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Abstract

Bernanke's "Nonmonetary E�ects of the Financial Crisis in the Prop-
agation of the Great Depression" has been in�uential in the macroeco-
nomic community by creating a study of the nonmonetary e�ects of the
�nancial markets on macroeconomic activity. In this work, he hypoth-
esized that the weakening of the �nancial system leads to an economic
contraction through an additional nonmonetary factor. However, the
data set utilized for this study had a large outlier corresponding to the
bank holiday in March 1933. We see that omitting the outlier leads
to results that do support Bernanke's hypothesis. However, Bernanke
argues that the outlier cannot be simply omitted as it holds valuable
information about the chaotic state of the �nancial markets in that time
period. Thus we used robust statistics to incorporate the e�ect outliers
in a purely statistical manner. The result shows that nonmonetary ef-
fects from the �nancial markets are indeed signi�cant according to the
robust estimators supporting Bernanke's hypothesis.
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1 Introduction

In 1983 the now Chairman of the Federal Reserve Ben Bernanke published
a paper titled Nonmonetary E�ects of the Financial Crisis in the Propagation

of the Great Depression empirically analyzing the e�ects of credit channels on
macroeconomic activity [1]. However, the e�ects of the bank holiday on March
1933 are represented in the data set as a large outlier in one of the explanatory
series which he argues could not be completely eliminated due to the nature of
the event. In order to deal with such a necessary outlier, Bernanke implements
a strong assumption to scale down the outlier's e�ect in an ordinary least
square (OLS) regression. The goal of this paper is to investigate the results
of various mathematical techniques that could have been used to make the
regression more robust to outliers. Speci�cally, Bayesian Robust Regression
and M-estimator methods are introduced and applied to the data set.

The outline of this paper is as follows. Section 2 outlines the economic
theory presented in Bernanke's paper to give the reader background in the eco-
nomic theory. Section 3 outlines the mathematical theory behind the robust
regression techniques of interest. Section 4 explains the estimation method-
ology and compares the results of the robust regressions to the results of the
OLS regression employed by Bernanke.

2 Nonmonetary E�ects in the Great Depression

Bernanke's Nonmonetary E�ects of the Financial Crisis in the Propagation

of the Great Depression has been in�uential in the macroeconomic community
and has stirred much interest in the empirical evaluation of the impact of credit
channels on macroeconomic activity [2, 3]. In this work he points out that �-
nancial crises coincide with adverse developments in the macroeconomy and



Christopher V. Rackauckas 155

argues that it must be explained by a causal relation between these entities.
Bernanke discounts the idea that movements in the �nancial system simply
responded without feedback to declines in aggregate output since problems
in the �nancial system tend to lead output declines. Instead, he adopts the
position of Friedman and Schwartz who argue that a weakening of the �nan-
cial system causes an economic contraction by reducing the wealth of bank
shareholders and causing a rapid decrease in the supply of money.

Bernanke adds that the weakening of the �nancial system leads to an eco-
nomic contraction through an additional factor, an intermediation between
borrowers and lenders due to the requirement of a nontrivial market-making
and information-gathering service in the real �nancial market. He argues that
if we assume that information and transaction costs exist within �nancial mar-
kets, then there exists a nontrivial cost of credit intermediation (CCI) for
lenders to provide the necessary screening, monitoring, and accounting for a
bank to successfully minimize the number of loans given to �bad borrowers�
(this cost would also include the expected losses in�icted by lending to bad
borrowers). Banking crises and the prevalency of bankruptcies are argued as
negatively a�ecting the CCI by causing the banks to be more careful in choos-
ing borrowers which in turn leads to higher degrees of borrower screening,
monitoring, and accounting. Bernanke relates the CCI to aggregate demand
by noting that a higher CCI implies that borrowers face a higher cost of credit
(but no higher cost of saving) which reduces demand for current-period goods.
This downward shift of the demand curve implies a decrease in aggregate out-
put and thus the CCI is negatively correlated to aggregate output. The impor-
tant fact to note is that this argument shows that there exists a nonmonetary
e�ect of the �nancial crisis, the the e�ect due to the CCI, on output.

