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The Benford paradox  
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Abstract 

We consider Benford´s law, also called the first-digit law. Benford (Proc. Amer. 

Phil. Soc., 78, 1938:551-572) presented the law in 1938, but 57 years earlier 

Newcomb (Amer. J. Math., 4, 1881:39-40) made the same observation. The 

problem was identified when they used logarithm tables in performing numerical 

calculations. They noted that the earlier pages of the tables were more worn than 

later pages. Consistent with this observation, they noted using numbers starting 

with low digits more often than numbers with high. Benford considered different 

data sets and noted that for some this rule is valid while for others it is not. When 

he combined all data sets, the rule was satisfied. Benford was not the first to 

observe this curiosity, but Benford´s results aroused more attention. Consequently, 

in the literature the law was named Benford´s law.  

This paradox has subsequently been established by other scientists, and it has been 

confirmed to hold under different circumstances. Benford´s law is a statistical tool 

of great interest for scientists both when they perform theoretical analyses or when 

they try to apply the law in empirical connections. There is an extensive literature 

concerning the use of Benford´s law in order to check data quality. 
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1  Introduction  

History of Benford´s law. The historical progress of Benford´s law follows 

two lines. The first describes its mathematical history and the other its empirical 

one. Benford [1] described his law in 1938, but already 57 years earlier Newcomb 

[2] had made the same observation, but Benford´s results aroused more attention 

in the literature than Newcomb´s.  

To name a law, theorem or idea in science after a specific individual is 

associated with great risks. Stigler [3] introduced “Stigler's Law of Eponymy”, 

briefly encapsulated as “No scientific discovery is named after its original 

discoverer”. Stigler was convinced that also his law follows this rule. According 

to Atle Selberg, André Weil once stated that if some finding was named according 

to a specific individual this person often had very little to do with the discovery 

[4]. Weil gave his statement much before Stigler. I myself have in other situations 

observed the same phenomenon [5]. Arnold [6] presented the historical 

development of Benford´s law, but he ignored Benford completely when he 

described the law and its origin. When I asked Arnold about this, he responded 

that it was a conscious choice not to mention Benford. Also Block and Savits [7] 

noted that Benford was mistakenly attributed the law. Furthermore, they stated 

that this is a example of Stigler´s Law of Eponymy. In this study, we will, however, 

use the established name.  

 

 



Fellman Johan 3  

2  Mathematical Foundation of Benford´s Law  

Bohl [8], Sierpinski [9] and Weyl [10], [11] laid the initial mathematical 

foundation. Arnold [6] describes this development and he presented the theorem in 

the following way. Let [ ]x  mean the greatest integer less or equal to x. Then 

[ ]xxx −=  is the fractional part of x. If x is an irrational number, then the 

sequence of xn  is uniformly distributed over the interval ( )1,0 .  

Diaconis [12] stated that the leading digit behaviour of a large class of arithmetic 

sequences is determined by using the results from the theory of uniform 

distribution mod 1. He also defined the strong Benford sequence. Diaconis 

verified Benford´s conjecture that the distribution of digits in all places tends to be 

nearly uniform. In connection with Benford´s law, he noted the problem of a 

suitable definition for ”picking an integer at random”. Fu et al. [13] presented a 

generalised Benford´s law. They proposed to model the distribution of the first 

digit image models generated for digital image processes such as image filtering, 

coding and analysis. They showed that the Discrete Cosinus Transformation (DCT) 

follows Benford´s law and that the JPEG coefficients follow a generalised 

logarithmic law of Benford type. They observed that the distribution of first digits 

of the JPEG coefficients does not follow Benford´s law in its rigorous form. 

However, they noticed that the distributions still closely follow a logarithmic law. 

When Benford´s law is  

)
x
11log()x(p)xD(P +=== , 

then the generalised logarithmic model is 

)
xs

11log(N)x(p)xD(P q+
+=== . 

The coefficient N is a normalising factor and s and q are model parameters 

describing distribution of images having different compression factors Q. When 

0s =  and 1q = , Benford´s law is the special case. 
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Block and Savits [7] stressed that many authors have tried to obtain mathematical 

explanations for Benford´s law, but the results have been relatively fruitless. 

Methods involving probability have been somewhat more successful. They gave 

some reasons for this and also provided an example of a mixture of distributions 

that exactly satisfies Benford´s law.  

