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Abstract

This paper proposes a mixed fractional Brownian motion version of

a well-known credit risk pricing structural model: the Merton model.

Assume that the value of the firm obeys to a geometric mixed fractional

Brownian motion, default probability, pricing of bonds, values of stocks

and credit spreads are derived. Figures are given to illustrate the ef-

fectiveness of the result and show that the mixed-fractional models to

credit risk pricing is a reasonable one.
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1 Introduction

Briefly speaking, credit risk is an investor’s risk of loss arising from a bor-

rower who does not make payments as promised. For modeling credit risk,

there are two main approaches: structural models and the reduced form mod-

els. Structural models, pioneered by Merton [19], assume that the default
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time-point is typically specified as the first moment at which the firm’s asset

value reaches a specific threshold boundary. The major investigation within

these firm value models is to characterize the evolution of the firm’s value, as

well as the firm’s capital structure, see related papers Black-Cox [4], Geske [10]

and Leland [15]. More realistic assumptions are allowed in Shimko et al. [23],

such as the possibility of default before maturity, coupon payments, stochastic

interest rates. Another alternative to structural models is the reduced form

approach originated with Jarrow and Turnbull [12], which directly models the

default process of risky debt. In combination with the assumptions on the evo-

lution of the risk-free rate and the recovery rate in the event of default, this

is used to value risky debt. For the literature on the reduced form models, we

refer to Duffie-Singleton [9], Madan-Unal [16], Su and Wang[24] and references

therein.

Though Merton model [19] has become the most popular method for credit

risk and its generalized version has provided mathematically beautiful and

powerful results on credit risk, they are still theoretical adoptions and not

necessarily consistent with empirical features of financial return series, such as

nonlinearity, long-range dependence, etc, which contradict to the traditional

Merton assumption. For example Hsieth[11], Mariani et al.[18], Ramirez et

al.[22] and Willinger et al.[27] showed that returns are of long-range (or short-

range) dependence, which suggests strong time-correlations between different

events at different time scales (e.g., see Mandelbrot [17], and Cajueiro and

Tabak [5, 25]). In the search for better credit risk models for describing long-

range dependence in financial return series, a fractional Brownian (fBm) model

has been proposed as an improvement of the classical Merton model, see Bi-

agini et al.[2], Leccadito and Urga [14] and references therein.

In this paper, we propose the mixed fractional Brownian motion version of

a Merton credit risk model. The presence of long memory in credit spreads

time series would provide a justification for the theoretical models proposed,

that, in turn, would be able to explain realized credit spreads better than

traditional credit risk structural models.

The remainder of this paper is organized as follows. Section 2 presents the

mixed fractional Brownian motion version of the Merton models. The default

probability is discussed in Section 3. In Section 4, we investigate the values of

stocks and bonds. Section 5 describes the credit spreads.
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2 Merton mixed-fractional model

In the structural approach to credit risk the firm liabilities (equity and

bonds et al.) are viewed as derivative contracts on the market value of a

firms assets. A stochastic process for the evolution of the firm underlying

assets V and the conditions under which a default is triggered as well as the

payoff of the risky debt in the event of default are specified. Merton [19]

assumes that the firm has only issued zero coupon bonds with maturity T

and total face value L, that default may happen only at maturity. Denote by

M(VT ) and N(VT ) the prices in T of a defaultable zero coupon bond and the

equity respectively. Both M and N are functions of V and more generally

all claims on the firm’s value are evaluated as derivative securities with the

firm’s value as underlying. The term structure of interest rate is assumed to

be deterministic and the firm pays no dividend over the life of the debt. In

case of default bondholders are assumed to have absolute priority, i.e. bond

value at time T is M(VT ) = min(L, VT ) and the equity is simply a call option,

N(VT ) = max(VT − L, 0).

Whereas the original model assumes a Geometric Brownian motion for the

firm value, in this paper we consider the following dynamics for V :

dVt = µVtdt+ dXt, (1)

whereXt denotes a mixed fractional Brownian motion (mfBm) and the stochas-

tic integration is divergence-type. The so called mfBm Xt defined by Cheridito

[8] is linear combination of a Brownian motion Wt and an independent frac-

tional Brownian motion BH
t with Hurst parameter 0 < H < 1 defined on the

same probability space (Ω, F, P ), i.e.,

Xt = σBH
t + εWt,

where σ and ε are two real constants such that (σ, ε) 6= (0, 0). Mixed fractional

Brownian motions form a special class of long memory processes when Hurst

parameter H > 1

2
. Cheridito [8] has proved that, the mixed fractional Brown-

ian motion is equivalent to a multiple of Brownian motion if H = 1

2
and equiv-

alent to Brownian motion if H ∈ (3
4
, 1), and hence it is arbitrage-free. More

works for mixed fractional Brownian motions and their applications in finance

can be found in Charles [6], Cheridito[7], Kuznetsov[13], Mishura [20, 21], Su
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and Wang [24], Wang et al. [26], Yu and Yan [28], Zahle [29] and references

therein.

