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Abstract 
 

The main objective of this document is to provide a comprehensive understanding 

in the area of simple regression, especially for undergraduate students majoring in 

economics, finance and statistics. 
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1. Introduction to Econometrics 

From various economics courses, we have learned simply the relationships among 

variables. For instance, in microeconomics we learn the demand and supply models 

in which the quantities demanded and supplied of a good depend on its own price. 

In macroeconomics, we study investment function to explain the amount of 

aggregate investment in the economy as the rate of interest changes and 

consumption function that relates aggregate consumption to the level of aggregate 

disposable income. However, as economist we need to ask questions like if one 

variable changes in a certain magnitude, by how much will another variable change? 

In addition, given the value of one variable; can we forecast or predict the 

corresponding value of another? The purpose of studying the relationships among 

economic variables and attempting to answer such types of questions leads to the 

foundation of econometrics. Thus, if empirical data verify the relationship proposed 

by economic theory, we accept the theory as valid. If the theory is incompatible 

with the observed behavior, we either reject the theory or in the light of the empirical 

evidence of the data, modify the theory. To provide a better understanding of 

economic relationships and a better guidance for economic policymaking we also 

need to know the quantitative relationships between the different economic 

variables. 
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Thus, we need a way to find quantitative answers to quantitative questions using 

econometrics. Therefore, the main objective of econometrics is to identify a causal 

effect of one or more variables (independent) on another variable (dependent). In 

addition, econometrics can test and refine economic theory. For example, economic 

theory may be ambiguous about the impact of a policy change; however, 

econometrics can evaluate the policy program. It is also true that econometric 

analysis is useful to appropriate decision making. 

 

1.1 Definition of Econometrics 

While econometrics may go back as far as the work of Davenant and King in the 17 

century, it did not come into self-consciousness as a separate field until the 

foundation of the Econometric Society in 1933. The society defined econometrics 

as “economic theory in its relation to statistics and mathematics” and its objective 

as the “unification of the theoretical-quantitative and the empirical-quantitative 

approach to economic problems” (cited by Ragnar Frisch, 1933, p. 1).  

Different economist defined econometrics from their point of view, but all of them 

are arriving at the same conclusions and we can boil down the whole definition in 

to the following.  

Econometrics is a social science, which applies economics, mathematics and 

statistical inference to the analysis of economic phenomena i.e., combination of 

statistical methods, mathematics, economics, and data to answer empirical 

questions in economics (Arthur S. Goldberger, 1965). 

Econometrics is the application of statistical and mathematical methods to the 

analysis of economic data with a purpose of giving empirical content to economic 

theories and verifying them or refuting them (Maddala, 1992). 

Econometrics is also defined as statistical methods for estimating economic 

relationships, testing economic theories, and evaluating and implementing 

government and business policy (Wooldridge, 2002). 

Generally, econometrics is the branch of economics that use mathematical methods 

and statistical tools to analyze economic relationship or economic data with a 

purpose of verifying or refuting economic theories through test of economic theories, 

estimate the coefficient of the variables and predict or forecast the future the value. 

 

1.2 Scope of Econometrics 

Why econometrics is a separate discipline? 

Econometrics: is an amalgamation/integration of economic theory, economic 

statistics, mathematical and statistics. 

Thus, in a simple circular flow we can depict the relationship as below: 

• Economic theory it is an observation from the real-world phenomena. 

However, the complexity of the real-world economy makes us impossible to 

understand all interrelationships at once. Thus, why we build our economic 

theory based on ceteris paribus assumptions. Therefore, economic theory simply 

explains economic relationship using ceteris paribus assumptions. 
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Example: consumption depend on current income  (𝑌𝑡)  and previous income 

(𝑌𝑡−1) of an individual other thing being equal. This theory does not give any 

insight how current income and previous income will affect consumption by giving 

numerical values. 

• Economic statistics is concerned with descriptive statistics (is mainly 

concerned with collecting, processing, and presenting economic data in the form 

of charts and tables). It attempts to describe the pattern in their development 

over time and perhaps detect some relationship between various economic 

magnitudes. It does not provide explanations of the development of the various 

variables and it does not provide measurements the coefficients of economic 

relationships. 

Example: it describe economic relationship using numerical data like mean, 

median, standard division etc., but it does not make reliable the relationship between 

variables. 

• Mathematical economics is to express economic theory in 

equation/mathematical form without empirical verification of the theory. Hence, 

mathematical economics states economic theory in terms of mathematical 

symbols, i.e., there is no essential difference between mathematical economics 

and economic theory since both states the same relationships. However, 

economic theory uses verbal exposition. Both express economic relationships 

in an exact or deterministic form, i.e., neither mathematical economics nor 

economic theory allows for random elements, which might affect the 

relationship and make it stochastic. Furthermore, they do not provide numerical 

values for the coefficients of economic relationships. 

Example: Ct = β0 + β1Yt + β2Yt−1                                         (1.1) 
where 𝐶𝑡; consumption, 𝑌𝑡 current income, 𝑌𝑡−1 previous income 

Thus, mathematical equation explain the relationship between dependent variable 

(𝐶𝑡) and independent variables (𝑌𝑡 & 𝑌𝑡−1) by ignoring other variables that affect 

consumption. 

• Mathematical statistics it deals with statistics from mathematical point of view 

using probability theory. Mathematical (or inferential) statistics deals with the 

method of measurement that is developed based on controlled experiments. But 

statistical methods of measurement are not appropriate for a number of 

economic relationships because for most economic relationships controlled 

(carefully planned) experiments cannot be designed due to the fact that the 

nature of relationships among economic variables are stochastic or random. Yet 

the fundamental ideas of inferential statistics are applicable in econometrics, but 

they must be adapted to the problem of economic life. Econometric methods are 

adjusted so that they may become appropriate for the measurement of economic 

relationships, which are stochastic. The adjustment consists primarily in 

specifying the stochastic (random) elements that are supposed to operate in the 

real world and enter into the determination of the observed data. 

In all of the above methods, they completely ignore the other factors that will affect 
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the economic relationships, but econometrics captures all other factor that affect 

economic relationship through random term given as: 

Ct =
β0 + β1Yt + β2Yt−1⏟            

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
𝜀𝑡⏟

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
                                          (1.2) 

where β0, β1 & β2 are unknown but fixed parameters and are called the regression 

coefficients. The parameter β0 is the intercept coefficient and β1 & β2, are the 

slope coefficient. 𝜀𝑡  is random term which represents all other factor that will 

affect consumption. These factor may be many such as wealth, tradition, invention 

of new product etc. thus, econometrics by considering other factors (denoted by 𝜀𝑡) 
will find numerical value for the coefficients of the variables that will explain the 

relationship to verify economic theories. 

What is a ‘Model’? Difference between Economic and Econometrics model 

Model is a simplified representation of real world process. However, the choice of 

a simple model to explain a complex real-world phenomenon leads to two criticisms: 

such as the model is over simplified and the assumptions are unrealistic (Maddala, 

1992). 

Model is neither a hypothesis nor a theory (Levins R., 1966). Unlike scientific 

hypotheses, a model is not verifiable directly by an experiment. For all models of 

true or false, the validation of a model is not that it is true" but that it generates good 

testable hypotheses relevant to important problems." 

The meaning of a model in Oxford Advanced Learner’s dictionary is a simple 

description of a system, which used for explaining how something works or 

calculating what might happen (Hornby, 2000). 

Economic model Vs. Econometrics 

An economic model is a set of assumptions that approximately describes the 

behavior of an economy (or a sector of an economy). 

Specifically, an economic model focuses on: 

• “how” and “why” 

• Indicates only the relationship between variables 

• The sign or partial derivatives 

Econometrics focuses on: 

• “How much” and “by how much” 

• Specification of the functional form of the relationship  

• The specification of the necessary time lags 

• Specification of the stochastic characteristics of the system (the probability 

distribution of the disturbances 

Therefore, stochastic properties are the basic determinants of behavior of economic 

variables. Since economic variables are not experimental, rather than observational 

(behavioral), they are random or stochastic. If the variables are stochastic, economic 

model cannot handle, rather econometrics model which capture random effect is an 

appropriate model. 
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Thus, the existence of stochastic relationship helps us to: 

• Testing economic theory, estimate the parameters and test hypotheses about 

them  

• Use the relationship for forecasting and policy controls  

These stochastic properties of economic variables are also important for 

construction of econometric models, interpretation of the findings and forecasting. 

Econometricians use the scientific way of thinking to develop a new econometric 

model or a theory to explain the economic system. 

Example: 

Economist: “If the government increases alcohol excise tax, consumers will cut 

down on their alcohol consumption.” 

Econometrician: “If the government increases alcohol excise tax by 20%, 

consumers will reduce their alcohol consumption by 1%. Thus, econometrics is vital 

in applying economic theories in practice. 

Thus, econometrics differs from mathematical economics in that econometrics 

assumes random relationships among economic variables. Econometric methods 

are designed to take into account random disturbances, which relate deviations from 

exact behavioral patterns suggested by economic theory and mathematical 

economics. Furthermore, econometric methods provide numerical values of the 

coefficients of economic relationships. 

