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Abstract

The asymptotic behavior of the Granger-causality test under stochas-
tic nonstationarity is studied. Our results confirm that the inference
drawn from the test is not reliable when the series are integrated to the
first order. In the presence of deterministic components, the test statis-
tic diverges, eventually rejecting the null hypothesis, even when the
series are independent of each other. Moreover, controlling for these
deterministic elements (in the auxiliary regressions of the test) does
not preclude the possibility of drawing erroneous inferences. Granger-
causality tests should not be used under stochastic nonstationarity, a
property typically found in many macroeconomic variables.
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1 Introduction

Nonstationarity and Granger-causality have been widely studied in econo-

metrics. Both are considered fundamental issues, particularly in applied macroe-

conomics. On the one hand, cointegration, a technique first developed by [12]

and [6] requires (i) the variables to be integrated to the first order, I(1) (non-

stationary), and, (ii) the existence of a stationary linear combination of such

variables. Cointegration is one of the most widely applied estimation proce-

dure in (macro) econometrics. Its relevance in applied works is due to the well

established nonstationary nature of many macroeconomic variables3 and the

also well-known phenomenon of spurious regression. [14] showed that linear

regressions (ordinary least squares, OLS) using nonstationary integrated of

order one, I(1), are spurious unless the variables are cointegrated.

On the other hand, causality in modern econometrics can be traced back to

the works of [37], [10], and [34].4 The Wiener-Granger-Sims concept is based

on the predictability of a variable. Should other variables contain information

in past terms (not contained elsewhere) useful to improve the prediction of

the former one, then such variables would be said to cause it. The Granger-

causality (GC, hereinafter) is ubiquitous in the applied economics literature.5

[25], [7], [30], inter alia, consider GC as a major empirical and theoretical

contribution to econometrics.6

GC testing has been thoroughly studied. It is well documented, for exam-

ple, that size distortions and power losses may occur even when the variables

are stationary. [1] showed the existence of such effects if one of the variables,

yt or xt (but not both) is measured with error. [23] also identified size distor-

tions and power losses due to a temporal aggregation bias in the variables. [2]

showed that when the assumption of parameter constancy is violated (struc-

3There is some debate concerning the nature of the trending mechanism, i.e. whether
series have a unit root or a deterministic trend with possible level/trend shifts (see [24], [27],
and references therein).

4[21] analyses the difference between Granger and Sims causality concepts.
5Granger first developed his results using spectral analysis procedures, such as cross

spectrum and the partial cross spectrum, previously developed in [9]. [34] developed a GC-
testing procedure based upon a moving average representation; [33] proposed a procedure
directly related with the definition of causality given in [10]; [16] and [32] developed a well
known statistical procedure to test GC, which uses residuals from univariate models for time
series.

6Further discussion can be found in [11] and [13].
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tural shifts), GC tests may provide misleading inference about the underlying

relationship of causality.

As for the nonstationary case, there has been some debate concerning the

use of differenced variables (see, for example [35] and [17]), the main argument

being discussed is whether differencing the series causes a severe power loss.

[26] showed, in a Monte Carlo study, the considerable size distortions of the

GC test occur when the variables behave as unit root processes. Most articles,

however, are based on empirical or simulation analysis (see, for example [4]

and [5]). However, there are several exceptions: [18] proved that, when the

variables used to test GC are driftless unit roots, the test statistic has an

asymptotic nonstandard distribution under the null hypothesis, free of nuisance

parameters that could lead to spurious inference; [36] showed that GC tests fail

to reject the null hypothesis of no GC more often than it should when the data

generating process (DGP) of the variables is either Broken-Trend Stationary

(BTS) or Broken-Mean Stationary (BMS), even when the former variables are

differenced. [38] proved that, when the DGPs of the variables are a mixture

of trend stationary processes and unit roots, the inferences drawn from a GC

test could be misleading as well.

A GC test could therefore yield spurious inference when the variables are

not stationary. In this paper we prove that an asymptotic nuisance-parameter-

free distribution under stochastic nonstationarity is an exception rather than

the rule, and make a case against the use of the GC test under nonstationarity.