To estimate the e�ect of the CCI on output, Bernanke decided to empir-
ically analyze the CCI relative to industrial production in the early events
of the Great Depression. Since no series for the CCI is readily available,
Bernanke used the deposits of failing banks and the liabilities of failing com-
mercial businesses as proxies. The reasoning for the deposits of failing banks
is that increases in deposits of failing banks are correlated with the CCI since
it would imply that banks are more stringent on giving loans meaning that
�nding appropriate borrowers is a more costly task. As the liabilities of failing
commercial businesses increases, the number of businesses that are seen as po-
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tentially good borrowers decreases and thus the CCI would increase to re�ect
the increased di�culty of �nding an appropriate borrower.

However, the national bank holiday in March 1933 lead to the deposits of
banks to be seven times worse than that in the deposits of failing banks. This
large �gure re�ects the chaotic �nancial conditions of the time and resembles
earlier crises in such a manner that simply throwing away the point would
be discarding of actual information. To deal with the inclusion of this out-
lier, Bernanke reasons that the closure of banks by government action would
have created less fear than a similar response without government interven-
tion. Thus he assumes that �supervised� bank closings in March 1933 had the
same e�ects as an �unsupervised� bank crisis involving 15 percent of the frozen
deposits. In e�ect, this allows Bernanke to scale down the March 1933 event
to around the size of the events of October 1931, the next largest data point.
From his empirical estimations using this scaled down version of the outlier,
Bernanke �nds that even when controlling for the e�ects of money supply and
demand, the e�ects of the �nancial market are still signi�cant and thus show
a nonmonetary e�ect (presumably due to some e�ect like the CCI).

3 Robust Regression

Robust statistics are a set of theories and techniques for estimating the pa-
rameters of models while dealing with deviations from the assumptions com-
monly placed on these models (an introduction to the topic can be found at
[4]). One such deviation is the contamination of data by gross errors (more
commonly referred to as outliers). Gross errors can be de�ned as �data severely
deviating from the pattern set by the majority of the data�. Such an error can
mean that the real data may not be normally distributed, which in turn could
spoil the OLS estimates. The theory of robust regressions was developed to
estimate the regression coe�cients in a manner that incorporates gross errors.
The techniques that we will be looking at are a technique for implementing
robustness into a Bayesian multiple regression model and the most commonly
used frequentest robust regression technique, M-estimation, using the Huber
estimator.
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3.1 Bayesian Robust Regression

The standard technique for multiple regression in a Bayesian context is as
follows [5, 6, 7, 8, 9]. We assume that our data set is of the form {Xi, Yi}N

i=1

where Xi is a K×1 vector of predictor variables. Let β = (β1, . . . , βk)
′ a vector

of random variables representing the unknown parameters. The model that
we are estimating, like in the frequentest regression, is

Yi = βXi + εi

where εi ∼ N(0, σ2) where σ2 is a random variable representing an unknown
parameter. In order to run the procedure, the user must specify a posterior
distribution on the random variables. A normal distribution is commonly used
for the parameters,

βi ∼ N(µi, σ
2
i )

where µi is the prior �best guess� for βi and σ2
i is the con�dence in the guess

(with large σ2
i indicating low con�dence or a �weak/non-informative prior�).

For σ2, it is common to use a uniform distribution for the prior

σ2 ∼ U(0, 10)

since σ2 will fall into this range for almost any data set2. The likelihood is
speci�ed as

Yi ∼ N(βXi, σ
2).

A hierarchical diagram of this setup is shown in Figure 1.The Bayesian
method for computing the best estimate for distributions of the random vari-
ables when incorporating the data uses Bayes Theorem. The best estimate for
the distributions can be found by the equation

Posterior(β) ∝ Likelihood(β)× Prior(β).