In what follows we denote by Φ(·) the cumulative probability distribution

function of a standard normal random variable:

Φ(x) =
1√
2π

∫ x

−∞

exp

(

−1

2
u2

)

du

and by ϕ(·) = Φ′(·) the density function.

3 Default probability of the Firm

The value of the put option reflects the risk of default. The higher the

default risk, the higher is the value of the option, i.e. the more the firm holder

has to pay to the lender to ‘convince’ him. An important credit risk measure is

the probability that a default will occur given the information at time t under

the real-world measure P .

According to Alós et al [1] (see also Yu and Yan [28]), we have the following:

Lemma 3.1. The solution to Equation (1) is given by

Vt = V0 exp

(

µt+ σBH
t + εWt −

1

2
σ2t2H − 1

2
ε2t

)

. (2)

Remark 1. The log-returns Rt,t+s = log Vt+s

Vt
of mixed fractional Blacks-

Scholes is given by

Rt,t+s = µs+ σ(BH
t+s −BH

t ) + ε(Wt+s −Ws)−
1

2
σ2[(t+ s)2H − t2H ]− 1

2
ε2s.

Obviously, it is non stationary. However, we know the standard Black-Scholes

model is Markovian and the log-returns are stationary independent Gaussian

random variables.

Denote by M(t, Vt, T ) and N(t, Vt, T ) the values in t of a defaultable zero

coupon bond and the equity respectively.
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Theorem 3.1. The default probability of the firm is

p = P (VT < L) = Φ

(

ln L
V0

− µT + 1

2
σ2T 2H + 1

2
ε2T

√
σ2T 2H + ε2T

)

,

where l0 =
L
V0

is the firm leverage.

Clearly for σ = 0 we get default probability of the classical Merton model

p = Φ

(

ln L
V0

− µT + 1

2
ε2T

ε
√
T

)

.

Proof of Theorem 3.1. Because the mixed fractional Brownian motion Xt is a

centered Gaussian process, according to Lemma 3.1, we obtain

p = P (VT < L) = P

(

V0 exp

(

µT + σBH
t + εWt −

1

2
σ2t2H − 1

2
ε2t < L

))

= P

(

σBH
t + εWt < ln

L

V0

− µT +
1

2
σ2t2H +

1

2
ε2t

)

Since
σBH

t
+εWt√

σ2t2H+ε2t
is a standard normal random variable, it follows

p = Φ

(

ln L
V0

− µT + 1

2
σ2T 2H + 1

2
ε2T

√
σ2T 2H + ε2T

)

The proof is completed.

In Figure 1, 2, for T ∈ [0, 50], we plot the values of default probability as

a function of time to maturity T for three different values of the parameters

(σ, ε) ∈ {(0.15, 0.15), (0.15, 0.35), (0.25, 0.35)}

and three values of the parameter H ∈ {0.55, 0.70, 0.90}.
It’s clear that the default probability is an increasing function of the ma-

turity time T . For values of the memory parameter H bigger than 1

2
, default

probability is increasing.

To better understand the preference of our model, we compute the default

probability using our model and make comparisons with the results of the
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Figure 1: Default probability resulting in the mixed-fractional Merton model

against maturity time T when l0 = 0.6, µ = 0.06, H = 0.70, and 0 < T < 50
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Figure 2: Default probability resulting in the mixed-fractional Merton model

against maturity time T when l0 = 0.6, µ = 0.06, σ = 0.15; ε = 0.15 and

0 < T < 50.
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Figure 3: Relative difference of the default probability among the Bm model,

pure fBm model and mfBm model

pure fractional Brownian motion model (as shown in the Appendix) based on

Leccadito and Urga [14].