Independent simple driftless unit-root variables do indeed provide—under the

null hypothesis of no GC—a nuisance-parameter-free distribution. That said,

the sole inclusion of a drift in the DGP specification makes the result no longer

valid. Moreover, the inclusion of a constant term or a deterministic trend in the

auxiliary regressions of the GC test does not elimnate the nuisance parameters

in the limit distribution. In other words, the asymptotic evidence presented

in the paper shows that the GC test is not reliable when the variables are

governed by unit roots with drift because of the nonstandard nature of the

limit distribution, as in the driftless case, but also because unknown nuisance

parameter are found in the later distribution (in contrast with the drifless

case).
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2 Granger-causality under I(1) processes

There is strong evidence in favour of the presence of unit root process in

macroeconomic time series (since the influential work by [24]). During the last

thirty years, Nelson and Plosser’s historical dataset, for example, has been

used as a vehicle for studying the trending nature of U.S. macro data. Table

(1) partially summarizes the results available in the literature and shows that

most U.S. macro variables are not stationary.

Whether the trend component is stochastic or deterministic is a more con-

troversial issue. Not withstanding the debate, there is evidence that the unit

root may adequately represent the properties of some macro variables. This

implies that the GC test is frequently used under nonstationarity in macroe-

conometrics. We test GC based on the classical F test framework:

F =
SSRR − SSRU

SSRU/(T − 1)
, (1)

where SSRR and SSRU account for the sum of squared residuals of the re-

stricted (eq. 2) and unrestricted (eq. 3) equations, respectively.

yt = γ11yt−1 + u2t, (2)

yt = γ21yt−1 + γ22xt−1 + u1t. (3)

Note that both auxiliary regressions correspond to the the simplest GC test

specification possible. We first consider the asymptotic properties F when the

underlying variables are independent (i) driftless unit roots, denoted URND

(eq. 4) and; (ii) unit roots with drift (URWD) as defined by equation (5). We

then study the behavior of F under such processes.

zt = z0 + ξzt, (4)

zt = z0 + µz t + ξzt, (5)

where ξzt =
∑t

i=1 uzi; uzt ∼ iidN (0, σ2
z) for z = x, y. The symbol

d→ denotes

weak convergence and Wz ≡ Wz(r) denotes a standard Wiener process. The

stochastic integral
∫ 1

0
is written as

∫
for ease of notation.
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Theorem 1. Let xt and yt be: (A) two independent URND processes (eq.

4) and; (B) two independent URWD (eq. 5). Let regressions (2) and (3) be

estimated by OLS. Then, as T →∞:

Case A (driftless unit roots):

F d→
[∫

W 2
y

∫
Wx dWy − 1

2

{
[Wy(1)]2 − 1

} ∫
WyWx

]2

∫
W 2

y

[∫
W 2

y

∫
W 2

x −
[∫

WyWx

]2
] . (6)

Case B (unit roots with drift):

T−1 F d→ −µ2
y

[
µx σy

(
2
∫

Wy − 3
∫

rWy

)
+ µy σx

(
3
∫

rWx − 2
∫

Wx

)]

λ
, (7)

where λ is defined in appendix 3.

Proof: See appendix 3.

On the one hand, in case A, the asymptotic distribution of the test statistic

does not diverge. To be more precise, F converges to a nonstandard distribu-

tion without nuisance parameters. On the other hand, in case B, F diverges

at rate T . Moreover, even when the test statistic is correctly normalized, the

nonstandard asymptotic distribution is not nuisance-parameter free, i.e. it is

not a pivotal distribution.

Both cases clearly show that standard F -distribution critical values cannot

be used to draw inferences. That said, for case (A), a new set of critical

values can be obtained (see the appendix). However, for the second case, the

null hypothesis of no GC between variables will eventually be rejected as the

sample size grows.

It could be argued that, to eliminate the nuisance parameters in the asymp-

totic distributions, a more elaborate auxiliary regressions should be employed.