This can be solved computationally using Markov Chain Monte Carlo (MCMC)
and Gibbs Sampling techniques employed in software packages such as JAGS

2This is because the data are standardized before the computation is done in order to
lead to faster convergence of the Gibbs sampling method. Thus data distributions close to
normal, over 99% of the data will fall within 3 of the mean. Thus by allowing σ2 to go up
to 10, any value of σ2 that would be required for a standard data set is a possible outcome.
If σ2 is actually above 10, then the posterior distribution would look �squished� towards 10,
the highest non-zero value of the prior.
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(Just Another Gibbs Sampler). The estimators for the regression, β̂, are the
means of the posterior distributions of the parameters. It can be shown that
when using non-informative priors the results of this analysis converge to the
OLS estimators [6].

The Bayesian multiple regression can be made robust to outliers by chang-
ing the distribution of the likelihood function to be a Student's t-distribution
as

Yi ∼ t(βXi, σ
2, ν)

where ν is a random variable for the degrees of freedom of the t-distribution.
The degrees of freedom can be set by transforming it to another random vari-
able u where

ν = 1− k ∗ log(1− u)

with some constant k which expresses a prior belief in the value of ν (large k

implies a prior belief of a large ν). A uniform distribution can be placed on u,

u ∼ Unif(0, 1)

which places the distribution of ν in the interval [1,∞).The t-distribution is
a symmetric distribution which has fatter tails than the normal distribution.
The idea is that these fatter tails are able to incorporate gross errors without
shifting the mean of the distribution as much as would occur if the distribution
was a normal distribution. The posterior estimates from the model will choose
the most appropriate distribution for the degrees of freedom given the data
and estimate the regression coe�cients in a manner that is less pulled by gross
errors. Since as the degrees of freedom in the t-distribution approaches in�nity
the distribution approaches a normal distribution, we can see the �normality�
of our model by looking at the mean of the posterior distribution for ν.

The Bayesian version of hypothesis testing instead uses highest density
intervals (HDI). The 95% HDI is the interval of the posterior distribution for
a random variable which holds the parts of the distribution with the highest
density and integrates to give .95. Thus it is the 95% interval where the
parameter is most likely to exist. The hypothesis tests for Bayesian statistics
then uses the HDI as a substitute for the con�dence intervals and the same rules
for testing a null hypothesis apply. However, Bayesian 95% HDI's generated
from a multiple regression correspond to the con�dence intervals from a Tukey



Christopher V. Rackauckas 159

Honestly Signi�cant Di�erence test and thus problems with type-1 error due to
multiple testing do not apply in the Bayesian context. Thus inference can be
made from the posterior HDIs without worry of multiple comparison problems.

3.2 M-Estimation Using the Huber Estimator

The most common method of robust regression is M-estimation [10]. Con-
sider the linear model Yi = Xiβ + εi. The �tted model can be written as
Yi = Xiβ̂ + ei. The general M-estimator minimizes the objective function

n∑
i=1

p(ei) =
n∑

i=1

p(yi −Xiβ̂)

where the function p gives the contribution of each residual to the objective
function. p must uphold the following properties:

1. p(e) ≥ 0

2. p(0) = 0

3. p(e) = p(−e)

4. p(ei) ≥ p(ei′) for |ei| > |ei′|

For example, the ordinary least squares estimation uses p(ei) = e2
i . Optimiza-

tion techniques can be used to solve for the β̂ that best solves this equation.
Robust regression is implemented by setting the p function to the Hubor p

de�ned as

p(ei) =

1
2
e2 |e| ≤ k

k|e| − 1
2
k2 |e| > k

where k is a tuning constant that gives more resistance to outliers with lower
values. To give high e�ciency in the estimation, k is usually chosen as k =

1.345σ. This equation could then be solved using a maximum likelihood esti-
mation through a optimization methods such as iteratively reweighted least-
squares (IRLS). The result gives the maximum likelihood estimates and their
associated t-statistics. However, it should be noted that these t-statistics do
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not necessarily t-distributed. Thus the standard t-test is not application. Ei-
ther distribution theory or bootstrapping techniques must be applied to the
t-statistics to �nd appropriate p-values, though the same idea would apply
that larger t-statistics are associated with small p-values.

