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Abstract 

The purpose of this study is to determine whether a superior forecast for security 
volatility can be derived by finding a balance between historical data, implied 
volatility and an empirical implied distribution. Data are evaluated from option 
contracts and historical prices sampled on the first trading day of every month 
over a five year period from 2007 to 2012. These data are analyzed to determine 
the value of a weighted combination of the three sources of information and to 
uncover if this approach provides a forecast with a higher correlation to realized 
volatility. A linear optimization solution is formulated to determine the best 
possible composite volatility forecast. The results of the test show that there is 
statistically significant evidence in which the composite volatility forecast is 
preferred at a 95% confidence level over individual forecasts. With a better 
predictor for security volatility, this optimization process could be applied to the 
creation of portfolios that better meet investor risk preference. 
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1  Introduction  
 Modern technical analysis forecasts of volatility are achieved both by 
leveraging historical data (statistical methods) and forward-looking data (implied 
volatility from derivative prices). In this study these two sources combined with a 
novel approached called an empirical implied distribution (EID) are used in order 
to create a composite forecast. The hypothesis is that a certain combination of 
volatility predictions will create an improved forecast. Linear optimization will be 
used to determine this composite value and uncover which of the three forecast 
contributes most (or least) to better predictions. The forecast will be back tested 
for accuracy using a standard hypothesis test of the correlation between 
predictions and the realized volatility (i.e. what the model predicts and what 
actually happens). This area of financial engineering is relatively unexplored to 
date; leaving the potential for valuable information towards current methods of 
risk management and related future work. The assets used in this study consists of 
four Exchange Traded Funds (ETFs) including the SPDR S&P 500 (SPY), the 
iShares S&P SmallCap 600 Index Fund (IJR), the United States Oil Index Fund 
(USO) and the SPDR Gold Trust (GLD). These four were chosen as they 
represent a large portion of the market and will assist in verifying the results of 
this study.   

 
 
2  Background 
2.1 Forecasting Volatility Using Forward Looking Market Data 

The primary method technical investors use to predict how the markets 
perform in the future is by analyzing the past performance of a financial asset. By 
observing the changes in prices and volume of stocks traded, technical analysts 
often assume that the log adjusted returns of a security are normally distributed 
and that the expected return is interpreted as the mean, symbolized by [1]. The risk 
of an asset is expressed the standard deviation of the returns about the mean, 
symbolized by σ (referred to as volatility). These two parameters, along with the 
assumption that the returns follow a random walk described by Brownian Motion 
(or Weiner Process), gave technical analysts a framework to evaluate the 
performance of a particular asset or group of assets. The classical approach of 
asset evaluation is to estimate these two parameters using standard statistical 
methods on historical data. 

However, other methods for generating forecasts of these parameters have 
become popular. An example is that volatility can also be forecast by analyzing 
the trading prices for options contracts. In 1973, Fischer Black and Myron Scholes 
developed an innovative model for pricing a European-style call option. The 
popular calculation for determining volatility is derived from this model known as 
the Black-Scholes (B-S) equation:  
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The equation has five parameters, which include the strike price (K), the 
underlying price at time t (S), the risk free rate (r), the contract time to maturity 
(T-t), and the volatility of the underlying asset (σ) [2]. Equation 1 can only 
evaluate the price for a call option (C).  In order to price a put option the use of 
put-call parity can used with arbitrage assumptions as shown in equation (2). 

(- ( - ))( , ) ( , ) r T tP S t Ke S C S t= − +             (2) 

One of the reasons this equation is used as a basis for estimation is that all of 
the parameters except the volatility of the underlying asset can be directly 
observed. So given a market price you can back out the volatility value and 
interpret what the price is implying about it (volatility), hence ‘implied volatility’ 
(IV). These equations have flaws in reality as they fail to account for significant 
changes in the market such as the crashes experienced in 1984 and 2008. As such 
actual market prices deviate from those predicted by the model. One primary 
reason for these inaccuracies stems from normality assumption that favors returns 
closer to the mean instead of the tails of the distribution. The B-S equation 
assumes that the variance remains constant across all strike prices in a given chain. 
Therefore, it would be expected for the resulting implied volatilities to form a 
straight line when plotted, in reality, they form a curved line known as the 
‘volatility smile’ [4]. However some gains have been made by attempting to adjust 
for this skew with more complex models and assumptions [5]. 

