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Abstract 

In this paper, we consider generalized risk processes out interest force with 
assumption that sequence of premiums is homogenous markov chain, takes a finite 
number of possible integer values and claims are independent and identically 
distributed non – negative random variables with the same distributive function. 
The state space of premiums in this paper is finite, which it satisfies with cases of 
practice. The aim of this paper is to give recursive equations for finite time ruin 
probabilities and integral equation for ultimate ruin probability of generalized risk 
processes out interest force with homogenous markov chain premiums and it 
establish Generalized Lundberg inequalities for ruin probabilities. Generalized 
Lundberg inequalities for ruin probabilities are derived by using recursive 
technique. Theorem 2.1 give recursive equations for finite time ruin probabilities 
and integral equation for ultimate ruin probability. To establish probability 
inequalities for finite time ruin probabilities and ultimate ruin probability of this 
model, we built Lemma 3.1 to define a adjustment coefficient 0oR > , this 
coefficient is belong to initial value of premiums. Using by Theorem 2.1 and  
Lemma 3.1, we establish Theorem 3.1, which it give probability inequality for 
ultimate ruin probability by an inductive approach. Exponential upper bounds for 
the finite time ruin probabilities and ultimate ruin probability were obtained in 
Theorem 3.1. 
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1  Introduction  

Ruin probability is a main area in risk theory (see [1]). Ruin probabilies in 
discrete time models have been considered in many papers. In classical risk model, 
no investment incomes were considered there. Recently, the models with 
stochastic interest rates have received increasingly a large amount of attention. 
Kalashnikov and Norberg (2002) assumed that the surplus of an insurance 
company was invested in a risk asset and obtained the upper bound and lower 
bound for ruin probability. Paulsen (1998) considered a diffusion risk models with 
stochastic investment incomes. Yang and Zhang (2003) extended  the model in 
Browers et. al (1997) by using an autoregression process to model both the 
premiums and the claims, and they also included investment incomes in their 
model. Both exponential and non exponential upper bounds for the ruin 
probability were obtained. The usefulness of the upper bounds obtained in that 
article and the relationship between the parameters of the model and the ruin 
probability were illustrated by some numerical examples. Cai (2002a, 2002b) and 
Cai and Dickson (2004) considered the problems of ruin probabilies in discrete 
time models with random interest rates. In Cai (2002a) and Cai (2002b), the 
author assumed that the interest rates formed a sequence of independent and 
identically distributed random variables and an autoregressive time series models 
respectively. In Cai and Dickson (2004), interest rates followed a Markov chain.  
 
In this paper, we study generalized risk processes out interest force. The surplus
 process { } 1n n

U
≥

 with initial u can be written as 
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Assumption 1.3. { } 0n n
Y Y

≥
=  is sequence of independent and identically 

distributed  non – negative random variables with the same distributive 
function 0( ) ( )F y P Y y= ≤ . 
Assumption 1.4. X and Y are assumed to be independent. 
We define the finite time and ultimate ruin probabilities in model (1) with 
Assumption 1.1 to Assumption 1.4, respectively, by 
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In this paper, we derive probability inequalities for ( , )u iψ . In section 2, we 

first give recursive equation for ( , )n u iψ  and integral equation for ( , )u iψ . We the 
derive probability inequalities for ( , )n u iψ  and ( , )u iψ in section 3 by an inductive 
approach. Finally, we conclude our paper in section 4. 

 
2  Integral equation for ruin probabilities 

Throughout this paper, denote the tail of any distribution function B by 
( ) 1 ( )B x B x= − . We first give recursive equations for ( , )n u iψ  and an integral 

equation for ( , )u iψ . 

Theorem 2.1. Let model (1) satisfies Asumption 1.1 to Asumption 1.4 then, 
for 1, 2,...n =  

1
0
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and 
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  = + − + + 
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Proof. 
Let 1 1;X j E Y y R= ∈ = ∈ , from (1), we have 
 1 1 1U u X Y u j y= + − = + −  
Thus, if u j y+ <  then 

( )1 1 10 , , , 1o oP U U u X j X i Y y< = = = = =  
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while, if 0 y u j≤ ≤ +  then 
                                      ( )1 1 10 , , , 0o oP U U u X j X i Y y< = = = = = .                     (7) 
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That, from (1), we have 
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Thus, from (6), (8) and (9), we have 

1
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Thus, from the dominated convergence theorem, the integaral equation for ( , )u iψ  
in Theorem 2.1 follows immediately by letting n →∞ in (10).  
This completes the proof.                                                                                      □                                                    

Next, we establish probability inequalities for ruin probabilities of model (1).
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3  Probability inequalities for ruin probabilities 
To establish probability inequalities for ruin probabilities of model (1), we 

first proof the following Lemma. 

Lemma 3.1. Let model (1) satisfies Asumption 1.1 to Asumption 1.4.  
Any i E∈ , if   
                 ( )1 1( ) oE Y E X X i< =  and  ( )1 1( ) 0 0oP Y X X i− > = >                    (11) 

Then, there exists a unique positive constant iR satisfying: 

                 ( )1 1( ) 1iR Y X
oE e X i− = =                      (12) 
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From (13), (14) and (15) suy ra there exists a unique positive constant iR   
satisfying (12). 
This completes the proof.                                                                                      □ 

Let: ( ){ }1 1( )min 0 : 1, ( )iR Y X
o i oR R E e X i i E−= > = = ∈  

Use Lemma 3.1 and Theorem 2.1, we now obtain a probability inequality for 
( , )u iψ by an inductive approach. 

 

 



148                                          Ruin Probability with homogenous Markov chain premiums                                                                                                  

Theorem 3.1. Let model (1) satisfies Asumption 1.1 to Asumption 1.4 and (11). 
For any 0u > and i E∈ , we have 
 1( , ) . oR uu i eψ β −≤                      (16) 
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Under an inductive hypothesis, we assume for any 0u > and i E∈ , 
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1( , ) . oR u
n u i eψ β −≤                      (22) 

From (21) implies (22) holds with n = 1.  
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Therefore, by (4),  Lemma 3.1, (18) and (23), we get 
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Hence, for any 1,2,...n =  (22) holds. Therefore, (16) follows by letting n →∞  in 
(22).                                                                                                                       □ 
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4  Concluding 
Our main results in this paper, Theorem 2.1 give recursive equations for 

( , )n u iψ  and an integral equation for ( , )u iψ , Theorem 3.1 give probability 
inequalities for ( , )n u iψ and ( , )u iψ  by an inductive approach. 
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