Therefore, we can distinguish two types of relationships: 

• Deterministic relationship which is expressed using mathematical model 

• Statistical relationship which does not give unique values for Y for a given 

values of X, but can be described exactly in probabilistic terms. 

 

2. The Goals of Econometrics 

The end goals of econometrics are: 

• Estimating the coefficient of economic relationship (estimation of parameter 

values) 

• Hypothesis testing/Testing of economic theory 

• Forecasting the future values of economic magnitude 

 

2.1 Estimating 

This mean by applying different methods of econometric techniques we can obtain 

individual numerical values for the coefficients of economic relationship. Using 

these numerical values, a decision can be undertaken by different economic agents. 

Econometrics can supply MPC, elasticity’s, MC, MR etc. using these magnitudes 

(numerical values) decision will be undertaken. 

Example: 

𝐷 = 𝛽0 + 𝛽1𝐼 + 𝛽2𝐸𝑥 + 𝛽3𝑃𝐼 + 𝛽4𝑃𝐸𝑥 + 𝜀𝑡                                          (1.3) 

where D= devaluation, I is volume of import, Ex is volume of export, PI is price of 

import, PEx is price of export, then devaluation will depend on all these explanatory 



6                                           Abebe   

variable coefficients. From these coefficient we can have  

𝛽1 denotes marginal propensity to import 

𝛽2= marginal propensity to export 

𝛽3 & 𝛽4 are marginal propensity to price of import and export, respectively 

Then based on these coefficients of numerical values, the government will decide 

whether devaluation will illuminate the countries deficit or not. Generally, it is used 

for evaluating government and business policy. 

 

2.2 Testing of economic theories/analysis 

This concern with testing hypothesis, that is testing the significance of the 

coefficient and verification of economic theories and thereby knows and decides 

how well they explain the observed behavior of the economic units. 

 

2.3 Forecasting 

It means using the numerical values of the coefficients of economic relationships, 

we can judge whether to take any policy measure in order to influence the future 

value of economic variables or not. In other words, it refers to explaining and 

predicting the future changes of economic phenomena based on historical data. 

Assuming that the estimated results from the Ethiopian economy for the year 1985-

1995 

�̂� = −261.09 + 0.2453𝑋𝑖                                                    (1.4) 

where 𝑌 consumption expenditure, 𝑋𝑖 personal disposable income, then on the 

bases of the above results the government can able to know his expenditure in any 

year after 1995 using the above equation. If disposable income Xi  will be one 

million in 1999, then expenditure on imported goods will be Ŷ = −261.09 +
0.2453(1,000,000) = 245038.91 by the year 1999.  

Then since the government knows the future values of expenditure on imported 

goods and services, it can take any measure to increase or cut down imports using 

these numerical values. Forecasting is used for both developed and developing 

countries in different ways, i.e., developed countries used if it for regulation of their 

economies whereas developing countries used it for planning purpose. 

 

2.4 Branch of Econometrics 

Just like any subject econometrics also decomposed in two branches: theoretical 

and applied econometrics. 

Theoretical econometrics: it is the development of appropriate econometric 

methods for measuring economic relationship between variables in theoretical 

econometrics. 

The data used for measurement purpose are observations from the real world, but 

are not derived from control experiment. Moreover, econometric relationships are 

not exact 

The econometric method that will be used in the theoretical econometrics may be 
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classified in to two: 

• Single equation techniques, i.e., one side relationship between variable at a time. 

Example: 

 𝑄𝑑 = 𝛽0 + 𝛽1𝑃𝑖 + 𝜀𝑡                                                      (1.5) 
Means quantity demand depends up on the price of the commodity but not price 

depends up on quantity. Then we have on side causations. Then we can apply 

econometrics technique only for this equation. 

• Simultaneous equation model: when there is two side causation. Example 

equation (1.5)  explains that quantity demand depends on the price of the 

commodity but if the price of the commodity is in turn depends on the quantity 

of commodity supplied then we will have two side equation. 

𝑃𝑖 = 𝛽0 + 𝛽1𝑄𝑠 + 𝜀𝑡                                                          (1.6)  

Econometric techniques will applied for three equations: 

𝑄𝑑 = 𝛼0 + 𝛼1𝑃𝑖 + 𝜀𝑡      𝑑𝑒𝑚𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛                                (1.7) 

𝑄𝑠 = 𝛽0 + 𝛽1𝑃𝑖 + 𝜀𝑡   𝑠𝑢𝑝𝑝𝑙𝑦  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛                                      (1.8)  

𝑄𝑑 = 𝑄𝑠    𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦                                                                            (1.9) 

Then in this case, we applied econometrics techniques simultaneously for all 

equations at a time. 

Applied econometrics: refers to the application of theoretical econometrics method 

to specific branch of economic theory i.e. application of theoretical econometrics 

for verification and forecasting of demand, cost, supply, production, investment, 

consumption and other related field of economic theory. 

 

3. Methodology of Econometrics 

Econometric research is concerned with the measurement of the parameters of 

economic relationships and with the predication of the true values of economic 

variables. Broadly speaking, starting with the postulated theoretical relationships 

among economic variables, econometric research or inquiry generally proceeds 

along the following stages: 

1. Statement of economic theory or hypothesis 

2. Specification of the mathematical model of the theory 

3. Specification of the econometric model 

4. Collecting the data 

5. Estimation of the parameters of the econometric model 

6. Evaluation of estimates (Model diagnostic and Hypotheses testing) 

7. Forecasting or prediction 

8. Evaluation of the forecasting accuracy of the model 

9. Using the model for control or policy purposes 

To illustrate the preceding steps, let us consider the well-known Keynesian theory 

of consumption function. 
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3.1 Statement of theory or hypothesis 

The first step in econometrics methodology is identification of the economic 

relationship, i.e., economic theory tells us about the relationship between two or 

more variables. 

Example 1: Keynes stated consumption increases as income increases, but not as 

much as the increase in income”. It means that “the marginal propensity to consume 

(MPC) for a unit change in income is greater than zero but less than unit”. 

 

3.2 Specification of the mathematical model of the theory 

This refers to the transformation of economic theory into mathematical model that 

explain the relationship between economic variables. Under this stage, we will have 

the following: 

• Selection of variables: it involves determining the dependent (endogenous or 

explained) variable and independent (exogenous or explanatory) variables of the 

theory. In short, it is expected to choose the dependent variable and independent 

variables and how they should be measured. 

Example: consumption of an individual at time t is dependent variable and 

disposable income are independent variables. 

• Determining the theoretical values: refers to a prior expectation of the sign 

and magnitude of the parameters. This needs only a theoretical background to 

determine the relationship between the dependent and independent variables, 

i.e., negative or positive relationship between variables. From our example, we 

can have the following sign or direction of relationship between variables. 

Example: the relationship between consumption at time t and income at time t has 

positive relationship. 

Demand equation for a final consumption good can be defined as: 

   𝑄𝑑     = 𝑓 (
−
𝑃, 
+
𝑌,
 
−
𝑃𝑐,
+
𝑃𝑠
) 

where p is own price, 𝑌  is income, 𝑃𝑐  & 𝑃𝑠  are price of complementary and 

substitute goods. 

The signs in the above variables indicate the hypothesized sign of the respective 

regression coefficient in a linear model. 

• Specification of the model: In this stage, we specify the relationship between 

the dependent and independent variables based on economic theories. We also 

determine the number of equations (single equation or simultaneous equation 

model) & the type of equation i.e. whether the relationship between economic 

variables explained using linear or non-linear equations. Let us specify our 

previous theoretical relationship.  

Example 1:            𝐶𝑡 = 𝛽0 + 𝛽1𝑌𝑡                                                              (1.10) 

where 𝐶𝑡 aggregate consumption at time t, 𝑌𝑡 aggregate income at time t 

Example 2:            𝐶𝑡 = 𝛽0𝑌𝑡 
𝛽1  𝑟𝑡 

𝛽2                                                         (1.11) 

where 𝐶𝑡 aggregate consumption at time t, 𝑌𝑡 aggregate income at time t, 𝑟𝑡 is 
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future rate of return. 

All the above equation is single equation model but equation 1.10 is linear equations 

& equation 1.11 is non- linear equation. Magnitude of the coefficient of the 

variables (𝛽0, 𝛽1, 𝛽2), what will be the likely magnitude of these coefficients? The 

magnitude or size of the numerical values of the coefficient of the variable (𝛽0, 𝛽1, 
𝛽2) are determined by the economic theory & empirical observation of the real 

world. In equation 1.10 & 1.11 the coefficient of 𝛽1 refers to marginal propensity 

to consume and determined by economic theory. The explanation of equation 1.10 

is differ from equation 1.11 since the former is linear while the latter is non-linear. 

Example in equation 1.10 if income increases by 1 birr on the average consumption 

will increase by 𝛽1 amount. But in equation 1.11, 𝛽1 & 𝛽2 explains elasticities, 

i.e., if income increases by 1% consumption will increase on average by 𝛽1% and 

for 𝛽2 if rate of interest is increasing by 1% consumption will be cut down on the 

average by 𝛽2%. 