4 Empirical Estimation

We will use the procedure laid out by Bernanke in order to estimate the
nonmonetary e�ects on output. Along the way we will compare our results to
those of both Bernanke and the work of Miron and Rigol who replicated the
study in 2012 [2]. The procedure is as follows. We will attempt to use the same
data sets as those Bernanke used. The data set starts on January 1919 and goes
until December 1941. For output we will use the industrial production index
from the Federal Reserve Bulletin adjusted to have 01/1930 = 100. Money
supply will be measured using M1 from the series in Friedman and Schwartz
[11]. Our proxy for money demand will be prices will be measured using the
wholesale price index adjusted to have 1957-1959=100. As noted before, we
will use the deposits of failing banks and the liabilities of failing commercial
businesses as proxies for the e�ect of the CCI3. The series for the deposits
of failing banks comes from the Federal Reserve Bulletin. The series for the
liabilities of failing banks comes from Dun's series.

Shocks to money supply should be associated with changes in output. The
series of interest is the rate of growth of output relative to exponential trend
denoted by yt. The monetary e�ects on output are from shocks to money sup-
ply and money demand. The shocks to money supply, that is the money supply
minus the expected money supply, (M−M e)t, are de�ned as the residuals from
a regression of the rate of growth of M1 on four lags of the growth rates of
output (y), prices, and M1. The shocks to money demand, price minus the
expected price, (P − P e)t are de�ned symmetrically. We assume that shocks
to output would be caused by changes in the deposits of failing banks and the

3Note that Bernanke and Miron and Rigol use the deposits of failing banks in millions
whereas the data series I employ uses the deposits in thousands. This leads to the appropriate
scaling factor for the comparison between our study and theirs as 1000 for the coe�cient of
variables for the deposits of failing banks.
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liabilities of failing commercial businesses, and thus we de�ne DBanks and
DFail as the �rst di�erence of their respective series de�ated by the wholesale
price index. To determine the e�ect of money supply on output, the regression
equation

yt = β1yt−1+β2yt−2+β3(M−M e)t+β4(M−M e)t−1+β5(M−M e)t−2+β6(M−M e)t−3

(1)
is estimated. Likewise, to determine the e�ect of money demand on output,
the regression equation

yt = β1yt−1+β2yt−2+β3(P−P e)t+β4(P−P e)t−1+β5(P−P e)t−2+β6(P−P e)t−3

(2)
is estimated. To test the hypothesis that Bernanke proposed, we wish to
estimate a regression equation which controls for money supply and demand
and tells us the e�ect of bank and business failures on output in a nonmonetary
way. To do so, we estimate the regression equations

yt = β1yt−1 + β2yt−2 + β3(M −M e)t + β4(M −M e)t−1 + β5(M −M e)t−2 (3)

+β6(M −M e)t−3 + β7DBankst + β8DBankst−1 + β9DFailt + β10DFailt−1

yt = β1yt−1 + β2yt−2 + β3(P − P e)t + β4(P − P e)t−1 + β5(P − P e)t−2 (4)