Despite these facts, the model and its derivative work provide useful 
information for predictive purposes in many scenarios. Because implied volatility 
is so readily interpreted from a market price; simply solving for this lone 
parameter yields a prediction. That is to say that a given price implies a future 
volatility as expressed through B-S. However uncovering IV is not trivial, there is 
no closed from solution for solving this parameter so estimation methods must be 
employed.  For example, one of the most common approaches is to apply the 
Newton-Raphson method (a recursion approach) for each strike price in an options 
chain [3].  

 
 
2.2 Empirical Implied Distributions 

An empirical implied distribution (EID) is an interpretation of the price 
premiums of an options chain for a given time to expiration. It is calculated by 
looking at the price dynamics of out of the money premiums within a given chain.  
It is important to point out that in this context the EID is not a formal probability 
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distribution but a range of premiums interpreted by a potential realization of return 
(if the price reaches a given strike).   

Implied probability distribution literature is important, for example, 
Shiratsuka [6] determined that an implied distribution does contain information 
useful in creating forecasts for future price movements, however, the accuracy of 
these predictions rely heavily on choice of sample period and are not as powerful 
as the historical data. An excellent approach to developing implied distributions is 
given by Rubinstein and Jackwerth (1996). The focus in these works is to uncover 
probability (hence a formal probability distribution) where as an EID is only 
concerned with price dynamics. Empirical implied distribution volatility (EIDV), 
can be extracted from the options premiums by using equations (3), (4) and (5). 
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As is obvious from the above expressions the EID is constructed by standard 
statistical first and second moment estimations.  An example of how these 
distributions are constructed is detailed in the following section.  

 
 

3  Methodology  
The example for this section will use the SPDR S&P 500 (SPY) which is an 

ETF designed to track the performance of the S&P 500. The first trading day of 
each month was used as a reference point for the following 30 calendar days. All 
of the returns were calculated as the logarithmically adjusted rate of the close 
price on the respective dates. Finally, all of the estimates and realized volatility 
were annualized so that they could be compared for analysis. 

First, a historical forecast for the volatility of SPY was made using a 
24-month moving average. A 24-month warm up period was included in the data 
set to allow for a statistical baseline. The square root of this variance was used as 
for the predicted standard deviation of the returns using historical data. For 
forward looking volatility estimates, only out-of-the-money options (both calls 
and puts) were used because they are more liquid and also result in a unimodal 
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distribution of prices. Any options that displayed arbitrage opportunities were 
eliminated. Midpoint prices where used and options chains where truncated after 
two sequential identical prices less than $.05 where observed.   

The implied volatility estimation was gained through the use of the 
Newton-Raphson method on the B-S model averaging the first four out of the 
money values for calls and puts for the first trading day of each month.  Since the 
first trading day of each month does not always occur exactly 30 days later, the 
EIDV and IV were interpolated as a 30-day average. The two options chains to be 
used (near and next) are the two chains expiring between 0-30 days and 30-60 
days, respectively. The following calculation was used: 
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−
= + −

−
     (6) 

where TTM represents the time to maturity in days. A demonstration of this 
calculation will use data from December 1st 2010 (Figure 1). On this particular 
day, the variance of the near ending option chain was .000271 and was set to 
expire in 29 days while the variance for the next options chain was .001425 and 
set to expire in 61 days. After annualizing the calculated variance, the result 
was .01031. Figure 1 shows the price distribution used for one of the data points 
used in the estimation with puts being represented with returns lower than zero 
and calls with returns higher. As expected, the distribution has a heavy, negative 
skew towards puts as recent investors generally value insurance on their holdings 
over the potential gains from calls. 

 

 
Figure 1: SPY Implied Distribution (DEC 1st 2010) 

  
  

Finally, the realized volatility was calculated by analyzing daily data rather 
than monthly data in order to calculate the actual standard deviation of the next 30 
(calendar) days so that it could be used to compare with the other two estimates. 
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For example, the realized volatility for March 2009 was calculated as the standard 
deviation of the returns from the 21 trading days in March. Finally, the implied 
volatility, empirical implied distribution volatility, historical data, and realized 
volatility were plotted on the Figure 2 for observation and comparison. 

As shown by the Figure 2 above, we can see the how both the implied 
volatility and the empirical implied distribution are much more accurate at 
predicting the realized volatility than the historical data using the 24-month 
moving average. Despite this observation, it is important to note that historical 
data has been found to be a good predictor of future performance [7]. The 
24-month moving average has a large smoothing effect due to its relatively long 
time period and nonweighted characteristics. The time frame of this study also 
encompasses the massive financial crisis the U.S. experienced in late 2008.  

 

 
   

Figure 2: SPY Volatility Chart Comparing the Three Separate Estimates vs. 
Realized Volatility. 