Therefore, under mathematical model we cannot easily estimate the value of the 

parameter. Since the data never perfectly fit the mathematical model. There is 

uncertainty. 

Thus, statistics is used to determine the value of β given the model, the data and the 

uncertainty. Hence, we need an econometrics model which incorporate uncertainty 

using statistical concept. 

 

3.3 Specification of the econometric model of the theory 

The relationships between economic variables that we express above are generally 

exact. In addition to income, other variables may affect consumption expenditure. 

For example, sizes of family, ages of family members, family religion, etc., are 

likely to exert some influence on consumption. 

Specification of the econometric model will be based on knowledge of economic 

theory and on any available information related to the phenomena under 

investigation. 

To allow for the random relationships between economic variables, equation (1.10) 

is written as: 

Y𝐼 = β0 + β1X𝐼⏞      
Deterministic component

+ 𝜀𝑡 ⏞
stochastic component

                                      (1.12) 

where Y = consumption expenditure (as dependent variable), X = income 

(independent or explanatory variable), β
0
= the intercept coefficient, β

1
= the 

slope coefficient which indicates the MPC in our above example, and 𝜀𝑡  is 

disturbance term or error term. It is a random or stochastic variable, which is 

unobservable and has well-defined probabilistic properties. The disturbance term 

𝜀𝑡 may well represent all those factors that affect consumption, but are not taken 

into account explicitly. 

Thus, the inclusion of 𝜀𝑡 in mathematical economics model (in exact relationship 

between variables) will transform the model into econometric model (inexact 

relationship between variables since 𝜀 capture unexplained variables). The most 
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common errors of specification are: 

• Omissions of some important variables from the function 

• Inclusion of irrelevant variable 

• Wrong specification of the model (for example, instead of simultaneous 

equations model, apply single equation model, linear model if the relationship 

is non-linear and viscera). 

 

4. Obtaining data 

4.1 Types of Data 

• Cross-Sectional Data 

A cross-sectional data: data collected on one or more variables collected at 

particular period of time. Example: a sample of individuals, households, firms, cities, 

states, countries, or a variety of other units, taken at a given point in time. We often 

assume that these data have been obtained by random sampling. 

• Time Series Data 

A time series dataset consists of observations on a variable or several variables over 

several periods of time (days, weeks, months, years). 

A key feature of time series data is that, typically, observations are correlated across 

time which results the absence of random sample. This time correlation introduces 

very important issues in the estimation and testing of time series econometric 

models. 

 

4.2 Pooled cross sections  

Pooled data occur when we have a time series of cross sections, but the observations 

in each cross section do not necessarily refer to the same unit. 

• Panel or Longitudinal Data 

In panel data, we have a group of individuals (or households, firms, countries, etc.) 

who are observed at several points in time.  

That is, we have time series data for each individual in the sample. That is it consists 

of a time series for each cross-sectional member in the data set. The key feature of 

panel data that distinguishes them from pooled cross sections is that the same 

individuals are followed over a given period of time. 

Thus, panel data refers to samples of the same cross-sectional units observed at 

multiple points in time. In pane data, we cannot assume that the observations are 

independently distinguished across time and serial correlation of regression 

residuals becomes an issue. A panel-data observation has two dimensions: 𝑥𝑖,𝑡 , 
where i runs from 1 to N and denotes the cross-sectional unit and t runs from 1 to T 

and denotes the time of the observation. 

 

4.3 Problems in accuracy of data 

However, plenty of data are available for research purpose but the quality of data 

matter in arriving at a good result. The quality of data may not be good for different 
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reason: 

• Since most social science data are not experimental in nature, so omission error 

may occur 

• An approximate & round off the numbers will have error of measurement 

• In questioner, non-response error may be occur 

• Economic data are available at aggregate level & errors may be committed in 

aggregation 

Because of the above reasons, one can deduce that the results obtained by any 

researchers are highly depending up on the quality of the data. Then if you get 

unsatisfactory results the reason may be the quality of the data if you correctly 

specifying the model. 

 

5. Estimating the parameters of econometric model 

Regression analysis is the main tool used to obtain the estimates. However, we need 

to choice appropriate economic techniques for estimation, i.e. to decide a specific 

econometric method to be applied in the estimation. Using this technique and the 

data given in Table 1.2, we obtain the following estimates of the parameters denoted 

by Greek letters, β
0
 and β

1
, namely, 231.8 and 0.7194, respectively. Parameters 

are unknown quantities that characterize a model. Thus, the estimated consumption 

functions were obtained using OLS methods of estimation as given below: 

�̂� = 231.8 +  0.7194X                                                        (1.13) 

Where: MPC is about 0.72 and it means that for the sample period when real income 

increases by 1 USD results on average increases in real consumption expenditure 

about 72 cents. 

Note: A hat symbol (^) on the above equation signify an estimator of the relevant 

population value. 

However, the selection of the methods of estimation depends upon many factors. 

The nature of relationship between economic variables and their identification:  

If we studied the econometric relationship using a single equation, the estimation 

methods are ordinary least square (OLS), Maximum likelihood (ML), methods of 

moment, Mixed estimation Technique, etc.  

Example of single equation model: 

𝑄𝑑𝑖 = 𝛽0 + 𝛽1𝑃𝑖 + 𝜀𝑡                                                        (1.14) 

Where: 𝑄𝑑 is quantity demand, 𝑃𝑖 is price. In this case, OLS is the best method. 

However, if the relationships between economic variables are in a function of 

simultaneous equation: indirect leas square (ILS or reduced form techniques), two 

stage least square (2SLS), three stage least square (3SLS) & the Full information 

maximum likelihood (FIML) methods are used. 

• On the properties of estimated coefficient obtained from each method is that a 

good estimate should give the properties of unbiasedness, consistency, 

efficiency, & sufficiency or a desirable characteristics than any other estimates 
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from other methods, then that techniques, which possess more of the desirable 

characteristics, will be selected. 

• On the purpose of econometric research: if the purpose of the model is 

forecasting the property of minimum variance is very important, i.e. the 

techniques, which will give the minimum variance of the coefficients of the 

variables, will be selected. However, if the purpose of the research is 

policymaking (analysis) that techniques which gives unbiasedness of the 

variable will be selected. 

• On the simplicity of technique: if our interest is simply computation, we can 

select that technique which involves simple computation & less data 

requirement. 

• Time and cost required for computation of the coefficients of the variables may 

determine the selection of estimation methods. 

• The linearity and non-linearity in variables as well as in parameters. 

 

6. Evaluation of estimates (Model diagnostic and hypothesis 

testing) 

After we have estimated the values of the parameters, we need to evaluate the 

accuracy of the model. At this stage, we are evaluating the reliability of the results 

whether they are theoretically meaningful & statistically satisfactory results. Thus, 

confirmation or refutation of economic theories based on sample evidence is object 

of statistical analysis. 

To evaluate the reliability of the estimates we follow the following steps: 

• Economic prior criterion: economic interpretation of the results 

In this stage, we should confirm that whether the estimated values explain the 

economic theory or not i.e. it refers to the sign & magnitude of the estimated 

coefficients of the variables.  

Example: if we have the following consumption function: 

𝐶𝑖 = 𝛽0 + 𝛽1𝑌𝑖 + 𝜀𝑖                                                   (1.15) 
where 𝐶𝑖 is consumption expenditure, 𝑌𝑖 is income 

From economic theory (economic relationship between consumption & income) it 

is known that 𝛽1 denotes marginal propensity to consume (MPC). Then on the 

base of a prior economic criteria, it is determined that the sign of 𝛽 has to be 

positive & the magnitude (size) 𝛽 again is in between zero & one (0 < 𝛽 < 1). If 
the estimated results of the above consumption function gives  

�̂�𝑖 = −3.32 + 0.2033𝑌𝑖                                                               (1.16)   
From economic relationship explained by economic theory states that if your 

income increases by 1 birr your consumption will increase on average by less than 

one birr i.e. 0.203 cents. Then the value of 𝛽1 is less than one & greater than zero 

in its magnitude (size) again the sign of 𝛽1 is positive. Therefore, the estimated 

models explain the economic theory (economic relationship between consumption 

& income) or satisfies the prior-economic criteria. If another estimation of the 
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model using other data gives the following estimated results. 

�̂�𝑖 = −24.45 + −5.091𝑌𝑖                                                               (1.17)   
where 𝐶𝑖 is consumption expenditure, 𝑌𝑖 is income. From economic theory it is 

known that 𝛽1 has to be positive & its magnitude is greater than zero & less than 

one. However, the estimated model results that the sign of 𝛽1 is negative & its 

magnitude is greater than one in absolute value then we reject the model because 

the results are contradictory or do not confirm the economic theory. 