For example, both the restricted and unrestricted equations could include a

constant term, as in equations 8 and 9;

yt = γ10 + γ11yt−1 + γ12xt−1 + u1t, (8)

yt = γ20 + γ21yt−1 + u2t. (9)

We therefore also examine this case. Results appear in the following Theorem:
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Theorem 2. Let xt and yt be two independent I(1) processes generated by

DGP (5). Let regressions (8) and (9) be estimated by OLS. Then, as T →∞:

F d→ µy σx σy φ2 − µx σ2
y φ1 + 4σ2

y Wy(1)
∫

Wy

µ2
x σ2

y φ3 + µx µy σx σy φ4 + µ2
y σ2

x φ5

, (10)

where φi for i = 1, 2, . . . , 5, is defined in appendix 3.

Proof: See supplementary material.7

The nonstandard distribution of the F statistic is Op(1), as in the driftless

case. Nevertheless, it is not asymptotically pivotal. In other words, the test

statistic remains impractical for applied works and the addition of constant

terms is not useful to control for a simple deterministic trend mechanism. A

more intuitive approach would be to also include a linear trend in the auxiliary

regressions:

yt = γ11yt−1 + γ12xt−1 + γ13t + u1t, (11)

yt = γ21yt−1 + γ23t + u2t. (12)

The results are presented in Theorem 3:

Theorem 3. Let xt and yt be two independent I(1) processes generated by

DGP (5). Let regressions (11) and (12) be estimated by OLS. Then, as T →∞:

T−1F d→ µ2
y

σxσ3
y


2

∫
Wy

∫
WxWy − γ1

∫
Wx − γ2

∫
rWx[∫

W 2
y − 3

(∫
rWy

)2
] {

µ2
yρ + σ2

yγ7

}


 , (13)

where γi for i = 1, 2, 7, and ρ are defined in appendix 3.

Proof: See supplementary material.8

Theorem 3 clearly shows that the GC test statistic, even correctly normal-

ized, does not converge to a pivotal density. Correct inference is therefore not

possible. Including deterministic components in the auxiliary regressions of

the GC test does not prevent the presence of unknown nuisance parameters in

the limit distribution of the test statistic under H0.

7Available at [rgb]0,0,1https://dl.dropboxusercontent.com/u/1307356/JoSEM SuppMat.pdf.
8Available at [rgb]0,0,1https://dl.dropboxusercontent.com/u/1307356/JoSEM SuppMat.pdf.
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3 Concluding remarks

Granger-causality testing under nonstationarity has been thoroughly dis-

cussed on empirical grounds. Practitioners are usually reluctant to first-

difference the series because they fear a substantial loss of information (con-

tained in the low frequencies) leading to erroneously infer that there is no

Granger causality between variables. When the data-generating processes in-

clude deterministic components the differencing strategy is even less appealing;

differencing a (broken-) trend stationary process, for example, artificially gen-

erates non invertible moving average processes.

However, unit root variables in levels neither should be used to test Granger-

causality. When the variables are generated as driftless unit root (the simplest

stochastic trend), the test statistic has an asymptotic pivotal distribution un-

der the null hypothesis of no Granger-causality. This is no longer true under

slightly more complicated data generating processes (unit roots with drifts).

Moreover, the unknown nuisance parameters in the limit distribution cannot

be eliminated by controlling for deterministic components (such as constant

terms or linear trends) in the auxiliary regressions of the test .

The asymptotic results presented in this paper are in line with those pre-

viously obtained in the literature, and make clear that Granger-causality in-

ferences should not be drawn when the underlying variables exhibit a nonsta-

tionary behavior unless the trending mechanism has been correctly modelled.
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Appendix

Proof of Theorem 1

Notation: the following expressions, λ, θi for i = 1, . . . , 6, φj for j = 1, . . . , 5,

ρ and γk, were used in the results in Theorems 1, 2, and 3.

λ = µ2
x µ2

y σ2
y θ1 + µx µ3

y σx σy θ2 + µ4
y σ2

x θ3 + µ2
x σ4

y θ4+

µx µy σx σ3
y θ5 + µ2

y σ2
y σ2

x θ6,

where

θ1 = 4
[∫

Wy

]2 − ∫
W 2

y − 12
∫

Wy

∫
r Wy + 12

[∫
r Wy

]2
,

θ2 = 2
∫

WxWy − 8
∫

WxWy + 12
∫

r Wx

∫
Wy + 12

∫
r Wy

∫
Wx

−24
∫

r Wx

∫
r Wy,

θ3 = 4
[∫

Wx

]2 − ∫
W 2

x − 12
∫

Wx

∫
r Wx + 12

[∫
r Wx

]2
,

θ4 = 12
[∫

r Wy

]2 − 4
∫

W 2
y ,

θ5 =
∫

WxWy − 24
∫

r Wx

∫
r Wy,

and

θ6 = 12

[∫
r Wx

]2

− 4

∫
W 2

x .

