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Abstract 
Skewness and kurtosis are adopted by many statisticians as the contraventions of 
parametric statistics. Therefore, using nonparametric tests would give more proper 
results for skewed and kurtic series. Many observations also suggest that skewness 
provokes the loss of power for statistical tests. This paper aims to investigate the 
impact of skewness on statistical power. For this purpose, the paper takes hold of 
nine different distributions on Fleishman’s power function when skewness 
measures are 1,75, 1,50, 1,25, 1,00, 0,75, 0,50, 0,25, 0,00, -0,25 and kurtosis 
measure is 3,75, simultaneously. The investigation concentrates on 
Kolmogorov-Smirnov two-sample test and considers the significance level (α) as 
0,05. This paper runs totally 32 representative sample size simulation alternatives, 
involving four small and equal; twelve small and different; four large and equal; 
and twelve large and different sample sizes. The Monte Carlo simulation study 
takes standard deviation ratios as 2, 3 and 4 under the precondition of 
heterogeneity. According to the results of equal sample sizes, no significant 
change are observed on the possibility of Type I error for Kolmogorov-Smirnov 
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tests, when the skewness measures decrease from 1,75 to -0,25. For both small 
and large small sizes, the power of the corresponding test decreases when the 
coefficient of skewness decreases.     
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1  Introduction  
Parametric tests have pre-conditions of normal distribution and homogeneity 

of variance. Normal distribution is a kind of symmetric distributions being 
optimized mathematically and it offers a fine mathematical curve of frequency 
distributions for behavioral sciences [1]. Homogeneity variance is an assumption 
that populations from which samples have been drawn have equal or similar 
variances [2]. Skewness is one of the two occasions that any sample distribution 
principally diverges from normality and for many researchers it causes the loss of 
statistical power [3]. Nonparametric tests are very often more advantageous than 
parametric tests when one or both of these pre-conditions are not satisfied. 

Skewed and kurtic data sets are practically experienced more than normal 
distributed data. Surely, researchers seek to know whether statistical tests being 
used have sufficient power. Statistical power of a test varies depending on sample 
size, skewness, kurtosis, standard deviation and mean ratios. Thereof, researchers 
are expected to make decisions on which parametric and nonparametric tests they 
will use with respect to these concerning indicators.   

This paper investigates how skewness effects statistical power of 
nonparametric tests and handles Kolmogorov-Smirnov two-sample test (KS-2). 
This paper concentrates on heterogeneity of variance pre-condition and utilizes 
from skewed and kurtic data simultaneously, hence it may differ from recent 
studies that evaluate the statistical power of nonparamatric tests.  

 
  

2  Kolmogorov-Smirnov Two-Sample Test 
There are several tests available to determine if a sample comes from a 

normally distributed populations, that include the Kolmogorov-Smirnov test, 
Anderson-Darling test, Cramer-von Mises Test, Shapiro-Wilk test and 
Shapiro-Francia test [4]. The Kolmogorov-Smirnov test is a method for comparing 
the distributions of two independent groups that has virtually disappeared from 
applied research and introductory statistics books for the social sciences [5]. The 
Kolmogorov-Smirnov test is important in nonparametric stastistical inference, 
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while the limiting distribution of the Kolmogorov-Smirnov statistic under the null 
hypothesis is well known and has been derived by several different methods. The 
limiting distribution of this statistic under the alternative hypothesis is unknown so 
that it is not possible, in general, to compute the power of the Kolmogoro-Smirnov 
test [6].  

The classical one-dimensional Kolmogorov-Smirnov test is a 
non-parametric statistic for comparing two empirical distributions which defines 
the largest absolute difference between the two cumulative distribution functions 
as a measure of disagreement and is used to test the null hypothesis F = G against 
the alternative F > G where F and G are distribution functions. If the random 
variables X and Y correspond to F and G, respectively, then the one-sided 
alternative is that Y is stochastically greater than X [7]; [8]; [9]. The 
Kolmogorov-Smirnov test is distribution free in the sense that if 0H  is true, the 
significance level does not depend on F and G [5].  