Now, we compare the three default probabilities: the theoretical prices

derived from the Brownian motion(Bm), pure fractional Brownian motion

and mfBm models. We choose these valuation of the parameters: V0 = 100,

µ = 0.06, σ = 0.15, ε = 0.35, H = 0.55, maturity T ∈ [0, 50] and total face

value L ∈ [50, 80]. The figure 3 shows the theoretical default probability dif-

ferences by the Bm model and the pure fractional Brownian motion model and

our mfBm, respectively. In the figure, the vertical axis denotes the differences

between the default probability, and the horizontal axis denotes time to ma-

turity and the total face value. The figure shows that the default probability

by our mixed model is better fitted to the Bm default probability than that

by the pure fractional Brownian motion model. Hence, when compared to the

figure, our mfBm model seems reasonable.

4 Bond Pricing and Valuation of Equity

In case of default bondholders are assumed to have absolute priority, the
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values of the zero coupon bond and equity at maturity T are given as follows:

From the Table 1, we see that the value of the zero coupon bond at maturity

Table 1:

VT M(VT ) N(VT )

.non-default VT ≥ L. L. VT − L.

.default VT < L. VT . 0.

time T is given by

M(VT ) = min{VT , L} = L−max((L− VT ), 0).

and the value of the equity at maturity time T is given by

N(VT ) = max{(VT − L), 0}.

Obviously, N(VT ) is just like the price of a European call option with strike

price L and maturity time T .

Theorem 4.1. Assuming absolute priority for the bondholders, a geometric

mixed-fractional Brownian motion (2) with H ∈ [1
2
, 1) for the firm asset, and

that the firm has only issued zero coupon bonds with maturity T and total face

value L, when the risk-free rate is equal to rs, s ∈ [0, T ], the value of the equity

at time t is

N(t, Vt, T ) = VtΦ(d1)− Le−
∫
T

t
rsdsΦ(d2), (3)

where

d1 =
ln Vt

L
+
∫ T

t
rsds+

σ2

2
(T 2H − t2H) + ε2

2
(T − t)

√

σ2(T 2H − t2H) + ε2(T − t)
, (4)

and

d2 =
ln Vt

L
+
∫ T

t
rsds− σ2

2
(T 2H − t2H)− ε2

2
(T − t)

√

σ2(T 2H − t2H) + ε2(T − t)
. (5)

Proof. Elementary calculations yield

N(t, Vt, T ) = e−
∫
T

t
rsdsE[N(VT )] = VtΦ(d1)− Le−

∫
T

t
rsdsΦ(d2)

where d1 and d2 is given by (4) and (5).
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The value of the zero coupon bonds at maturity time T is a portfolio:

buy a risk-less bond with value L and maturity time T and sell a European

put option with with strike price L and maturity time T . Then we have the

following:

Theorem 4.2. Under the assumptions of Theorem 4.1, the price of the bond

at time t is given by

M(t, Vt, T ) = Le−
∫
T

t
rsdsΦ(d2) + VtΦ(−d1). (6)

where d1 and d2 is given by (4), (5).

Proof. Simple calculations show

M(t, Vt, T ) = e−
∫
T

t
rsdsE[M(VT )] = e−

∫
T

t
rsdsE [L−max{(L− VT ), 0}]

= e−
∫
T

t
rsdsL− P (t, VT , L, σ, r, T ),

where

P (t, VT , L, σ, r, T ) = Le−
∫
T

t
rsdsΦ(−d2)− VtΦ(−d1).

The proof is completed.

Remark 2. (1)Clearly for σ = 0, we get the classical Merton model and (3)

reduces to the Black-Scholes formula for a call option.

(2) The relationship between the price of the bond and the value of the

equity at time t is given by

M(t, Vt, T ) +N(t, Vt, T ) = Vt.

In Figure 4, 5, 6, 7, we plot the values of stocks and bonds as a function of

time to maturity T for three different values of the parameters

(σ, ε) ∈ {(0.15, 0.15), (0.15, 0.35), (0.25, 0.35)}

and three values of the parameter H ∈ {0.55, 0.70, 0.90}.
It is clear that the value of a stock is an increasing function of the maturity

time T and the value of a bond is decreasing with respect to T . The value of
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Figure 4: Values of stocks at time zero resulting in the mixed-fractional Merton

model against maturity time T when l0 = 0.6, r = 0.06, H = 0.70, and

0 < T < 50
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Figure 5: Values of stocks at time zero resulting in the mixed-fractional Merton

model against maturity time T when l0 = 0.6, r = 0.06, σ = 0.15; ε = 0.15

and 0 < T < 50.
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Figure 6: Values of bonds at time zero resulting in the mixed-fractional Merton

model against maturity time T when l0 = 0.6, r = 0.06, H = 0.70, and

0 < T < 50
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Figure 7: Values of bonds at time zero resulting in the mixed-fractional Merton

model against maturity time T when l0 = 0.6, r = 0.06, σ = 0.15; ε = 0.15

and 0 < T < 50.
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Figure 8: Relative difference of the values of stocks among the Bm model, pure

fBm model and mfBm model
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Figure 9: Relative difference of the values of bonds among the Bm model, pure

fBm model and mfBm model
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a stock is increasing with respect to H and the value of a bond is decreasing

with respect to H.