φ1 = 1
2

(
[Wy(1)]2 − 1

)− 6
∫

Wy

∫
r Wy,

φ2 =
∫

Wx dWy +
∫

Wx

[
2 Wy(1) +

∫
Wy

]
+

∫
r Wx

[∫
Wy − 6Wy(1)

]
,

φ3 = 4
(∫

Wy

)2 − ∫
W 2

y − 12
∫

Wy

∫
rWy + 12

(∫
rWy

)2
,

φ4 = 12
∫

wWx

(∫
Wy − 2

∫
rWy

)− 4
∫

Wx

(
2
∫

Wy − 3
∫

rWy

)
,

and

φ5 = 4
(∫

Wx

)2 − ∫
W 2

x − 12
∫

W − x
∫

rWx + 12
(∫

rWx

)2
.
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ρ = 4
(∫

Wy

)2
γ3 + 4γ4

∫
W 2

y + 12γ5

(∫
rWy

)2
+ γ6

∫
WxWy,

where

γ1 = 2
∫

W 2
y − 6

(∫
rWy

)2
,

γ2 = 6
∫

rWy

∫
Wy − 3

∫
W 2

y ,

γ3 =
∫

W 2
x − 3

(∫
rWx

)2
,

γ4 = 4
(∫

Wy

)2
[∫

W 2
x − 3

(∫
rWx

)2
]

+
∫

W 2
y

[
4
(∫

Wx

)2 − ∫
W 2

x (1

+12
∫

rWy

) −12
∫

Wx

∫
rWx

(
1− 2

∫
rWy

)
+ 12

(∫
rWx

)2
]
,

γ5 =
∫

W 2
x −

(∫
Wx

)2
,

γ6 = −8
∫

Wx

∫
Wy + 12

∫
rWx

∫
Wy + 12

∫
Wx

∫
rWy +

∫
WxWy,

and

γ7 = −4
∫

W 2
x

[∫
W 2

y − 3
(∫

rWy

)2
]

+ 12
(∫

rWx

) [(∫
rWx

)2 ∫
W 2

y

−2
∫

rWy

∫
WxWy

]
+ 4

(∫
WxWy

)2
.

Driftless unit root processes: let xt and yt be independently generated

as driftless unit roots. Equations (2) and (3) are stacked and written in vector

form as y = Xβ +U . y is a T × 1 vector and X is (A) a T × 2 matrix when we

estimate the unrestricted regression (SSRU) or, (B) a T × 1 vector when we

estimate the restricted regression (SSRR). U is a T × 1 vector of zero mean

disturbances. We first present the procedure to obtain the asymptotics of the

unrestricted regression. The OLS estimator is given by

β̂ =

[
γ̂21

γ̂22

]
= (X ′X)

−1
X ′y. (14)

We have (all sums run over t = 1 to T ):

(X ′X) =

[ ∑
y2

t−1

∑
yt−1 xt−1∑

yt−1 xt−1

∑
x2

t−1

]
, (15)
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and

(X ′y) =

[ ∑
yt−1 yt∑
xt−1 yt

]
. (16)

The order in convergence of the elements appearing in the previous equations

can be found in [29], [31] and [15].

∑
y2

t−1 = Y0 T + 2 Y 0
∑

ξy,t−1︸ ︷︷ ︸
Op(T 3/2)

+
∑

ξ2
y,t−1︸ ︷︷ ︸

Op(T 2)

,

∑
yt−1 xt−1 = Y0 X0 T + Y0

∑
ξx,t−1︸ ︷︷ ︸

Op(T 3/2)

+X0

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

+
∑

ξy,t−1ξx,t−1︸ ︷︷ ︸
Op(T 2)

,

∑
x2

t−1 = X0 T + 2 X0
∑

ξx,t−1︸ ︷︷ ︸
Op(T 3/2)