 

 

3  Empirical Description of Benford´s Law  

We have already stated that Benford [1] and before him Newcomb [2] found 

that the leading digit in large data sets with strong variation showed an unusual 

distribution with dominance of low numbers 1 - 3. This observation followed from 

their study of numerical calculations based on the use of logarithm tables. They 

found that the first pages of a table of logarithms show more wear than the last 

pages, indicating that numbers beginning with the digit 1 are used relatively more 

than those beginning with the digit 9. Both of them stated that the leading digit of 

the numbers in their studies was more often low than high. Benford studied 

different data sets and observed that sometimes they satisfied Benford´s law and 

sometimes not. When he combined all data sets, Benford´s law was satisfied [14]. 

Benford´s results received more attention than Newcomb´s, and therefore, the law 

was named after Benford despite the fact that he was not the original discoverer. A 

common idea among the empirical scientists who studied Benford´s law was that 

they looked for and identified specific data sets satisfying Benford´s law. 
 

Example 1. Introduction to the Use of Logarithms. To explain Benford´s and 

Newcomb´s problem, we recall the basic knowledge of tables of Briggs´ 

logarithms and show their composition. The use of logarithms in calculations 

follows the following rules: 

The logarithm of a product is the sum of the logarithms of the numbers being 

multiplied; 
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the logarithm of the ratio of two numbers is the difference of the logarithms;  

the logarithm of the p-th power of a number is p times the logarithm of the number 

itself; 

the logarithm of a p-th root is the logarithm of the number divided by p.  

In Table 1a, we note that the logarithm contains two parts 

- an integral part called the characteristic and 

- a proper fraction called the mantissa. 

The characteristic is one less than the number of digits before the decimal point. 

The mantissa is the same for the same order of digits in two different 

numbers, irrespective of where the decimal point is in the two numbers. 

The characteristic can easily be determined, but for the mantissa one needs 

logarithm tables. Table 1b shows the compositon of a table of logarithms with 

four decimals.  

 

Table 1: Short description of Briggs´ logarithms. 

Table 1a. Some Briggs´ logarithms  

with characteristic and mantissa. 

Table 1b. Excerpt of a table of 

logarithms with four decimals. 

x )xlog(   x )xlog(  

0.0004711 0.6731-4  1000 0.0000 

0.004711 0.6731-3  1001 0.0004 

0.04711 0.6731-2  1002 0.0009 

0.4711 0.6731-1  1003 0.0013 

4.711 0.6731    

47.11 1.6731  9995 0.9998 

471.1 2.6731  9996 0.9998 

4711 3.6731  9997 0.9999 

47110 4.6731  9998 0.9999 

471100 5.6731  9999 1.0000 
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Remark. The mantissa is also used in connection with the decimal part of floating 

point numbers [15].  

 

 

4  Theoretical Benford Distribution 

In Table 2, we present the theoretical Benford distribution. The 

mathematical formula is  

( ) )1dlog(dDP +=≤ ,  

where D is the leading digit and d is the theoretical argument. Obviously, only the 

digits from 1 to 9 are of interest. Figure 1 presents the theoretical Benford 

distribution (in per cent) of the leading digit. 

 

    Table 2: Theoretical distribution of the leading digit (D) according to  

           Benford´s law.   

d )dD(P =  % )dD(P ≤  % 

1 )1log()2log( −  30.10 )2log(  30.10 

2 )2log()3log( −  17.61 )3log(  47.71 

3 )3log()4log( −  12.49 )4log(  60.21 

4 )4log()5log( −  9.69 )5log(  69.90 

5 )5log()6log( −  7.92 )6log(  77.82 

6 )6log()7log( −  6.69 )7log(  84.51 

7 )7log()8log( −  5.80 )8log(  90.31 

8 )8log()9log( −  5.12 )9log(  95.42 

9 )9log()10log( −  4.58 1)10log( =  100.00 

Total 1 100.00   
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Note that 0)1log( =  and that 1)10log( = . Furthermore, note that more than 

30% of the numbers start with 1, but less than 5% start with 9. The proportion of 

numbers starting with 1, 2, and 3 is 60%. 
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Figure 1: Theoretical Benford´s distribution (%) of the leading digit. 

 

 

In the following, we introduce a small numerical data set. We assume that it 

is large enough and the variation in the numbers is sufficiently large that it can be 

applied for evaluation of the Benford´s law. 