+β6(P − P e)t−3 + β7DBankst + β8DBankst−1 + β9DFailt + β10DFailt−1

4.1 Ordinary Least Squares Replication

The results of these regressions using OLS are shown in Table 1. The tables
correspond to the regression equations shown above. Also listed are the results
of Miron and Rigol's replication and the results of a Bayesian estimation using a
normal likelihood (non-robust Bayesian Multiple Linear Regression) and a non-
informative prior of βi ∼ N(0, 1× 10−12) and σ2 ∼ U(0, 10). For the Bayesian
method, the means of the distribution are reported in the table and graphs of
their distributions can be found as �gures 2 through 5. Notice that our results
agree closely with the replication of Miron and Rigol's. The coe�cients of the
shocks to money and price in equations one and two are positive and signi�cant
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which is consistent with the Friedman and Schwartz view that money shocks
were an important aspect in the decline of output during the Great Depression.
The lags on the shocks are not signi�cant which is consistent with a rational
expectations framework in that only unpredicted shocks to money should a�ect
real variables [2]. Lastly, the Bayesian coe�cients closely resemble those of the
OLS coe�cients which is what was expected given our non-informative prior
and normal likelihood [8].

The coe�cients on the terms for the liabilities of failed banks are both nega-
tive and signi�cant. This matches what we expected from the theory presented
in Section 2 which suggest that even after controlling for the impact of bank
failures on the money stock, there would be an additional non-monetary e�ect
(the CCI for example) leading to declines in output. The coe�cients of busi-
ness liabilities also give negative results which further Bernanke's hypothesis.

4.2 Outlier Results and Robust Estimations

The bank holiday in March of 1933 presents a problem for our data set.
The deposits of banks suspended in March 1933 is seven times as large as the
next highest reading. This raises a question as to how much the data set is
biased towards this reading. Bernanke argues that it would be a mistake leave
out the bank holiday since it was a response to the panicky �nancial conditions
of the period. Table 2 shows the OLS regression results excluding the outlier
from the bank holiday. Also listed are the results from Miron and Rigol who
also ran the regression omitting the bank holiday. Notice that by doing so, the
signi�cance of the deposits of failing banks and the business liabilities is lost
and thus provide evidence against Bernanke's hypothesis.

This shows that this data point not only has a large e�ect, but the strength
of the e�ect determines whether or not the coe�cients for the deposits of fail-
ing banks and the business liabilities, the terms that lead to the con�rmation
of Bernanke's hypothesis, are signi�cant. To account for this, Bernanke scaled
down the size of the March 1933 reading by 15% to about the size of the
event on October 1931 (claiming that this would be about the e�ect of an
�unsupervised� bank crisis). Instead, we turn to the robust statistical methods
discussed in Section 3. Table 3 shows Bernanke's results and the results, Miron
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and Rigol's results from scaling the outlier in the same manner as Bernanke,
the results from the robust statistics. For the Bayesian method, the means of
the distribution are reported in the table and graphs of their distributions can
be found as �gures 6 through 9. The results from the M-estimator are not as
readily tested since the t-statistics do not follow a t-distribution and thus some
technique such as bootstrapping would have to be employed in order to receive
the p-values for the t-statistics. However, large t-statistics still correspond to
small p-values and thus the large t-statistics on DBanks in the estimation of
equations 3 and 4 provide evidence for Bernanke's hypothesis. The Bayesian
robust estimates provide the least variance on the likelihood/error terms, in-
dicating the best �t of all of the models. Here we see that when controlling for
the monetary and price e�ects �nd an negative e�ect due to DBanks which
supports Bernanke's hypothesis. Notice that when using the Bayesian robust
estimates only price shocks has signi�cant �rst lags. The lack of signi�cance on
the lags makes the model more consistent with a rational expectations frame-
work than the non-robust estimates. Notice that that degrees of freedom all
fall within 3 and 4, indicating that the distribution of the data is not normal
and is better modeled by a t with low degrees of freedom.