To better understand the preference of our model, we compute the the

values of stocks and bonds using our model and make comparisons with the

results of the pure fractional Brownian motion model (as shown in the Ap-

pendix) based on Leccadito and Urga [14].

Now, we compare three values of stocks and bonds: the theoretical prices

derived from the Bm, pure fractional Brownian motion and mfBm models.

We choose parameters: V0 = 100, r = 0.06, σ = 0.15, ε = 0.35, H = 0.55,

t=0.5, maturity T ∈ [0.5, 50] and total face value L ∈ [50, 80]. The figures 8,9

show the theoretical stocks or bonds differences by the Bm model and the pure

fractional Brownian motion model and our mfBm, respectively. In the figures

8 and 9, the vertical axis denotes the differences between the prices of stocks

and bonds respectively, and the horizontal axis denotes time to maturity and

the total face value. The figures show that the prices by our mixed model

is better fitted to the Bm model than that by the pure fractional Brownian

motion model. Hence, when compared to the figures 8 and 9, our mfBm model

seems reasonable.

5 Credit Spread

A credit spread, or net credit spread, involves a purchase of one option and

a sale of another option in the same class and expiration but different strike

prices. Investors receive a net credit for entering the position, and want the

spreads to narrow or expire for profit. In contrast, an investor would have to

pay to enter a debit spread. Credit spread are written on the spread between

the rate of return of a zero coupon corporate bond and the risk-free bond.

The spread is the extra return offered by the corporate bond to compensate

for the risk of default or downgrading. The buyer of an option pays a premium

to transfer the risk of a loss in value due to a downgrading of the issuer of a

reference instrument. From the definition of credit spread, we can easily check

the following result.

Theorem 5.1. Under the assumptions of Theorem 4.2, the credit spread of
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the bond at time zero is

s(0, T ) = − 1

T
ln

[

Φ(d2) +
V0

L
e
∫
T

0
rsdsΦ(−d1)

]

,

where

d1 =
ln V0

L
+
∫ T

0
rsds+

σ2

2
T 2H + ε2

2
T

√

σ2

2
T 2H + ε2

2
T

,

and

d2 =
ln V0

L
+
∫ T

0
rsds− σ2

2
T 2H − ε2

2
T

√

σ2

2
T 2H + ε2

2
T

.

In Figure 10, 11, we plot the values of credit spreads as a function of time

to maturity T for three different values of the parameters

(σ, ε) ∈ {(0.15, 0.15), (0.15, 0.35), (0.25, 0.35)}

and three values of the parameter H ∈ {0.55, 0.70, 0.90}.
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Figure 10: Credit spread resulting in the mixed-fractional Merton model

against maturity time T when l0 = 0.6, r = 0.06, H = 0.70, and 0 < T < 50

Clearly the credit spreads are increasing for values of σ and ε. The credit

spreads are also decreasing with respect to H at first and then increasing.
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Figure 11: Credit spread resulting in the mixed-fractional Merton model

against maturity time T when l0 = 0.6, r = 0.06, σ = 0.15; ε = 0.15 and

0 < T < 50.
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Figure 12: Relative difference of the credit spread among the Bm model, pure

fBm model and mfBm model
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To better understand the preference of our model, we compute the the

values of credit spreads using our model and make comparisons with the results

of the pure fractional Brownian motion model (as shown in the Appendix)

based on Leccadito and Urga [14].

Now, we compare three values of credit spreads: the theoretical prices

derived from the Bm, pure fractional Brownian motion and mfBm models.

We choose these valuation of the parameters: V0 = 100, r = 0.06, σ = 0.15,

ε = 0.35, H = 0.55, maturity T ∈ [0, 50] and total face value L ∈ [50, 80]. The

figure 12 shows the theoretical credit spreads differences by the Bm model and

the pure fractional Brownian motion model and our mfBm, respectively. In

the figure, the vertical axis denotes the differences between the credit spreads,

and the horizontal axis denotes time to maturity and the total face value. The

figure shows that the credit spreads by our mixed model is better fitted to the

Bm model than that by the pure fractional Brownian motion model. Hence,

our mfBm model seems reasonable.
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