In the evaluation of estimates of the model, we should take into consideration the 

sign & magnitudes of the estimated coefficients. If the sign and magnitude of the 

parameter do not confirm the economic relationship between variables explained by 

the economic theory then the model will be rejected. However, if there is a good 

reason to accept the model then the reason should be clearly stated. In general, if 

the prior theoretical criteria’s are not satisfied, then the estimates should be 

considered as unsatisfactory. In most of the cases, the deficiencies of empirical data 

utilized for the estimation of the model are responsible for the occurrence of wrong 

sign or size of the estimated parameters. The deficiency of the empirical data means 

either the sample observation may not represents the population (due to sampling 

procedure problem or collecting inadequate data or some assumption of the method 

employed are violated). In general, if a priority criterion is not satisfied, the 

estimates should be considered as unsatisfactory. 

• Statistical criterion/ first order criteria: statistical interpretation of the results 

If the model passes prior-economic criteria, the reliability of the estimate of the 

parameters will be evaluated using statistical criteria. The most widely statistical 

criteria are: 

1. The correlation coefficient –𝑅2/𝑟2 

2. The standard error/deviation / S.E of the estimate 

3. t-ratio or t-test and F-test of the estimates 

Since the estimated value is obtained from a sample of observations taken from the 

population, the statistical test of the estimated values will help to find out how 

accurate these estimates are (how they accurately explain the population?).  

✓ 𝑅2 explain that the percentage of the total variation of the dependent variable  

explained by the change of the explanatory variables(how much % of the 

dependent variable is explained by the explanatory variables). So to say the 

result is statistically significant its value should be larger (more than 60%). 

✓ 𝑆. 𝐸  (Standard error or deviation): measures the dispersion of the sample 

estimates around the true population parameters. The lower the standard error, 

the higher the reliability (the sample estimates are closer to the population 

parameter) of the estimates & vice-versa. 

✓ t-ratio or t-test of the estimates shows the significance of the individual variable 

coefficients. The higher the t- test, the higher the significance level. 

• Econometric criterion/second order condition:  

After conducting a prior test & statistical test, the investigator should check the 

reliability of the estimates whether the econometric assumptions (example, non- 
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normality, heteroscedasticity, autocorrelation, etc.) are holds true or not.  

If any one of the assumption of econometrics are violated. 

• The estimates of the parameters cease to possess some of the desirable 

properties (unbiasedness, consistency, sufficiency etc.) 

• The statistical criteria losses their validity & become unreliable 

If the assumptions of econometric techniques are violated then the researcher has to 

re-specifying the already utilized model. To do so the researcher introduce 

additional variable in to the model or omit some variables from the model or 

transform the original variables etc. by re-specify the model the investigator 

proceeds with re-estimation & re-application of all the tests ( a prior, statistical & 

econometric) until the estimates satisfies all the tests. 

Thus, we are expected to conduct residual analysis (the stochastic assumptions) by 

looking at a plot of the residuals in graphical form as well as formal test like using 

a normality test, autocorrelation test, heteroscedasticity tests, etc. Moreover, if we 

have more than one explanatory variable we should conduct multicollinearity test. 

 

7. Forecasting or prediction 

Forecasting is one of the primary aims of econometric research. Especially, in time 

series data, the objective is to forecast the future value of the series based on the 

observed value of historical data given the model that we have used in the estimation 

process. The estimated model may economically meaningful, statistically & 

econometrically correct for the sample period. However, given all these, it may not 

have a good power of forecasting due to the inaccuracy of the explanatory variables 

& deficiency of the data used in obtaining the estimated values. 

If this happens, the estimated value (i.e. forecasted) should be compared with the 

actual realized value magnitude of the relevant dependent variable. The difference 

between the actual & forecasted value is tested statistically. If the difference is 

significant, we conclude that the forecasting power of the model is poor. If it is 

statistically insignificant, the forecasting power of the model is good. 

To illustrate, suppose we want to predict the mean consumption expenditure for 

1994, income value for 1994 was 6000 billion dollars. What is the forecasted 

consumption expenditure? 

The predicted value of Y is 

�̂� = 231.8 +  0.7194(6000) =  4084.6                                         (1.18)   
The actual value of consumption expenditure reported in 1994 was 4000 billion 

dollars (see Table 1.1). The estimated model (1.17) over-predicted the actual 

consumption expenditure by 84.6 billion dollars. We could say the forecast error is 

about 84.6 billion dollars. By fiscal and monetary policy, government can 

manipulate the control variable X (in our case income) to get the desired level of 

target variable Y(in our case consumption). 

 

8. Evaluation of the forecasting accuracy of the model 

Forecasting is one of the aims of econometric research. However, before applying 
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the model that used in forecasting the future values of the series for other purpose 

like policy control, it should be economically meaningful and statistically and 

econometrically valid or correct for the sample period for which the model that has 

been used in forecasting purpose. Thus, we use statistical loss functions, which are 

based on the mean forecast error. The forecast error for 𝑙 lead times is defined as 

the difference between the actual forecast and its conditional expectation and can 

be expressed as: 

𝜀𝑖(𝑙) = 𝜎𝑖+𝑙 
2 − �̂�𝑖

2(𝑙)                                      (1.19)       
The most common loss functions: the Mean Square Error (MSE) and the Mean 

Absolute Error (MAE), are defined as: 

MSE  =  
1

n
∑(𝜎𝑖+𝑙 

2 − �̂�𝑖
2(𝑙))

2
n

i=1

                              (1.20)    

MAE =
1

n
∑|𝜎𝑖+𝑙 

2 − �̂�𝑖
2(𝑙)|

n

i=1

                                      (1.21)  

where 𝜎𝑖+𝑙 
2  refers to the 𝑙 − 𝑙𝑒𝑎𝑑 actual level of conditional variance and �̂�𝑖

2(𝑙) 
refers to the 𝑙 − 𝑙𝑒𝑎𝑑 forecasted level of the conditional variance. 

 

8.1 Using model for control or policy purposes 

After the validity of the model is checked, it can be used to evaluate or control the 

government policy through manipulation of the objective variables given reliable 

model and forecasts of the economic phenomena. 

For example, the government believes that 5000 level of consumption level keeps 

inflation rate at 10%. Thus, 𝑌 = 5000 = −231.8 + 0.7194 𝑋 , when X=7266. 

Given the estimate of MPC = 0.72, an income of $7266 Bill will produce an 

expenditure of $5000 Bill. 

By fiscal and monetary policy, government can manipulate the control variable X 

to get the desired level of target variable Y. 

Simple Linear Regression  

Regression analysis consists of techniques for modeling the relationship between a 

dependent variable (also called response variable) and one or more independent 

variables (also known as explanatory variables or predictors). In regression, the 

dependent variable is modeled as a function of independent variables, 

corresponding regression parameters (coefficients), and a random error term, which 

represents variation in the dependent variable unexplained, by the function of the 

dependent variables and coefficients. In linear regression, the dependent variable is 

modeled as a linear function of a set of regression parameters and a random error. 

The parameters need to be estimated so that the model gives the best fit to the data. 

The parameters are estimated based on predefined criterion. 

The most commonly used criterion is the least squares method, but other criteria 

have also been used that will result in different estimators of the regression 

parameters. The statistical properties of the estimator derived using different criteria 
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will be different from the estimator using the least squares principle. In this article 

the least squares principle will be utilized to derive estimates of the regression 

parameters. If a regression model adequately reflects the true relationship between 

the response variable and independent variables, this model can be used for 

predicting dependent variable, identifying important independent variables, and 

establishing desired causal relationship between the response variable and 

independent variables.  

Therefore, in this study, we cover both simple linear regression and multiple linear 

regression. 

Simple linear regression analysis explains the relationship between a single 

dependent (Endogenous) variable, Y, as a function of a single independent 

(exogenous) variable, X. Under the macroeconomic theory of income hypothesis, 

consumption is a function of current income other things remain constant (ceteris 

paribus) given a linear relationship. However, consumption expenditure is not 

determined only by income, since it can be affected by previous income, tradition, 

wealth etc. Then this inexact relationship in a simple linear regression model is 

captured by random term (𝜀𝑡) given as follows: 

𝐶𝑖 = 𝛽0 + 𝛽1𝑌𝑖 + 𝜀𝑡                                                             
where 𝐶𝑖  is consumption (as dependent variable) for the ith observations, 𝑌𝑖  is 

disposable income (as explanatory variable), 𝛽0 & 𝛽1 are coefficients or regression 

parameters, and 𝜀𝑖 stochastic disturbance or error term. 

We introduce the stochastic error term (𝜀𝑖) in the regression model because we 

cannot capture every influence on a dependent variable in the model. Specifically, 

the stochastic error term can captures the effect of omitted variables, erratic nature 

of human being, misspecification of mathematical model, measurement error in the 

response and independent variables, errors in aggregation and sampling error, etc. 

The population regression function (PRF) relates the conditional mean with the 

independent variable is given by: 

Yi = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖       , 𝑖 = 1, 2, … , 𝑛                              (2.1)  
where 𝛽0 and 𝛽1 are unknown but fixed parameters known as Y intercept and 

slope coefficients, respectively. Y is the dependent variable, 𝑋 is the independent 

variable, and 𝜀𝑖  is an independently identically distributed (i.i.d.) random error 

term that surrogate for all variables that are omitted from the model but they 

collectively affect Y and it is non-systematic component, i =1, …,n denote a random 

sample of size n from the population. It is usually assumed that error 𝜀 is normally 

distributed with 𝐸(𝜀) = 0 and a constant variance 𝑉𝑎𝑟(𝜀) = 𝜎2  in the simple 

linear regression. 