+
∑

ξ2
x,t−1︸ ︷︷ ︸

Op(T 2)

,

∑
yt−1 yt = Y 2

0 T + 2 Y0

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

+Y0

∑
uy,t︸ ︷︷ ︸

Op(T 1/2)

+
∑

ξ2
y,t−1︸ ︷︷ ︸

Op(T 2)

+
∑

ξy,t−1 uy,t︸ ︷︷ ︸
Op(T )

,

and
∑

xt−1 yt =
∑

yt−1 xt−1 + X0

∑
uy,t︸ ︷︷ ︸

Op(T 1/2)

+
∑

ξx,t−1uy,t︸ ︷︷ ︸
Op(T )

,

where ξz,t =
∑t

i=1 uz,i with z = x, y. We estimate the unrestricted regression

squared residuals:

û2
1 =

∑
(yt − γ̂11yt−1 − γ̂12xt−1)

2. (17)

Additionally, we need

∑
y2

t = Y 2
0 T + 2 Y 0

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

+
∑

ξ2
y,t−1︸ ︷︷ ︸

Op(T 2)

+
∑

u2
y,t︸ ︷︷ ︸

Op(T )

+2 Y0

∑
uy,t︸ ︷︷ ︸

Op(T 1/2)

+2
∑

ξy,t−1uy,t︸ ︷︷ ︸
Op(T )

.

The OLS estimator of the SSRR regression is given by:

γ̂11 = (X ′X)
−1

X ′y.
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Then,

(X ′X) =
∑

y2
t−1, (18)

and

(X ′y) =
∑

yt−1 yt. (19)

The restricted regression squared residuals sum is:

û2
2 =

∑
(yt − γ̂21yt−1)

2. (20)

Once we have the respective squared residuals, û2
1 and û2

2, we compute the FGC

statistic by,

FGC =
(û2

2 − û2
1)

û2
1/(T − 1)

. (21)

With the aid of a Mathematica 7.0 code (available upon request), we derive

the expression for the asymptotic nonstandard distribution given in equation

(6).

Unit root with drift processes: let yt and xt be independent unit roots

with drift. The equations (2) and (3) are stacked and written in vector form as

y = Xβ+U The OLS estimator is given by (14), where (X ′X−1) is specified by

(15) while (X ′y) by (16). The computational-time cost is reduced considerably

if we consider first the following linking expressions:

∑
yt−1 = Y0 T + µy

∑
t +

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

,

∑
xt−1 = X0 T + µx

∑
t +

∑
ξx,t−1︸ ︷︷ ︸

Op(T 3/2)

,
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∑
t yt−1 = Y0

∑
t + µy

∑
t2 +

∑
t ξy,t−1︸ ︷︷ ︸

Op(T 5/2)

,

∑
t xt−1 = X0

∑
t + µx

∑
t2 +

∑
t ξx,t−1︸ ︷︷ ︸

Op(T 5/2)

,

∑
yt−1ξy,t−1 = Y0

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

+µy

∑
t ξy,t−1︸ ︷︷ ︸

Op(T 5/2)

+
∑

ξ2
y,t−1︸ ︷︷ ︸

Op(T 2)

,

∑
xt−1ξy,t−1 = X0

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

+µx

∑
t ξy,t−1︸ ︷︷ ︸

Op(T 5/2)

+
∑

ξx,t−1ξy,t−1︸ ︷︷ ︸
Op(T 2)

,

∑
xt−1uy,t = X0

∑
Uy,t︸ ︷︷ ︸

Op(T 1/2)

+µx t
∑

uy,t︸ ︷︷ ︸
Op(T 3/2)

+
∑

ξx,t−1 uy,t︸ ︷︷ ︸
Op(T )

and ∑
yt−1uy,t = Y0

∑
Uy,t︸ ︷︷ ︸

Op(T 1/2)

+µy t
∑

uy,t︸ ︷︷ ︸
Op(T 3/2)

+
∑

ξy,t−1 uy,t︸ ︷︷ ︸
Op(T )

.