  

The coefficient of correlation, r, was calculated to measure the linear 
association between the realized volatility and each estimate as seen in Table 1. 
The next step was to conduct a hypothesis test for correlation to determine if the 
results were statistically significant.  
The hypotheses and test statistic were formulated as follows. 
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Table 1: Hypothesis Test for Correlation 

  Historical Data IV EIDV 
r 0.1669 0.7364 0.739947 
t 2.000 

T stat 1.344 8.639 8.731 
Results FTR Reject Reject 

 

The value for t was obtained with an α = .05 and 60 degrees of freedom. The 
degrees of freedom varied from security to security as the number of data points 
changed, but the α value remained constant. While all three correlations were 
positive, the implied volatility and empirical implied distribution correlations were 
much stronger. The test statistic for the implied volatility and implied distribution 
were much greater than the t value meaning that we should reject the null 
hypothesis with statistical significance.  

The next step was to construct a linear optimization model to predict for the 
ideal weighted forecast between the three estimates for a composite estimate of the 
three approaches.  A composite volatility estimate, λ, was used as a new 
parametric defined by equation (8) so long as the weights (wi) met the constraint 
in equation (9). 

       IV IV IDV IDV HV Vw  w  w  Hλ σ σ σ= + +       (8) 

IV IDV HVs.t.: w  w  w  1+ + =         (9) 
In equations (8) and (9), the weights of each respective estimate are varied 

when looking for the optimal combination. Similarly, the same weights can be 
used to determine the mean of the composite volatility estimate.  

IV IV IDV IDV HV Vw  w  w  Hλµ µ µ µ= + +      (10) 

The next step was to calculate the standard deviations for the realized volatility 
and the composite volatility estimate. 
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The objective function was set to maximize the correlation between the 
realized volatility and the newly created λ .  
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Figure 3: The Composite Volatility Estimate vs. Realized Volatility. 
 

 
Table 2: Hypothesis Test for the Composite Volatility Estimate for SPY 

Value  λ 
r 0.811717432 
T 2.000 

T stat 11.03125338 
Results FTR 

 
 
Figure 3 depicts the composite volatility estimate compared to the realized 

volatility for SPY. Simple observation shows that the composite volatility estimate 
tends to overestimate the realized volatility. This is true at every analyzed time 
frame except for three occasions, two being times when the stock market was 
going through the crash in 2008 and subsequent effects experienced in late 2011.  

One of the most promising conclusions that can be drawn from this graph is 
that the composite volatility estimate should make for a good forecasting 
parametric of future volatility. The peaks and valleys of the composite volatility 
closely mirror the realized volatility across the observed data. Further analysis 
should be done to determine the predictive capabilities of this approach across 
various asset domains. Additionally, the correlation between the two was over 
81% and had a test statistic of 11.031 as shown in Table 2, both strong values.  

 
 
4  Results and Conclusion 

The same process explained in the previous section was repeated for three 
additional securities to include IJR, GLD, and USO. The compiled summary can 
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be seen in Figure 4 and Table 3. 

 

 
Figure 4: Stacked Bar Chart of the Resultant Weights 

 
Figure 4 provides insight as to what average weight each ETF forecast 

consisted of. Values could be negative because the weight simply is the coefficient 
by which the original respective estimate is multiplied by as equation (8) showed. 
SPY preferred the implied volatility and empirical implied distribution while it 
discounted the historical data. IJR, on the other hand, did not discount any of the 
estimates using roughly 50% historical data, 30% implied volatility and 20% 
implied distribution volatility. The GLD ETF highly favored the implied volatility 
estimation.  Finally, USO utilized roughly 83% of the implied volatility and 36% 
historical data in exchange for subtracting about 18% of the empirical implied 
distribution estimate.  

 
Table 3: Summary Correlations and Improvement. 

 SPY IJR GLD USO 
Previous Best 
Correlation 

0.739 0.613 0.704 0.482 

Estimate IDV IV IV IV 
λ Correlation 0.812 0.633 0.733 0.508 
Improvement 9.70% 3.23% 4.14% 5.38% 

 
 

It was found that the correlation can be improved significantly by using this 
composite forecast method. All four ETFs experienced an increase in correlation 
after the methodology was applied. On average, this method improved the 
correlation 5.61%. At a 95% confidence level, a paired t test shows that these 
improvements are statistically significant. This confirms our original hypothesis 
that certain combinations of volatility estimations can be found through the use of 
linear optimization to create an improved estimate for the volatility of a security’s 
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returns. The composite volatility estimate represents a statistically superior 
estimate. More accurate volatility forecasts will allow investors, particularly risk 
and portfolio managers, to make better investments decisions.  
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