In practice, however, we do not have directly data on the population, so we rely on 

the sample. Thus, the sample counterpart of the population regression function is 

the sample regression function (SRF). Therefore, when we substitute the estimates 

of the parameters �̂�0  and �̂�1  in population regression function, we obtain the 

sample regression function as given by: 

𝑌𝑖 = �̂�0 + �̂�1𝑋𝑖 + 𝜀�̂�                                       (2.2)     
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where �̂�0 and �̂�1 are estimators of the unknown but fixed parameters, 𝜀�̂�  denotes 

the (sample) residual term which is an estimator of population disturbance term and 

�̂�𝑖 is estimator of E(Yi 𝑋𝑖⁄ ). 
The primary objective of regression analysis is to estimate the unknown population 

regression coefficients (𝛽0 and 𝛽1) on the basis of the SRF coefficients (�̂�0 and 

�̂�1 ) given 𝑛  observations on 𝑌  and 𝑋 . To do so, we need to specify basic 

assumptions of the model.  

 

8.2 Gauss-Markov Assumptions 

In general, we categorized the assumption of simple linear regression model into: 

➢ Assumption of the parameters of the model 

➢ Assumption about the distribution of error term (𝜀𝑡) 
➢ Assumption of the relationship between error term (𝜀𝑡) and explanatory variable 

(X’s) 

➢ Assumptions of the dependent variable (𝑌) 
1) The regression model is linear in the parameters 

The classical assumed that the model should be linear in the parameters regardless 

of whether the relationship between explanatory variable and the dependent variable 

is linear or not. Linear in the parameters means that the parameters are not 

multiplied together, divided, squared or cubed. 

2) The Explanatory variable (X) are fixed in repeated sampling 

The value taken by independent variable is considered to be fixed in repeated 

samples. That is, the regressor is assumed to be non-stochastic ((i.e., when repeating 

the experiment, choose exactly the same set of X values on each occasion so that 

they remain unchanged). However, having a larger spread of values (i.e. a larger 

variance) of the explanatory variable (X) in the sample improves the accuracy of 

estimation. 

3) The observed data represent a random sample from the population described by 

the model. 

4) The number of observations is greater than the number of parameters to be 

estimated, usually written n > k. 

5) The error term (𝜀) is a random variable and its mean value in any particular 

period is zero 

𝐸(𝜀𝑖|𝑋𝑖) = 𝐸(𝜀𝑖) = 0 

This means, for each value of X, the random variables (𝜀𝑖) may assume various 

values, some greater than zero and some smaller than zero, but if we considered all 

the possible values of the random variables (𝜀𝑖) for any given value of X, they 

should have on average value equal to zero. In other words, the positive and 

negative values of the random variables (𝜀𝑖) cancel each other. Indirectly, the zero 

mean of the disturbances implies that no relevant regressors have been omitted from 

the model. 

6) Constant variance (Homoscedasticity) 
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Under the classical regression assumptions, the conditional variance of the error 

term is constant (homoscedastic) and does not vary as a function of the explanatory 

variable. The error variance is a measure of model uncertainty, while 

homoscedasticity implies the model uncertainty is identical across observations. 

Var(𝜀𝑖|𝑋𝑖) = E[𝜀𝑖 − E(𝜀𝑖) 𝑋𝑖⁄ ]2 

By assumption 5, E(𝜀𝑖|𝑋𝑖) = 0, then 

Var(𝜀𝑖) = E(𝜀𝑖
2|𝑋𝑖) = 𝜎

2, ∀𝑖 = 1, 2, … , n 

7) No Autocorrelation 

This means the value of the random terms assumed in one observation does not 

depend on the value, which it assumed in any other observation. That is, the random 

terms of different observations (𝜀𝑖 and 𝜀𝑗) are, independent. 

𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗) = 0, ∀, 𝑖 ≠ 𝑗 

Given any two X values, 𝑋𝑖 and 𝑋𝑗 (𝑖 ≠ j), the correlation between any 𝜀𝑖 and 

𝜀𝑗 (𝑖 ≠ j) is zero. 

𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗|𝑋𝑖𝑋𝑗) = 𝐸{[𝜀𝑖 − 𝐸(𝜀𝑖|𝑋𝑖)][𝜀𝑗 − 𝐸(𝜀𝑗|𝑋𝑗)]} 

By assumption 5, 𝐸(𝜀𝑖|𝑋𝑖) 𝑎𝑛𝑑 𝐸(𝜀𝑗|𝑋𝑗) = 0, then 

𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗|𝑋𝑖𝑋𝑗) = 𝐸{[𝜀𝑖 − 0][𝜀𝑗 − 0]} 

Given an independently, identically distributed (i.i.d.) error term, 

𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗|𝑋𝑖𝑋𝑗) = 𝐸[𝜀𝑖]𝐸[𝜀𝑗] 

𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗|𝑋𝑖𝑋𝑗) = 𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 𝐸[𝜀𝑖]𝐸[𝜀𝑗] = 0 

 

8) The random variables (εi) is independent of the explanatory variables.  

This means εi and X’s are not moving together or zero covariance between 𝑋𝑖 & 𝜀𝑖. 
𝐶𝑜𝑣(𝜀𝑖, 𝑋𝑖) = 𝐸{[𝜀𝑖 − 𝐸(𝜀𝑖)][𝑋𝑖 − 𝐸(𝑋𝑖]}, by assumption 𝐸(𝜀𝑖) = 0 

= 𝐸[𝜀𝑖(𝑋𝑖 − 𝐸(𝑋𝑖)] 
= 𝐸(𝜀𝑖𝑋𝑖) − 𝐸(𝑋𝑖𝐸(𝜀𝑖)),    𝐸(𝑋𝑖) = 𝑋𝑖 𝑖𝑠 𝑛𝑜𝑛𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 and 𝐸(𝜀𝑖) = 0 

= 𝐸(𝜀𝑖𝑋𝑖) = 0 

= 𝑋𝑖𝐸(𝜀𝑖) = 0, since 𝑋𝑖  is non-stochastic 

9) Assumption about the dependent variable Yi 
The response variable is normally distributed, i.e.  

𝑌𝑖 ~ 𝑁(𝛽0 + 𝛽1𝑋𝑖, 𝜎2)  
Proof: 

Mean:𝐸(𝑌𝑖) = 𝐸(𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖) 
= 𝛽0 + 𝛽1𝑋𝑖 since 𝐸(𝜀𝑖) = 0 

Variance: var(𝑌𝑖) =   𝐸(𝑌𝑖 − 𝐸(𝑌𝑖)) 
2 

= 𝐸(𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 − (𝛽0 + 𝛽1𝑋𝑖))
2 

= 𝐸(𝜀𝑖)
2 

= 𝜎2 since 𝐸(𝜀𝑖)
2 = 𝜎2  

The shape of the distribution of 𝑌𝑖 is determined by the shape of the distribution of 

𝜀𝑖 . Since 𝛽0 𝑎𝑛𝑑 𝛽1 are being constant, they don’t affect the distribution of 𝑌𝑖 . 
Furthermore, the values of the explanatory variable X are a set of fixed value by 
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assumption 2 and therefore, it doesn’t affect the shape of the distribution of 𝑌𝑖. 
The other assumption on the dependent variable is, the successive values of the 

dependent variable are independent, i.e. 𝑐𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 0 

Proof: 

𝑐𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 𝐸{[𝑌𝑖 − 𝐸(𝑌𝑖)][𝑌𝑗 − 𝐸(𝑌𝑗)]} 

= 𝐸{[𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 − 𝐸(𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖)][𝛽0 + 𝛽1𝑋𝑗 + 𝜀𝑗 − 𝐸(𝛽0 + 𝛽1𝑋𝑗
+ 𝜀𝑗)]} 

(since 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 and 𝑌𝑗 = 𝛽0 + 𝛽1𝑋𝑗 + 𝜀𝑗) 

= 𝐸{[𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 − 𝛽0 − 𝛽1𝑋𝑖][𝛽0 + 𝛽1𝑋𝑗 + 𝜀𝑗 − 𝛽0 − 𝛽1𝑋𝑗]} 

= 𝐸[𝜀𝑖𝜀𝑗] = 0, 𝑖 ≠ 𝑗, since 𝐸(𝜀𝑖)&𝐸(𝜀𝑗) = 0 by assumption 8 

Therefore, 𝑐𝑜𝑣(𝑌𝑖, 𝑌𝑗) = 0 

 

8.3 Method of Estimations  

After specifying the model and stated their assumption, the next step is estimation 

of the numerical values of the parameters of economic relationships. Depending on 

the nature of the data and functional form, there are different methods of estimating 

the parameters. The most widely used methods of estimation in the parameters of 

the simple linear regression model is the ordinarily Least Squares (OLS) method. 