 

Example 2. Number of Inhabitants in Finnish Communes in 1982. In 1982, there 

were 461 communes in Finland and the number of citizens in the communes 

varied between 147 in Sottunga (Åland Islands) and 484 260 in the capital of 

Helsinki. The size of the data set and its variation seem to be sufficiently large for 

serve an example of Benford´s law. Our data set will be applied when we want to 

illustrate different properties of Benford´s law. In some examples, we also use the 

number of inhabitants in Finnish communes in 2013. In this later year, the number 

of inhabitants had increased, but the number of communes had decreased to 319. 
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Figure 2 presents the communes according to the leading digit of their numbers of 

inhabitants. Note that the distributions of both data sets are similar.  
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Figure 2: Number of inhabitants in Finnish communes distributed according to the 

leading digit. The discrepancy compared with a uniform distribution is obvious, 

and low digits are more common than high digits. Note that more than 25% of the 

communes had numbers starting with 1, but less than 5% started with 9.  

 

 

In Figure 3, we compare our empirical distributions with Benford´s 

distribution. The agreement is high. When we test the discrepancy between 

Benford´s distribution and ours, we obtain 42.102 =χ , with 8 degrees of freedom 

for the 1982 data and 76.52 =χ  for the 2013 data. No statistically significant 

test results were obtained.   
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Figure 3: Comparison between the actual number of inhabitants in Finnish 

communes and Benford´s distribution. Good agreement was obtained (for details, 

see the text).  

 

 

5 Distribution of the Mantissa of Briggs´ Logarithms 

Consider an arbitrary number x  having the leading digit D. We standardise 

the number to 0x  by division with a suitable power of 10 so that 1DxD 0 +<≤ . 

This standardisation does not influence D. Now, 1)xlog(0 0 <≤  and the 

characteristic is zero. Denote the mantissa M, and hence, M)xlog( 0 = .  

If Benford´s rule holds, then Table 2 yields 

( ) )1dlog()dD(P1dxP 0 +=≤=+≤ . 

Hence,  

( ) )1dlog(1dxP 0 +=+≤ .  

Using the logarithms, we obtain 

( ) ( ) ( ))1dlog(MP)1dlog()xlog(P1dxP)1dlog( 00 +≤=+≤=+≤=+ . 

Denote m)1dlog( =+ . The distribution of the mantissa is ( ) mmMP =≤ . If the 

data set follows Benford´s law, then the mantissa is uniformly distributed over the 
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interval ( )1,0 . This proof can be performed in the opposite direction. Hence, if 

the mantissa is uniformly distributed, then the initial data set follows Benford´s 

law. Already Newcomb [2] gave this result without a strict proof. A priori, one 

could expect that the leading digits are uniformly distributed, but this holds for the 

mantissa.  

In Figure 4, we present the distributon of the mantissa of our commune data in 

1982, and the agreement with a uniform distribution is excellent. 
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Figure 4: Distribution of the mantissas of the commune data set. The excellent 

agreement with a uniform distribution supports the assumption that our commune 

data follow Benford´s law. 

 

 

6 Creating a Benford-distributed Variable 

In the following way, one can generate a stochastic variable following 

Benford´s distribution. Assume a variable X having a given distribution )x(FX . 

This can be a standardised Gaussian distribution )x(Φ , which is easily created. 

Perform the transformation )X(FY X= . Y is defined over the interval ( )1,0 . 

Generate the data set { }x  with a distribution )x(FX  and let )x(Fy X= . Hence, 
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the distribution of Y is 

( ) ( ) ( ) ( ) y)x(FxXP)x(F)X(FPy)X(FPyYP)y(F XXXXY ==≤=≤=≤=≤= .  

Consequently, the variable Y is uniformly distributed over the interval ( )1,0 . 

Now we introduce the variable Y10Z = , that is )Zlog(Y = . The variable Z has 

the range ( ) ( )10,110,10 10 = . Consequently, )Zlog(Y =  is identical with the 

mantissa of Z. Hence, the mantissa is uniformly distributed over the interval ( )1,0 , 

indicating that Z follows Benford´s law. 

 

 

7 When is Benford´s law satisfied?  

Do all data sets satisfy Benford´s law? The answer is clearly no. Above, we 

noted that Benford stressed that different data sets showed different deviations to 

the law, but when the sets were combined an accurate fit was obtained. Consider 

the stature in centimetres of a cohort of recruits. The data set is huge, but the 

heterogeneity is restricted. The vast majority has the leading digit 1 and a very 

small minority has the leading digit 2. Other possibilities cannot be found.  