The generalization of the classical Kolmogorov-Smirnov test is appropriate 
to analyse random samples defined in two or three dimensions [10]. The 
Kolmogorov-Smirnov test for two independent samples was developed by 
Smirnov (1939). When a non-directional and two tailed alternative hypothesis is 
evaluated, Kolmogorov-Smirnov test for two independent samples is sensitive to 
any kind of distributional difference (i.e., a difference with respect to 
location/central tendency, dispersion/variability, skewness, and kurtosis). When a 
directional and one-tailed alternative hypothesis is evaluated, the test evaluates the 
relative magnitude of the scores in the two distributions [11]; [12]; [13]; [14]. The 
Kolmogorov-Smirnov test has at least two major advantages over the chi- square 
test: 

• It can be used with small sample sizes, where the validity of the chi- square 
test would be questionable.  

• Often it appears to be a more powerful test than the chi-square test for any 
sample size [15]; [16]; [17]. 

The Kolmogorov-Smirnov test statistic nD , is defined by 
sup ( ) ( )n nD F x F x= − , where n is the sample size, ( )F x  is a hypothesized 

cumulative distribution function with fixed parameters, and ( )nF x  is a 
step-function that increases by 1/n at each data value [18]. By the 
Glivenko-Cantelli Theorem, nD  converges to 0 almost surely under 0H  [19]. 
Computations of the test statistics for the Kolmogorov-Smirnov test for two 
independent samples involve the comparison of two cumulative frequency 
distributions. Whereas the Kolmogorov-Smirnov goodness-of-fit test for a single 
sample compares the cumulative frequency distribution of a single sample with a 
hypothesized theoretical or empirical cumulative frequency distribution, the 
Kolmogorov-Smirnov test for two independent samples compares the cumulative 
frequency distributions of two independent samples. If, in fact, the two samples 
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are derived from the same population, the two cumulative frequency distributions 
would be expected to be identical or reasonably similar to one another [14]. The 
order statistics corresponding to two random samples of size m and n from 
continuous populations XF  and YF , are    

(1) (2) ( ), , , mX X X  and (1) (2) ( ), , , nY Y Y  

Their respective empirical distribution functions, denoted by ( )mS x  and ( )nS x , 
are defined as:  

         0      if  x <   

 =    k/m   if  

       1       if  x ≥  

          0      if  x <   

 =    k/n    if  

       1       if  x ≥   

   In a combined ordered arrangement of the m+n sample observations,  
( )mS x  and ( )nS x  are the respective proportions of X and Y observations which 

do not exceed the specific value of x. If the null hypothesis 0 : ( ) ( )Y XH F x F x=  
for all x is true, the population distributions are identical and we have two samples 
from the sample populations. The empirical distribution functions for the X and Y 
samples are reasonable estimates their respective population cumulative 
distribution function.  Therefore, allowing for sampling variation, there should be 
reasonable agreement between the two empirical distributions if needed 0H  is 
true; otherwise the data suggest that 0H  is not true and therefore should be 
rejected [20].  

 
 

3  Some Preliminaries 
The power of a statistical test is the probability of rejecting the null 

hypothesis when it is false and it depends on three factors such as the α level of 
the experimenter, sample size and the effect size [21]. The significance criterion 
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represents the standard of proof that the phenomenon exists, or the risk of 
mistakenly reject the null hypothesis. A critical effect size is briefly is a measure 
of how strong the theory is minimally important for the society and it is 
population-specific as well as measurement-specific [22]. The relationship 
between the effect size and power of a statistical test can be explained as follows. 
The larger the effect size, when other factors are equal, the greater the power of a 
test [23]. Moreover, because the sensible estimation of population parameters 
increases with sample size, this greater sensibility will be reflected in greater 
statistical power to detect effects, where association is non-linear and a law of 
diminishing returns revisits [24].  