Again, the order in convergence of the elements that appear in the previous

equations are:

∑
y2

t−1 = Y 2
0 T + µ2

y

∑
t2 +

∑
ξ2
y,t−1︸ ︷︷ ︸

Op(T 2)

+2 Y 0 µy

∑
t + 2 Y0

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

+2 µy

∑
t ξy,t−1︸ ︷︷ ︸

Op(T 5/2)

,

∑
x2

t−1 = X2
0 T + µ2

x

∑
t2 +

∑
ξ2
x,t−1︸ ︷︷ ︸

Op(T 2)

+2 X0 µx

∑
t + 2 X0

∑
ξx,t−1︸ ︷︷ ︸

Op(T 3/2)

+2 µy

∑
t ξx,t−1︸ ︷︷ ︸

Op(T 5/2)

,

∑
yt−1 yt = Y0

∑
yt−1 − Y0 µy T − Y0

∑
uy,t︸ ︷︷ ︸

Op(T 1/2)

−µ2
y

∑
t + µy

∑
t yt−1

−µy

∑
t uy,t︸ ︷︷ ︸

Op(T 3/2)

+
∑

yt−1ξy,t−1 − µy

∑
ξy,t−1︸ ︷︷ ︸

Op(T 3/2)

−
∑

ξy,t−1 uy,t︸ ︷︷ ︸
Op(T )

,

∑
yt−1xt−1 = Y0

∑
xt−1 + µy

∑
t xt−1 +

∑
xt−1ξy,t−1,∑

xt−1yt =
∑

yt−1xt−1 − µy

∑
xt−1 −

∑
xt−1uy,t
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and

∑
y2

t =
∑

y2
t−1 + µ2

y T +
∑

u2
y,t︸ ︷︷ ︸

Op(T )

−2 µy

∑
yt−1 − 2

∑
yt−1uy,t

+2 µy

∑
uy,t︸ ︷︷ ︸

Op(T 1/2)

.

All of the above expressions are required to compute SSRR (2) and SSRU (3).

As in the previous section, the asymptotics are computed using a Mathematica

7.0.

The proofs of Theorems 2 and 3 follow the same steps as those of Theorem 1.

They are available as supplementary material at:

[rgb]0,0,1https://dl.dropboxusercontent.com/u/1307356/JoSEM SuppMat.pdf.

Critical values of the GC test under driftless

unit roots

Table 2 presents the asymptotic critical values of the F Granger-causality

test, when the processes are independent driftless unit roots (see Theorem 1

part A). Table 2 also shows finite sample Monte Carlo evidence of the test

for different sample sizes and variance parameters. The rejection rates (using

5% critical values) remain fairly close to the nominal 5% notwithstanding the

value of parameters σx and σy.
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Table 2: Critical values and finite sample behavior of F . DGPs: independent
URND. Rejection rate of F using α = 5%. Number of Replications: 10, 000.

Sample size 25 50 100 250 500 1000 10000
Critical value 8.09 7.17 6.97 6.94 6.61 6.55 6.52

σx σy

0.5 4.32 4.96 4.62 4.47 5.02 5.23 5.08
0.5 1.0 4.33 4.85 4.54 4.02 5.32 5.13 4.74

1.5 4.08 5.03 4.70 4.32 4.54 5.18 4.64
2.0 4.20 4.87 4.52 4.46 5.44 4.68 5.19
0.5 4.19 4.45 4.53 4.39 5.03 4.62 4.96

1.0 1.0 4.51 4.82 4.63 4.09 5.29 5.16 4.89
1.5 4.07 4.77 4.68 4.15 4.58 5.37 5.06
2.0 4.37 5.05 4.62 4.52 5.04 5.18 4.86
0.5 4.27 4.91 4.84 4.6 4.71 4.93 4.87

1.5 1.0 4.21 4.50 4.69 4.54 4.65 4.86 5.13
1.5 4.11 4.64 4.54 4.08 4.89 5.04 5.00
2.0 4.53 4.79 4.40 4.53 4.76 5.00 4.6
0.5 4.22 4.75 5.06 4.37 4.94 4.95 4.94

2.0 1.0 4.11 4.81 4.75 4.31 4.97 4.77 4.80
1.5 4.13 4.73 4.88 4.04 4.86 5.13 5.28
2.0 4.96 4.84 4.40 4.35 4.99 5.08 4.59