If one considers mathematical proofs and analyses presented in the literature, one 

observes that the data sets have to satisfy at least two basic and necessary 

conditions:  

i.  the data set must be large enough and  

ii.  the different numbers must show sufficiently large variation that different 

magnitudes can be observed. 

Smith [16] stated that Benford´s law holds for distributions that are wide relatively 

to unit distance along the logarithmic scale. Likewise, the law is not followed by 

distributions that are narrow relative to unit distance. Alternative statements have 

also be made. Fewster [17] concluded that data from any distribution will tend to 

be “Benford” so long as the distribution spans several integers on the log  scale 
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― several orders of magnitude on the original scale ― and as long as the 

distribution is reasonably smooth. Aldous and Phan [18] improved the 

assumptions with the requirement that within a large data set of positive numerical 

data with a large spread on a logarithmic scale, the relative frequencies of leading 

digits will approximately follow Benford´s law.  

 

 

8  Distribution of Subsequent Digits 

Subsequent digits show simultaneously a quick convergence to a uniform 

distribution and an increasing complication in theoretical formulae [e.g. 19]. The 

formula for the second digit is  

( ) ∑
=









+
+==

9

1k dk10
11logdDP   9...,,2,1,0d = . 

 

Table 3: Distribution of D (%) for the consecutive digits 4and,3,2,1=s . Note 

that the decreasing trend holds for all digits so that small digits are more probable 

that high ones. In addition, note the quick convergence to the uniform distribution 

[19]. 

      D      

s 0 1 2 3 4 5 6 7 8 9 Total 

1  30.10 17.61 12.49 9.69 7.92 6.69 5.80 5.12 4.58 100.00 

2 11.97 11.39 10.88 10.43 10.03 9.67 9.34 9.04 8.76 8.50 100.00 

3 10.18 10.14 10.10 10.06 10.02 9.98 9.94 9.90 9.86 9.83 100.00 

4 10.02 10.01 10.01 10.01 10.00 10.00 9.99 9.99 9.99 9.98 100.00 

Note that zero has been included in the model. Already Newcomb [2] gave the 

numeric distribution of the second digit. We present in Table 3 and Figure 5 a 

comparison between the distributions of the first, second, third and fourth digits 

[19]. The digits are statistically dependent.  
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Figure 5: Graphical comparison between the distributions of consecutive digits (s) 

given in Table 3. Note for all digits an apparent decreasing trend and a quick 

convergence towards the uniform distribution. 

 

 

In the following figures, we compare our empirical data set (1982) with the 

theoretical distributions for the successive digits.  
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Figure 6: Comparison between the empirical distribution and the theoretical 

distribution for the second digit.  

The agreement is good ( 15.62 =χ  with 9 degrees of freedom). Furthermore, 

we note that the empirical distribution is close to the uniform distribution. For the 
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empirical distribution, the highest percentage is 12.6 and the lowest 7.6. 
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Figure 7: Comparison between the empirical distribution and the theoretical 

distribution for the third digit.  

The agreement is good ( 31.22 =χ  with 9 degrees of freedom). Furthermore, 

we note that the empirical distribution is close to the uniform distribution. For the 

empirical distribution, the highest percentage is 11.1 and the lowest 9.3. 

Furthermore, we note that the empirical distributions of the digits are close to 

the uniform distribution. For the empirical distribution of the second digit, the 

highest percentage is 12.6 and the lowest 7.6 and for the third digit, the highest 

percentage is 11.1 and the lowest 9.3. 

 

 

9 Theoretical Proofs  

In several theoretical papers, scientists have studied the conditions under 

which Benford´s law will hold.  

Pinkham [21] started a theoretical discussion and asked why and how exactly does 

this unnormal law hold. Further, he stated that the only distribution that is 

invariant under scale change of the underlying distribution is )1dlog( + . 



Fellman Johan 15  

Contrary to suspicion, this is a non-trivial mathematical result, for the variable n is 

discrete. Also Hill [22] and Smith [16] showed that Benford´s law is equivalent to 

base and scale invariance of the underlying distribution.  

Raimi [23] comprehensively surveyed the literature concerning Benford´s 

law. He especially paid attention to data sets not satisfying Benford´s law.  

Earlier, all studies associated Benford´s law with data sets, but now 

scientists have started to combine Benford´s law and theoretical probability 

distributions. Hill [19] stated that it is an interesting and still at that time an 

unsolved problem to determine which common distributions and their 

combinations satisfy Benford´s law. He introduced a two-stage procedure, where 

he first selected distributions randomly and then among these random samples. 

