricted low-order AR spectral densities with their 

unrestricted counterparts. Although the discrepancies appear to be relatively small, 

they have a large impact on the predictive power. Figure 2 shows the relative 

cumulative absolute forecast errors of various restricted and unrestricted 

ARMA(p,q) models (with p,q≤2). The unrestricted AR(1) model, which is 

typically selected by BIC, serves as benchmark. This benchmark model is 

consistently outperformed by the restricted AR(1) model throughout the whole 

forecasting period. However, the restricted AR(2) model is even better. It clearly 

outperforms all competing models. Increasing the AR order further up to 40 just 

increases the variance and has no positive effect on the forecasting performance. 

Similarly, the largest ARMA model, which is typically selected by AIC, performs 

worse than most other ARMA models.     
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Figure 1:  Smoothing the periodogram of U.S. GDP growth rates  

(a) Best three ARMA spectra according to AIC (ARMA(3,3): red, ARMA(3,2): 

orange, ARMA(2,2): brown) and BIC (ARMA(1,0): yellowgreen, ARMA(0,2): 

green, ARMA(2,0): purple), respectively. 

(b) AR(40) approximation (darkred) of step function (pink). 

(c) Unrestricted AR(1) (yellowgreen) and AR(2) (purple) spectra vs. restricted 

AR(1) (darkgreen) and AR(2) (darkblue) spectra.    
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Figure 2:  Relative cumulative absolute forecast errors of U.S. GDP growth rates 

ARMA(0,0): blue, (1,0): black (benchmark, typically selected by BIC)  

ARMA(2,0): orange, (2,2):  red (typically selected by AIC) 

ARMA(0,1),(0,2),(1,1),(1,2),(2,1): pink 

Restricted AR(1): gray, (2): gold, (40): green 
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5  Conclusion 

Leaving aside the fact that the GDP growth rates are not even stationary because 

of breaks in the first (e.g., the growth slowdown after the 1973 oil price shock) 

and second (e.g. the reduction in volatility starting in the 1980s which is called the 

Great Moderation) moments, the spectral densities implied by ARMA models still 

do not provide an adequate description of the clustering of large periodogram 

values in the low-frequency range (see Figure 1.a). While a simple step function 

appears to be more appropriate for this purpose, there exists no parsimonious 

time-domain model with a spectral density of this type. This paper therefore takes 

the pragmatic approach of first estimating the step function in the frequency 

domain with the help of a new model selection criterion for exponentially 

distributed samples and then using this estimate for imposing frequency-domain 

restrictions on conventional time-domain models.  

      When applied to the task of forecasting the GDP growth rates, this 

approach turns out to be extremely successful. The restricted forecasts clearly 

outperform their unrestricted counterparts. Since it is virtually impossible for any 

parsimonious model to take care of all the peculiarities of macroeconomic time 

series, it is very likely that the restricted forecasts also benefit from the fact that 

the use of step functions in this context typically produces a shrinkage effect (see 

Appendix A).  

      It is left to future research to extend the forecasting procedure introduced 

in this paper to the multivariate case and to investigate whether this extension will 

be a competitive alternative to the band-regression approach.  
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Appendix A 

Successive observations of a macroeconomic time series are typically positively 

autocorrelated, i.e., 01 >)γ( , which implies that the spectral density )(ωf  of an 

AR(1) model decreases as the frequency increases. Using this property as well as 

the fact that )cos(ω  is also a decreasing function in the interval ],0[ π , we obtain  
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