 

8.3.1 The Ordinary Least Square (OLS) Methods 

In regression analysis, the researcher is interested in analyzing the behavior of a 

dependent variable "𝑌𝑖" given the information contained in a set of explanatory 

variables "𝑋𝑖". Ordinary Least Squares is a standard approach to specify a linear 

regression model and estimate its unknown parameters by minimizing the sum of 

squared errors. This leads to an approximation of the mean function of the 

conditional distribution of the dependent variable. Thus, the principle of least 

squares is based on the residuals. For any line, the residuals are the deviations of 

the dependent variables 𝑌𝑖 away from the line. If the line is the true regression line 

of the model, then the residuals are exactly random errors. 

Note that, the better the line fits the data, the smaller the residuals will be. Thus, we 

can use the ‘sizes’ of the residuals as a measure of how well a proposed line fits the 

data. 

Consider the model, 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 is called the true relationship between Y 

and X because Y and X represent their respective population value, and 𝛽0 and 𝛽1 
are called the true parameters since they can be estimated from the population value 

of Y and X. However, it is difficult to obtain the population value of Y and X 

because of technical or economic reasons. So we are forced to take the sample value 

of Y and X. 

The parameters estimated from the sample value of Y and X are called the 

estimators of the true parameters 𝛽0 and 𝛽1and are symbolized as �̂�0 and �̂�1. 
Recall from equation (2), the population regression function is given: 𝑌𝑖 = 𝛽0 +
𝛽1𝑋𝑖 + 𝜀𝑖. However, the population regression function is not directly observable 
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thus; we estimate it from the sample regression function as stated in equation 

(3):𝑌𝑖 = �̂�0 + �̂�1𝑋𝑖 + 𝜀�̂� = �̂�𝑖 + 𝜀�̂� 
 

where �̂�𝑖 is read as “Y-hat’ ’which refers to the estimated (conditional mean) value 

of 𝑌𝑖. 
Now we can derive the sample residual term (𝜀�̂�) which is the difference between 

the actual and the fitted/estimated/predicted values of Y as follow: 

𝜀�̂� = 𝑌𝑖 − �̂�𝑖 = 𝑌𝑖 − �̂�0 + �̂�1𝑋𝑖                                                       (2.3) 
Now, given data on both X and Y, our objective is to find the sample regression 

function that best “fits” the population regression function or the values of 

estimators which are as close as possible to population parameters. Therefore, the 

goal is to find the best-fit line that minimizes the sum of the error terms. 

 Criterion I: Minimize the sum of residuals 

That is, minimize ∑ ε̂i = 0
n
i=1  

However, this criterion is not good as it gives equal weight to all kinds of residuals 

(large, medium and small) and residuals of different signs can be compensated 

(cancel out each other). 

• Criterion II: Minimize Absolute Values of Residuals Criterion 

In order to avoid the compensation of positive residuals with negative ones, the 

absolute values from the residuals are taken. That is minimize ∑ |ε̂i| = 0
n
i=1 . 

Unfortunately, although the estimators thus obtained have some interesting 

properties, their calculation is complicated and requires resolving the problem of 

linear programming or applying a procedure of iterative calculation. 

 Criterion III: Sum of Squared Residuals Criterion 

According to this criterion, find the SRF, which minimize the sum of the squared 

residuals,  ∑ ε̂i
2n

i=1 . Alternatively, we choose β̂0  and β̂1  such that the sum of 

squared residuals is minimized. This criterion is very important because, it gives 

more weight to larger residuals and less weight to smaller residuals as define above 

on OLS properties. For example, consider the following three residuals, 2 4, and 8. 

Each residual is twice as large as the preceding residual. That is, 4 is twice as large 

as 2 and 8 is twice as large as 4. When the residual is squared, the squared values 

are 4, 16, and 64 in the OLS objective function. This trait places a larger weight on 

the objective function when the estimated Y-value is far away from the actual value 

than when the estimated Y-value is close to the actual value. Moreover, it insures 

the residuals that are equal in magnitude are given equal weight. Consider the two 

residuals –6 and 6. In both of these observations, the estimated y-value is equal 

distance from the observed y-value, 6 units. It just happens you overestimated y in 

the first case and underestimated y in the second case. By squaring the residuals, 

both values are 16 in the objective function.  

Deriving the OLS Estimators 

From the sample regression function of 𝑌𝑖 = �̂�0 + �̂�1𝑋𝑖 + 𝜀�̂� = �̂�𝑖 + 𝜀�̂�, the fitted 

value is �̂�𝑖 = �̂�0 + �̂�1𝑋𝑖. Then the residual is given by 𝜀�̂� = 𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖. 
The sum of the squared residuals as defined by S is given by: 
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𝑆 =∑ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)
2

𝑛

𝑖=1
=∑ 𝜀�̂�

2
𝑛

𝑖=1
                            (2.4) 

Now we determine (estimate) �̂�0 and �̂�1 in such a way that ∑ 𝜀�̂�
2𝑛

𝑖=1  is minimum. 

Hence, we minimize ∑ 𝜀�̂�
2𝑛

𝑖=1  subject to �̂�0 and �̂�1. 
Note that an estimator, also known as a (sample) statistic, is simply a rule, formula, 

or method that tells how to estimate the population parameter from the information 

provided by the sample at hand. A particular numerical value obtained by the 

estimator in an application is known as an estimate. 

To minimize sum of the squared residuals (∑ 𝜀�̂�
2𝑛

𝑖=1 ), we apply first order (necessary) 

condition with respect to β̂0 and β̂1. 

The necessary condition for intercept term (β̂0): 

∂∑ 𝜀�̂�
2𝑛

𝑖=1

∂β̂0
= 0 

∂∑ 𝜀�̂�
2𝑛

𝑖=1

∂β̂0
= ∑2(Yi − β̂0 − β̂1Xi)(−1)

n

i=1

= 0   

Apply sum to the whole values and divided both side by 2 results: 

−∑Yi

n

i=1

+ nβ̂0 + β̂1∑Xi

n

i=1

= 0 

 

Then the normal equation is given by: 

∑Yi

n

i=1

= nβ̂0 + β̂1∑Xi

n

i=1

   

Divide both sides by n results: 

�̅� = β̂0 + β̂1X̅ 

Therefore, the intercept coefficient 

β̂0 = �̅� − β̂1X̅                                                                             (2.5)   

The necessary condition for slope coefficient β̂1 (continued):  

∂∑ 𝜀�̂�
2𝑛

𝑖=1

∂β̂1
= 0 

∂∑ 𝜀�̂�
2𝑛

𝑖=1

∂β̂1
= ∑2(Yi − β̂0 − β̂1Xi)(−Xi)

n

i=1

= 0  

= −∑Yi

n

i=1

Xi + β̂0∑Xi

n

i=1

+ β̂1  ∑Xi
2

n

i=1

  = 0         

∑Yi

n

i=1

Xi = β̂0∑Xi

n

i=1

+ β̂1  ∑Xi
2

n

i=1

                                                 (2.6) 

Then, substitute equations (2.5) into equation (2.6) and obtained: 
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∑Yi

n

i=1

Xi = (�̅� − β̂1X̅)∑Xi

n

i=1

+ β̂1  ∑Xi
2

n

i=1

 

∑Yi

n

i=1

Xi = �̅�∑Xi

n

i=1

− β̂1X̅∑Xi

n

i=1

+ β̂1  ∑Xi
2

n

i=1

 

∑Yi

n

i=1

Xi = �̅�∑Xi

n

i=1

+ β̂1  ∑Xi
2

n

i=1

− β̂1X̅∑Xi

n

i=1

 

∑Yi

n

i=1

Xi − Y̅∑Xi

n

i=1

= β̂1 [∑Xi
2

n

i=1

− X̅∑Xi

n

i=1

] 

Divided both side by [∑ Xi
2n

i=1 − X̅∑ Xi
n
i=1 ] results 

β̂1 =
∑ Yi
n
i=1 Xi − Y̅∑ Xi

n
i=1

∑ Xi
2n

i=1 − X̅∑ Xi
n
i=1  

 =  
∑ XiYi
n
i=1 − nX̅Y̅

∑ Xi
2n

i=1 − nX̅2  
 

Now let us rewrite the β̂1 function in other way or deviation form as follows. 

∑ Yi
n
i=1 Xi − nY̅X̅ = ∑ XiYi

n
i=1 − nX̅Y̅ + nX̅Y̅ − nY̅X̅  

=∑Yi

n

i=1

Xi − X̅∑Yi

n

i=1

− �̅�∑Xi

n

i=1

+ nX̅�̅� 

∑Yi

n

i=1

Xi − nY̅X̅ =∑(Yi − Y̅)(Xi − X̅)

n

i=1

 

and 

∑Xi
2

n

i=1

− nX̅2  = ∑Xi
2

n

i=1

− nX̅2 + 2𝑛X̅. X̅ 

=∑xi
2

n

i=1

+∑�̅�2
n

i=1

− 2�̅�∑𝑋𝑖

𝑛

𝑖=1

 

∑Xi
2

n

i=1

− nX̅2 =∑(Xi − X̅)
2

n

i=1

 

Then we can simplify the formulas for beta hat as: 

β̂1 =
∑ (Yi − Y̅)(Xi − X̅)
n
i=1

∑ (Xi − X̅)2
n
i=1  

=
∑ yi𝑥i
n
i=1

∑ xi2
n
i=1  

                                                (2.7)  

where xi = Xi − X̅, that is x is in deviation form of the observed data, X and �̅� =
∑ 𝑋𝑖
𝑛
𝑖=1 𝑛⁄  

yi = Yi − Y̅ , that is y is in deviation form of the observed data, Y and �̅� =
∑ 𝑌𝑖
𝑛
𝑖=1 𝑛⁄ . 