A number of algorithms are developed for calculating the exact powers and 
level of significance of statistical tests when the true cumulative distribution 
function F(x) is continuous [25]. In a priori power analysis, sample size N is 
computed as a function of the required power level (1-β), so the significance level 
and the population effect size to be detected with this power level. In contrast, post 
hoc power analyses compute (1-β) as a function of significance level, the 
population effect size parameter, and sample size(s) of the study. Compromise 
power analyses, compute both significance and the power level as functions of the 
effect size, and the error probability ratio, q = β / α; while sensitivity analyses 
compute critical population effect size as a function of α, β and sample size. 
Finally criterion analyses compute α, as a function of 1-β, the effect size and the 
given sample size [26].   

Type I error is frequently assigned by many researchers as the fourth factor 
effecting statistical power of a test. A Type I error occurs when a true null 
hypothesis is rejected and the likelihood of committing a Type I error is specified 
by alpha level being employed in evaluation process. The researcher should 
employ the lower values of alpha level to eliminate this error [14]. Meanly, Type I 
error refers to the probability of rejecting the null hypothesis when it is true [21]. 
The choice of a particular risk level for making a Type I error is dependent on the 
cost of making a Type I error [27].  Monte Carlo procedures enable to estimate 
the Type I comparisonwise and experimentwise error rates for multiple 
comparison procedures used for pairwise comparisons between means [28]. 

Measures of skewness and kurtosis are often used to describe shape 
characteristic of a distribution, in tests of normality and in studies of robustness to 
normal theory [29]. A skewed distribution is neither symmetric nor normal 
because the data values trail off more sharply on one side than on the other. One 
of the fundamental problems with skewness in data is many of the most common 
statistical methods require at least an approximately normal distribution and when 
these methods are employed on skewed data, the outcomes may well be 
misleading or just plain wrong. Even when the answers are basically correct, there 
is often some efficiency lost and the analysis has not made the best use of all of 
the information in the data set. One solution to this problem is to use 
transformation to make a skewed distribution more symmetric [30]. 

The skewness of a random variable X is often measured by third central 
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moment ( 1γ ) or 1β  as the formulas below, 

3
1

3

µγ
σ

=    or 3
1 3/2

2

µβ
µ

=  

where µ  and σ  are the mean and standard deviation respectively. For the 
Pareto distribution with density 1( ) /f x xθθ += , for 1x ≥  and 0θ > , the 
non-central moments are found to be / ( )k kµ θ θ′ = −  ; therefore, this skewness 
coefficients becomes arbitrarily large as 0ε +→  for 3θ ε= +  [31]; [32]. 

Darlington (1970) [33] argued that kurtosis is best described as a measure 
of unimodality versus bimodality rather than as a measure of peakedness versus 
flatness, where the lower kurtosis means the greater bimodality. The fourth 
standardized moment of a normal distributed population, or its random variable X, 
is given by; 

4 4

2 2 42

( ) ( )

( )

E X E X

E X

µ µβ
σµ

− −
= =
 − 

 

where E is denoted by the expected value operator. This fourth moment 2( )β   
traditionally measures kurtosis and equals to 3 for the normal distribution. 
Unimodal distributions which have higher peaks in the center of the distribution 

2( 3)β >  and are often described as leptokurtic [34]. Conventional but 
conservative alpha levels are used to evaluate significance of skewness with small 
to moderate samples, while for large samples, the shape of the distribution gives 
the researcher an opinion on skewness and kurtosis [35]. 

 
 
4  Monte Carlo Simulation Study 

Monte Carlo simulation establishes to make empirical assessment of a 
statistic in random samples being obtained from a pseudo-population that consists 
of resemble samples [36]. At this point, the Monte Carlo principle may be 
introduced as a pioonering technique in terms of finding approximate solutions to 
mathematical or physical problems and by using computer-based simulation 
programs and random sample procedures. The idea behind the Monte Carlo 
methodology is the law of large numbers and the initial Monte Carlo principle 
performs, 

• to make statistical estimation based on weak mathematical theory, 
• to test the null hypothesis when a wide variety of possible cases are  
    available, 
• to evaluate the robustness of parametric outcomes when contradictory  
     assumptions are available, 
• to appreciate the quality of estimation methods 
• to compare the characteristics of two or more estimators [36]; [37].    