This procedure resulted in Benford´s law. Using this process, he tendered the 

explanation that Benford´s analysis of different data set yielded fits of different 

goodness and that the compositon of the observations resulted in an acceptable 

adaptation of Benford´s law.  

Leemis et al. [24] continued these investigations and their article quantified 

compliance with Benford´s law for several popular survival distributions. They 

also stated that the traditional analysis of Benford´s law considers its applicability 

to data sets. Block and Savitz [7] stressed that every combination of Benford´s 

distributions is a Benford´s distribution.  

 

 

10 Applications  

Nigrini and Woods [25] used Benford´s law when they studied the 

distribution of the population in USA according to the 1990 census. They obtained 

good agreement and stated that Benford´s law could be used for estimating future 

population statistics.  

Ley [26] studied how well stock returns follow Benford´s law. Han 



16                                                     The Benford paradox  

considered 1-day returns on the Dow-Jones Industrial Average Index and the 

Standard and Poor´s Index and found that they agree reasonably with Benford´s 

law. 

Nigrini and Mittermaier [20] investigated whether the law could be used by 

auditors to detect fraud. The basic idea was that accounting data should follow 

Benford´s law. The data set is huge and the individual numbers show great 

variation. However, fraud may cause deviations from Benford´s law. They 

presented statistical tests according to which one can observe how well the data 

set adheres to Benford´s law.  

Sandron [27] studied the populations in 198 different countries and found 

good agreement with Benford´s law. In addition, he investigated the distributions 

of surface areas and population densities and obtained similar results [cf. 20].  

Sehity et al. [28] considered the pricing of goods. They assumed that the pricing 

based on psychology cannot follow Benford´s law. However, the Euro 

introduction in 2002, with its various exchange rates, distorted existing nominal 

price patterns, while simultaneously retaining real prices. They studied consumer 

prices before and after the introduction of the Euro by using Benford´s law as a 

benchmark for price adjustments. Results indicate the usefulness of this 

benchmark for detecting irregularities in prices and the clear trend towards 

psychological pricing after the nominal shock of the Euro introduction. In addition, 

the tendency towards psychological prices results in different inflation rates 

dependent on the price pattern.  

Gonzalez-Garcia and Pastor [29] examined the usefulness of testing the 

conformity of macroeconomic data with Benford´s law. They noted that most 

macroeconomic data series tested conform to Benford´s law. However, the authors 

also noted that questions emerge on the reliability of such tests as indicators of 

data quality ratings included in the data module of ”Reports on Observance of 

Standards and Codes (ROSCs)”. The authors stated that interpreting the rejection 

of Benford´s law as a reliable indication of poor data quality is not supported by 
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the analysis of the results. First, it is not possible to find a solid pattern of 

consistency between the results of goodness-of-fit tests and data quality ratings in 

data ROSCs. Second, rejections of Benford´s law may be unrelated to the quality 

of statistics. Rather, they found that economic variables showing marked structural 

shifts can result in rejection of Benford´s law regardless of the observance of best 

international practices.  

Morrow [30] tested distributions in order to identify fraud. He started from 

the 2χ  test, that is  

∑=

−
=

9

1i
i

2
ii2

p
)pp̂(Nχ . 

But he discussed alternative tests. He especially followed Leemis et al. [24] and 

considered the alternative test 

{ }
)

d
11log(p̂Maxm i

9,...,3,2,1d
+−=

∈
. 

Cho and Gaines [31] presented a similar test  

2
1

9

1i

2

i )
d
11log(p̂D













+−= ∑
=

. 

These two tests do not have critical test values. 

 

 

11  Discussion 

 Benford´s law is not only a curiosity, but it is a statistical tool of great 

interest for scientists both when they perform theoretical analyses and when they 

try to apply the law to different contexts. In different ways and under different 

assumptions, the researchers consider different distributions, and our data sets are 

adequate examples. One can state that irrespectively of whether the study is 

theoretical or empirical the basic interest is to state how general the distribution is 

and what the empirical data should satisfy in order to obtain Benford´s law. 
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Extensive literature exists concerning the use of Benford´s law for checking data 

quality. Studies have yielded good results, but the findings of Gonzalez-Garcia 

and Pastor [29] indicate that rejections of Benford´s law may be unrelated to the 

quality of statistics. 
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