Alternatively, β̂1 can be expressed in probability point of view given both 𝑌 and 

𝑋 as a random variable by divided both the numerator and denominator by n − 1. 
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β̂1 =
∑ (Yi − Y̅)
n
i=1 (Xi − X̅) n − 1⁄

∑ (Xi − X̅)2
n
i=1 n − 1⁄  

=
Cov(X, Y)

Var(X)
 

Therefore, the sign of β̂1 is the same as the sign of the covariance. 

A β̂
1
 coefficient measures the partial effect of the regressor X on Y holding the 

other regressors fixed. However, if the variable is in logarithm form we interpreted 

as percentage or elasticity’s. 

Now let us see whether the intercept and slope coefficients satisfy the second order 

(sufficient) condition. i.e. proof whether the OLS estimates have a global minimum 

which is expected to have a positive value. 

The sufficient condition for intercept coefficient (�̂�0) 

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕2�̂�0
2

=
𝜕2 (∑ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

2𝑛
𝑖=1 )

𝜕2�̂�0
2

 

=
𝜕(∑ 2(Yi − β̂0 − β̂1Xi)(−1)

n
i=1 )

𝜕�̂�0
  

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕2�̂�0
2

= 2∑1

n

i=1

= 2n                                     (2.8) 

The sufficient condition for slope coefficient (�̂�1) 

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕2�̂�1
2

=
𝜕2 (∑ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

2𝑛
𝑖=1 )

𝜕2�̂�1
2

= 

=
𝜕(∑ 2(Yi − β̂0 − β̂1Xi)(−Xi)

n
i=1 )

𝜕�̂�1
   

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕2�̂�1
2

 =  2∑𝑋𝑖
2

n

i=1

                                               (2.9) 

The sufficient conditions for covariance of intercept and slope coefficient, 

cov(�̂�0, �̂�1) is given as 

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕�̂�0�̂�1
=
𝜕2 (∑ (𝑌𝑖 − �̂�0 − �̂�1𝑋𝑖)

2𝑛
𝑖=1 )

𝜕�̂�0�̂�1
= 

=
𝜕(∑ 2(Yi − β̂0 − β̂1Xi)(−1)

n
i=1 )

𝜕�̂�1
  

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕�̂�0�̂�1
= 2∑Xi

n

i=1

= 2𝑛�̅�                                          (2.10) 

The Hessian matrix (𝐻∗) which is the matrix of second order partial derivatives in 

this case is given as: 
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𝐻∗ =

(

 
 

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕2�̂�0
2

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕�̂�0�̂�1
𝜕2(∑ 𝜀�̂�

2𝑛
𝑖=1 )

𝜕�̂�0�̂�1

𝜕2(∑ 𝜀�̂�
2𝑛

𝑖=1 )

𝜕2�̂�1
2

)

 
 
= 2(

𝑛 𝑛�̅�

𝑛�̅� ∑𝑋𝑖
2

n

i=1

) 

The matrix 𝐻∗ is a positive definite if its determinate and the element in the first 

row and column of 𝐻∗ are positive. The determinant of 𝐻∗ is given by: 

|𝐻∗| = 2(𝑛∑𝑋𝑖
2

n

i=1

− 𝑛2�̅�2) = 2𝑛∑(𝑋𝑖 − �̅�)
2

n

i=1

 ≥ 0                   (2.11) 

Since ∑ (𝑋𝑖 − �̅�)
2n

i=1  is positive definite because it is a quadratic (square) function 

The case when ∑ (𝑋𝑖 − �̅�)
2n

i=1 = 0 is not interesting because all the observations 

in this case are identical, i.e. 𝑋𝑖 = 𝑐 (some constant). In such case, there is no 

relationship between X and Y in the context of regression analysis. That is why we 

say sample variability in X value is necessary. Since ∑ (𝑋𝑖 − �̅�)
2n

i=1 > 0, therefore, 

|𝐻∗| > 0 . So 𝐻∗  is positive definite for any ( �̂�0, �̂�1 ) and hence the estimates 

(�̂�0 𝑎𝑛𝑑 �̂�1) has a value that gives a global minimum error. 

 

8.3.2 The Statistical Properties of Ordinary Least Square Estimators 

In this section we discuss the statistical properties of the least squares estimates for 

the simple linear regression. The optimum properties that the Ordinary Least 

Square (OLS) estimates possess may be summarized by well-known theorem 

known as the Gauss-Markov Theorem. According to this theorem, under the basic 

assumptions of the classical linear regression model, the least squares estimators are 

linear, unbiased and have minimum variance (i.e. are best of all linear unbiased 

estimators). Sometimes the theorem referred as the BLUE theorem i.e. Best, Linear, 

and Unbiased Estimator. The estimators �̂�0  and �̂�1  determined by OLS are 

known as Best Linear Unbiased Estimators (BLUE). 

 

9. Linearity 

The first property of OLS estimates is the linearity property. That is the 

estimates β̂0 & β̂1 are linear in Y 

Theorem 1. The least squares estimator �̂�1 is a linear estimate of 𝛽1, i.e. the slope 

estimator �̂�1 is a linear function of the dependent variable 𝑌. 

Proof (1):  

Recall from equation (2.7): 

�̂�1 =
∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

∑𝑥𝑖
2  

Now our objective is to show whether the slope estimator �̂�1 is linear with the 

observed dependent variable 𝑌𝑖 . So express in terms of observed 𝑌𝑖 , we should 

express the deviated form of above equation in observed form as follows. 
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�̂�1 =
∑ 𝑥𝑖(𝑌𝑖 − �̅�)
𝑛
𝑖=1

∑𝑥𝑖
2 =

∑ 𝑥𝑖𝑌𝑖 − �̅� ∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
𝑖=1

∑𝑥𝑖
2  

However, ∑ 𝑥𝑖
𝑛
𝑖=1 = ∑ (𝑋𝑖 − �̅�)

𝑛
𝑖=1 = ∑ 𝑋𝑖 − ∑ �̅�𝑛

𝑖=1
𝑛
𝑖=1 = ∑ 𝑋𝑖 − 𝑛�̅�

𝑛
𝑖=1  

=∑𝑋𝑖

𝑛

𝑖=1

− 𝑛∑𝑋𝑖

𝑛

𝑖=1

𝑛⁄ =∑𝑋𝑖

𝑛

𝑖=1

−∑𝑋𝑖

𝑛

𝑖=1

= 0 

∴                ∑𝑥𝑖

𝑛

𝑖=1

= 0                                                        ( 2.12) 

Therefore,  

�̂�1 =
∑ 𝑥𝑖
𝑛
𝑖=1 𝑌𝑖
∑𝑥𝑖

2  

Now, let us define the observation weights 𝑘𝑖 =
𝑥𝑖

∑𝑥𝑖
2 , → (𝑖 = 1, 2, … , 𝑛) which is 

a function of fixed or non-stochastic explanatory variable 𝑋𝑖. 

�̂�1 =∑𝑘𝑖𝑌𝑖

𝑛

𝑖=1

 =  𝑘1𝑌1 + 𝑘2𝑌2 + 𝑘3𝑌3 +⋯+ 𝑘𝑛𝑌𝑛                                       (2.13) 

Therefore, �̂�1 is a linear weighted sum of 𝑌𝑖 

In order to establish the remaining properties of �̂�1, it is necessary to know the 

arithmetic properties of the weights 𝑘𝑖. 
Lemma 1: ∑ 𝑘𝑖𝑖 = 0, i.e. the weights 𝑘𝑖 sum to zero, how? 

 

 

 

 

 

Proof: 

∑𝑘𝑖

𝑛

𝑖=1

= ∑
𝑥𝑖

∑ 𝑥𝑖
2𝑛

𝑖=1

=
1

∑ 𝑥𝑖
2𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

 

By equation (2.12), ∑ 𝑥𝑖
𝑛
𝑖=1 = 0, thus the sum of the weights 𝑘𝑖 is given by 

∑𝑘𝑖

𝑛

𝑖=1

=
∑ 𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1

=
0

∑ 𝑥𝑖
2𝑛

𝑖=1

= 0       

Lemma 2: ∑ 𝑘𝑖
2

𝑖 =
1

∑ 𝑥𝑖
2

𝑖
, how? 