Ötüken Senger and Ali Kemal Çelik 7  

Additionally, Monte Carlo simulation is also employed in such circumstances that 
the concerning assumptions are violated or theoretical sample distributions are not 
presented [38].  

This paper utilizes from Monte Carlo simulation and for this purpose runs 
SAS 9.00 computer package program. RANNOR procedure in SAS, generates 
random numbers from a standard normal distribution involved in Fleishman’s 
power function with a population mean of zero, and a standard deviation of one. 
Fleishman’s power function uses the following formula,  

 
where, X denotes a random variable with a mean of zero and a standard deviation 
of one, and it is generated by RANNOR, as mentioned above. Besides, Y denotes 
a distribution depending on constant terms; a, b, c, and d are coefficients identified 
with respect to different values of standard deviation, skewness and kurtosis, 
where coefficient a is constant. Coefficients b, c and d are introduced by 
Fleishman, while coefficient a and c are always opposite signed.  

This paper concentrates on the distributions with highest coefficient of 
kurtosis (that is 3,75) in Fleishman’s power function to interpret the effect of 
skewness on statistical power of Kolmogorov-Smirnov two-sample test when the 
kurtosis value is ‘constant’. Fleishman’s power function comprises 9 distributions 
with constant kurtosis value of 3,75, but different skewness values of 1,75, 1,50, 
1,25, 1,00, 0,75, 0,50, 0,25, 0,00 and -0,25. The paper deals with totally 32 
representative sample size simulation combinations, involving four small and 
equal; twelve small and different; four large and equal; and twelve large and 
different sample sizes. Table 1 summarizes these combinations. The paper regards 
the standard deviation ratios as ,  and  in α = 0,05 
significance level, in this way 1152 (9x32x4) syntaxes are written and 30.000 
repetitions are performed for every syntaxes.     

 
 

5  Simulation Results 
The simulation results show similarities among 9 distributions of the study, 

such that in all distributions and combinations, when kurtosis value is constant, 
decreasing the coefficients of skewness does not affect the probability of Type I 
error rates for KS-2 test, where all these rates are less than α = 0,05 significance 
level. Again, for all distributions, the results indicate that statistical power of KS-2 
test increases, when sample sizes increase; therefore standard deviation ratios have 
favorably effects as well. The most remarkable outcome of the simulation study is 
the decrease of the statistical power for KS-2 test, with respect to a decrease on the 
coefficient of skewness ( 1γ ). In that case, for all sample sizes and standard 
deviation ratios, the most significant loss of power is recognized when the 
coefficient of skewness is decreased from 1γ = 1,75 to 1γ =1,50. In addition, 
statistical power of KS-2 test increases when both the coefficient of skewness and 
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standard deviation ratios increase. The most significant increase on statistical 
power of KS-2 test is recognized when standard deviation ratio increases from 2 to 
3. For both large and small sample sizes; Table 3, Table 4, Table 5 and Table 6 
represent the observed values of statistical power of KS-2 test with respect to a 
decrease on the coefficient of skewness.  

 
 
Table 1: Sample Size Combinations Being Used in Monte Carlo Simulation 

Sample Size Sample Size Combinations 
Small and Equal (5, 5), (10, 10), (15, 15), (20, 20) 
Small and Different (5, 10), (5, 15), (5, 20), (10, 5), (10, 15), (10, 20), 

(15, 5), (15, 10), (15, 20), (20, 5), (20, 10), (20, 15) 
Large and Equal (25, 25), (50, 50), (75, 75), (100, 100) 
Large and Different (100, 25), (100, 50), (100, 75) 

 
 

 
Table 2: Fleishman’s Power Function 

Skewness 
   ( 1γ )             

Kurtosis 
   ( 2γ ) 

    a       b      c       d 

1.75 3.75 -0.3994966745            0.9296605248         0.3994966745    -0.0364669928 