The large decrease in the standard error and the low degrees of freedom in
the estimated likelihood t-distribution show that a robust statistical method
such as the Bayesian Robust Multiple Linear Regression employed here pro-
vides us with better estimators than OLS. The estimations that we receive
when performing such a robust regression not only support Bernanke's hy-
pothesis that even when controlling for the monetary e�ects of bank failures
there exists a nonmonetary e�ect on output, but because the robust estimates
drop the signi�cance of the �rst lag of DBanks, it �ts a rational expectations
framework better than the non-robust estimates. One thing to note is that
the e�ect of the liabilities of failing banks was not able to be seen in the ro-
bust regression. This e�ect was fairly weak in our non-robust estimations. A
reason this may be occurring is the fact that the series was heavily revised in
1933 �to exclude real estate and insurance brokers, holding and �nance compa-
nies, shipping agents, tourist companies, transportation terminals, and such�.
This large break in 1933 may have damaged some of the estimates of this se-
ries. However, overall it seems that the robust regression methods provide a
con�rmation of Bernanke's hypothesis.
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5 Conclusion

Bernanke's Nonmonetary E�ects of the Financial Crisis in the Propagation

of the Great Depression has been in�uential in the macroeconomic community
by creating a study of the nonmonetary e�ects of the �nancial markets on
macroeconomic activity. However, the data set utilized for this study had a
large outlier corresponding to the bank holiday in March 1933. We see that
omitting the outlier leads to results that do not support Bernanke's hypothesis.
However, Bernanke argues that the outlier cannot be simply omitted as it holds
valuable information about the chaotic state of the �nancial markets in that
time period. Thus we used robust statistics to incorporate the e�ect outliers in
a purely statistical manner. The result shows that nonmonetary e�ects from
the �nancial markets are indeed signi�cant according to the robust estimators,
supporting Bernanke's hypothesis.

Appendix

Bayesian Robust Multiple Linear Regression Software

The software for performing the Bayesian Robust Multiple Linear Regres-
sions can be found at www.chrisrackauckas.com. It is an R program developed
by Chris Rackauckas and is modi�ed from the Bayesian Multiple Linear Re-
gression package by John K. Kruschke. The program utilizes the rjags package
to interface with the JAGS Gibss Sampler to perform the Monte Carlo Markov
Chain numerical estimations of the posterior distributions.
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Figure 1: Hierarchical diagram of a multiple linear regression model with three
predictor variables. The prior distribution is shown with histogram bars super-
imposed to indicate the correspondence with the posterior distributions shown
in subsequent �gures [8].
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Table 2: OLS Regression Results, March 1933 omitted.
Coe�cient OLS Eq1 OLS Eq2 OLS Eq3 OLS Eq4 M&R Eq1 M&R Eq2 M&R Eq3 M&R Eq4

yt−1 .575*** .547*** 0.567*** .592*** 0.565*** 0.542*** 0.551*** 0.530***

(9.58) (9.05) (9.09) (9.42) (8.43) (8.02) (8.19) (7.80)

yt−2 -0.0764 -0.0398 -0.0827 -0.0682 -0.053 -0.006 -0.045 -0.002

(-1.31) (-0.69) (-1.37) (-1.13) (-0.80) (-0.09) (-0.68) (0.03)

(M − Me)t 0.488** 0.482** 0.435** 0.359*

(3.13) (3.09) (2.76) (2.22)

(M − Me)t−1 0.333* 0.301 0.082 0.036

(2.03) (1.82) (0.49) (0.21)

(M − Me)t−2 0.335* 0.275 0.208* 0.221

(2.04) (1.65) (1.26) (1.34)

(M − Me)t−3 0.0789 0.0179 0.207 0.223

(0.54) (0.13) (1.26) (1.34)

(P − P e)t 0.550*** 0.567*** 0.633*** 0.585***

(5.08) (4.19) (4.44) (4.04)

(P − P e)t−1 0.455*** 0.333* 0.244 0.216

(4.03) (2.44) (1.63) (1.42)

(P − P e)t−2 0.105 0.0504 -0.053 -0.046

(0.91) (0.37) (-0.35) (-0.30)