1.50 3.75         -0.2210276210 0.8658862035 0.2210276210 0.0272206992 

1.25 3.75 -0,1606425556     0,8188815613     0,1606425556    0,0491651717 

1.00 3.75 -0,1194238366     0,7894207442     0,1194238366       0,0615396192 

0.75 3.75 -0,0856305956     0,7699520206     0,0856305956     0,0693485545 

0.50 3.75 -0,0555244412     0,7573998478     0,0555244412     0,0742591514 

0.25 3.75 -0,0273411959     0,7503153411     0,0273411959     0,0769928241 

0.00 3.75  0.00 0,7480208079     0.00 0,0778727161 

-0.25 3.75  0,0273411959      0,7503153411     -0,0273411959    0,0769928241 

Source: C.H. Lee; A Monte Carlo Study of Two Nonparametric Statistics With Comparisons  
of Type I Error Rates and Power, Unpublished PhD. Dissertation, Oklahoma State University,  
2007, p.173-174. [39] 
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Table 3: The Probabilities of Type I Error Rates of KS-2 Test for Small and Large 
Sample Sizes 
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Table 4: The Statistial Power of KS-2 Test for Small and Large Sample Sizes 
when 1 2: 2σ σ =    
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Table 5: The Statistial Power of KS-2 Test for Small and Large Sample Sizes 
When 1 2: 3σ σ =  
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Table 6: The Statistial Power of KS-2 Test for Small and Large Sample Sizes 
When 1 2: 4σ σ =  

 
 

 
6  Conclusion and Discussion 

As the Monte Carlo simulation study results suggest in this paper, when the 
kurtosis value is constant with its highest value of 3,75, the statistical power of 
KS-2 test is not significantly effected by a decrease of the coefficient of skewness. 
For small sample sizes, the probabilities of Type I error for KS-2 test vary 
between the values of (0,007) and (0,038). The study observes the smallest value 
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of this probability when the coefficient of skewness decreases from 75,11 =γ  to 
50,11 =γ  for (5, 5) sample size, while it obtains the highest value of Type I 

probability when the coefficient of skewness decreases from 75,32 =γ  
to 75,01 =γ  for (20, 15) sample size. Similarly, for large sample sizes, the 
probabilities of Type I error for KS-2 test vary between the values of (0,033) and 
(0,044). The smallest Type I error probability is observed when the coefficient of 
skewness is 75,11 =γ  for (25, 25) sample size, meanwhile the highest value of 
the probability is recognized when the coefficients of skewness are 75,11 =γ , 

25,11 =γ and 00,11 =γ  for (75, 75) sample size. The probabilities of Type I error 
for KS-2 test are found less than α = 0,05 significance level for both small and 
large sample sizes.   

The results of the simulation study in all distributions state that when the 
sample size increases, the statistical power of KS-2 test also increases. For small 
sample pairs, when the first sample size is smaller than the second sample size, the 
observed statistical power of KS-2 test is more than the corresponding power 
when the second sample size is smaller than the first one.   For instance, the 
observed statistical power of KS-2 test for the sample size of (5, 10) is more than 
(10, 5) sample size in all distributions and standard deviations. For large sample 
pairs, just the opposite circumstance is observed, i.e. the observed statistical power 
for (50, 25) sample size is more than (25, 50) sample size. Moreover, in all 
distributions and sample sizes, the standard deviation has favorable effect on the 
statistical power and the most significant statistical power increase is observed 
when the standard deviation ratio increases from 1 2: 2σ σ =  to 1 2: 3σ σ = . The 
results also demonstrate that when the coefficient of skewness decreases, the 
statistical power of KS-2 test also decreases, except for one observation. The 
statistical power increases when the coefficient of skewness decreases from 

00,01 =γ  to 25,01 −=γ . 
In the light of all these simulation results, one may suggest that the 

researchers concentrating on a non-parametric two-sample test, may observe 
higher statistical power if they choose their samples from the distribution with the 
coefficient of skewness, 75,11 =γ , and when the coefficient of kurtosis is 
constant ( 75,32 =γ ) simultaneously. Additionally, the researchers may also 
observe higher values of statistical power, when 1 2:σ σ  ratio increases. For small 
sample sizes, the researchers may prefer the larger values of the first sample size 
and for large sample sizes; they may prefer the smaller values of the first sample 
size in order to observe higher statistical power values, numerically.  
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