(P − P e)t−3 -0.156 -0.0913 -0.089 -0.101

(-1.36) (-0.69) (-0.60) (-0.68)

DBankst -0.00000207 -0.00000134 -0.002342 -0.001478

(-1.46) (-0.96) (-1.66) (-1.08)

DBankst−1 -0.000000800 -0.000000592 -0.001275 -0.000808

(-0.56) (-0.42) (-0.90) (-0.59)

DFailst -0.00985 -0.0104 -0.00736 -0.00846

(-1.44) (-1.52) (-1.07) (-1.28)

DFailst−1 -0.00980 -0.00843 -0.00946 -0.00872

(-1.42) (-1.23) (-1.37) (-1.32)

Constant -0.00272 0.00120 -0.00153 0.00118 0.00179 0.00176 0.00191 0.00187

(-1.65) (0.82) (-0.94) (0.81) (1.17) (1.18) (1.25) (1.26)

Standard Error 0.0243 0.0233 0.0230 0.0227 0.0228 0.0222 0.0227 0.0222

N 258 258 236 236 225 225 225 225

*p<.05, **p<.01, ***p<.001. T-statistic is shown in parentheses.
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Figure 2: Posterior distributions of the parameters in Equation 1 using a
normal likelihood.
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Figure 3: Posterior distributions of the parameters in Equation 2 using a
normal likelihood.



Christopher V. Rackauckas 171

R2
0.35 0.40 0.45 0.50 0.55 0.60

mean = 0.466

95% HDI
0.402 0.529

σy

0.020 0.024 0.028

mean = 0.0238

95% HDI
0.0217 0.026

Intercept
−0.006 −0.002 0.002 0.006

mean = 0.000606

95% HDI
−0.0025 0.00371

YL1
0.0 0.2 0.4 0.6 0.8

mean = 0.619
0% < 0 < 100%

95% HDI
0.495 0.745

YL2
−0.4 −0.2 0.0 0.1 0.2

mean = −0.109
96.1% < 0 < 3.9%

95% HDI
−0.231 0.0119

MRes
0.0 0.5 1.0

mean = 0.396
0.7% < 0 < 99.3%

95% HDI
0.0825 0.707

MResL1
−0.5 0.0 0.5

mean = −0.0102
52.6% < 0 < 47.4%

95% HDI
−0.311 0.287

MResL2
−0.5 0.0 0.5

mean = 0.00667
48.2% < 0 < 51.8%

95% HDI
−0.305 0.314

MResL3
−0.8 −0.4 0.0 0.2 0.4 0.6

mean = −0.0484
63% < 0 < 37%

95% HDI
−0.336 0.241

DBanks
−2.0e−06 −1.0e−06 0.0e+00

mean = −1.07e−06
100% < 0 < 0%

95% HDI
−1.54e−06 −5.91e−07

DBanksL1
−1.5e−06 −5.0e−07 5.0e−07

mean = −5.27e−07
98.4% < 0 < 1.6%

95% HDI
−1.01e−06 −4.87e−08

DFail
−0.04 −0.02 0.00

mean = −0.016
99.1% < 0 < 0.9%

95% HDI
−0.0293 −0.00291

DFailL1
−0.04 −0.02 0.00 0.02

mean = −0.0152
98.8% < 0 < 1.2%

95% HDI
−0.0284 −0.00201

Figure 4: Posterior distributions of the parameters in Equation 3 using a
normal likelihood.
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Figure 5: Posterior distributions of the parameters in Equation 4 using a
normal likelihood.
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Figure 6: Posterior distributions of the parameters in Equation 1 using a t-
likelihood.
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Figure 7: Posterior distributions of the parameters in Equation 2 using a t-
likelihood.
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Figure 8: Posterior distributions of the parameters in Equation 3 using a t-
likelihood.
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Figure 9: Posterior distributions of the parameters in Equation 4 using a t-
likelihood.
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