Proof: 

∑𝑘𝑖
2

𝑖

=∑(
𝑥𝑖
∑ 𝑥𝑖

2
𝑖

)

2

𝑖

=∑
𝑥𝑖
2

(∑ 𝑥𝑖
2

𝑖 )2
𝑖

=
∑ 𝑥𝑖

2
𝑖

(∑ 𝑥𝑖
2

𝑖 )2
=

1

∑ 𝑥𝑖
2

𝑖

  

∴     ∑𝑘𝑖
2

𝑖

=
1

∑ 𝑥𝑖
2

𝑖

 

Lemma 3: ∑ 𝑘𝑖𝑥𝑖𝑖 = ∑ 𝑘𝑖𝑋𝑖𝑖 , how? 
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Proof: 

∑𝑘𝑖𝑥𝑖
𝑖

=∑𝑘𝑖(𝑋𝑖 − �̅�)

𝑖

=∑𝑘𝑖𝑋𝑖 − �̅�∑𝑘𝑖
𝑖𝑖

 

By Lemma 1, ∑ 𝑘𝑖𝑖 = 0 

∴      ∑ 𝑘𝑖𝑥𝑖𝑖 = ∑ 𝑘𝑖𝑋𝑖𝑖  since ∑ 𝑘𝑖𝑖 = 0 by assumptions (𝐋𝐞𝐦𝐦𝐚 𝟏) 
Lemma 4: ∑ 𝑘𝑖𝑋𝑖

𝑛
𝑖=1 = 1, how? 

Proof: 

∑𝑘𝑖𝑋𝑖

𝑛

𝑖=1

=∑(
𝑥𝑖

∑ 𝑥𝑖
2𝑛

𝑖=1

)

𝑛

𝑖=1

𝑋𝑖 =
∑ 𝑥𝑖
𝑛
𝑖=1 𝑋𝑖
∑ 𝑥𝑖

2𝑛
𝑖=1

=
∑ (𝑋𝑖 − �̅�)𝑋𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1

 

=
∑ 𝑋𝑖

2 − �̅� ∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑋𝑖
2 − 𝑛𝑛

𝑖=1 �̅�2
=
∑ 𝑋𝑖

2 − 𝑛�̅�2𝑛
𝑖=1

∑ 𝑋𝑖
2 − 𝑛𝑛

𝑖=1 �̅�2
= 1 

∴      ∑𝑘𝑖𝑋𝑖

𝑛

𝑖=1

= 1      

Theorem 2. The least squares estimator �̂�0  is a linear estimate of 𝛽0 , i.e. the 

intercept estimator �̂�0 is a linear function of the dependent variable 𝑌. 

Recall equation (2.5) 

β̂0 = �̅� − β̂1X̅ 

Now we should again express β̂0 as a function of observed value of Yi. To do so, 

we should substitute equation (2.13) in equation (2.5) value of β̂1. 
 

 

 

 

 

Proof (2): 

β̂0 = �̅� − β̂1X̅ = Y̅ − (∑KiYi) X̅ 

=∑
1

n
Yi − (∑KiYi) X̅ 

=∑(
1

n
− X̅Ki) Yi 

                                              β̂0  = ∑(
1

n
− X̅Ki) Yi  = ∑Zi Yi                          (2.14) 

where Zi = (
1

n
− X̅Ki) which is function of fixed values of n &X. 

Therefore, �̂�0 is linear weighted sum of Yi 
 

9.1 Unbiasedness 

The basic idea of unbiasedness lie down the sample is drawn randomly and 

independently from the population. In this case, the OLS estimators �̂�0 & �̂�1 
become an unbiased estimates of the true parameters  𝛽0 & 𝛽1 . However, the 
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property of unbiasedness does not mean that �̂�1 = 𝛽1; it says only that, if we could 

undertake repeated sampling an infinite number of times, we would get the correct 

estimate "on the average." To show whether those sample statistic (estimates) are 

unbiased estimators of the population parameters. 

Now let us see the proof as follows: 

Theorem 3: The OLS slope coefficient is an unbiased estimate of the population 

slope parameter (i.e., 𝐸(�̂�1 ) = 𝛽1). 

Proof (1):  

Prove that �̂�1 is unbiased estimate of 𝛽1, i.e. 𝐸(�̂�1 ) = 𝛽1 

We know from equation (2.13), �̂�1 = ∑ 𝑘𝑖𝑌𝑖
𝑛
𝑖=1  

Now substitute the population regression function in 𝑌𝑖 given by equation (2.1) 

since our objective is to show whether the sample coefficient is an unbiased 

estimator of the population parameter. 

�̂�1 =∑𝑘𝑖𝑌𝑖

𝑛

𝑖=1

=∑𝑘𝑖

𝑛

𝑖=1

(𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖) 

= 𝛽0∑𝑘𝑖

𝑛

𝑖=1

+ 𝛽1∑𝑘𝑖

𝑛

𝑖=1

𝑋𝑖 +∑𝑘𝑖

𝑛

𝑖=1

𝜀𝑖 

However, from Lemma 1 and lemma 4, ∑ 𝑘𝑖
𝑛
𝑖=1 = 0  and ∑ 𝑘𝑖𝑋𝑖 = 1𝑖 , 

respectively. 

β̂1 = β1 +∑ki𝜀𝑖

n

i=1

 

β̂1 − β1 = ∑ ki𝜀𝑖
n
i=1                                                              (2.15)         

 

Taking expectation: 

𝐸(β̂1) = E(β1) + ∑ ki𝐸(𝜀𝑖)
n
i=1  since ki are fixed 

𝐸(β̂1) = β1, since 𝐸(𝜀𝑖) = 0 

𝐸(β̂1) = β1                                                                             (2.16) 

Therefore, β̂1 is unbiased estimator of β1. 

Theorem 4: The least squares estimator �̂�0 is an unbiased estimate of 𝛽0 (i.e., 

𝐸(�̂�0 ) = 𝛽0). 

Proof (2): Prove that β̂0 is unbiased i.e: E(β̂0) = β0 

From the proof of linearity property of �̂�0 in equation (2.14), we have:  

β̂0 = ∑(
1

𝑛
− �̅�𝑘𝑖) 𝑌𝑖 

From equation (2.1) 𝑌𝑖 = β0 + β1X𝑖 + 𝜀𝑖, then  

β̂0 =∑[(
1

𝑛
− �̅�𝑘𝑖) (β0 + β1X𝑖 + 𝜀𝑖)] 

= β0 + β1
1

𝑛
∑Xi +

1

𝑛
∑𝜀𝑖 − β0�̅� ∑ ki − β1�̅� ∑ kiXi − �̅�∑ki 𝜀𝑖 

= β0 + β1�̅� +
1

𝑛
∑𝜀𝑖 − β1�̅� − �̅� ∑ki 𝜀𝑖 
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By Lemma 1, ∑ki = 0 and Lemma 4, ∑kiXi = 1, then 

β̂0 = β0 +
1

𝑛
∑𝜀𝑖 − �̅� ∑ki 𝜀𝑖 

β̂0 − β0 =
1

𝑛
∑𝜀𝑖 − �̅� ∑ki 𝜀𝑖 = ∑(

1

𝑛
− �̅�ki) 𝜀𝑖                                        (2.17) 

To find the unbiased estimator, taking expectation: 

𝐸(β̂0) = β0 +
1

𝑛
∑𝐸(𝜀𝑖) − �̅� ∑ki 𝐸(𝜀𝑖) 

By assumption 5, 𝐸(𝜀𝑖) = 0, then we have 

𝐸(β̂0) = β0                                                       (2.18) 

Therefore, β̂0 is an unbiased estimator of 𝛽0 
 

9.2 Minimum variance 

In order to test whether the linear and unbiased estimators of β̂0 and β̂1 possess 

the smallest sampling variances (efficiency), we shall first obtain the variance of β̂0 

and β̂1  and then establish that each estimates has the minimum variance in 

comparison with the variances of other linear and unbiased estimators obtained by 

any other econometric methods of estimations than OLS. 

a. Variance of 1


 

var(β̂1) = E(β̂1 − E(β̂1))
2
= 𝐸(β̂1 − 𝛽1)

2
                                            (2.19)    

Substitute equation (2.15) in (2.19) and we get 

var(β̂1) = E(∑ ki𝜀𝑖
n
i=1 )2 

= E(k1ε1 + k2ε2 +⋯+ kn−1εn−1 + knεn)
2 

= 𝐸[𝑘1
2𝜀1
2 + 𝑘2

2ε2
2 +⋯+ 𝑘𝑛

2ε𝑛
2 + 2k1k2ε1ε2 +⋯+ 2kn−1k𝑛εn−1εn] 

= 𝐸[𝑘1
2ε1
2 + 𝑘2

2ε2
2 +⋯+ 𝑘𝑛

2ε𝑛
2 ] + E[2k1k2ε1ε2 +⋯+ 2kn−1k𝑛εn−1εn] 

= 𝐸 [∑𝑘𝑖
2ε𝑖
2] + 2E [∑∑kik𝑗εiεj

𝑛

𝑗=2

𝑛−1

𝑖=1

]   , → 𝑖 ≠ 𝑗  

=∑𝑘𝑖
2 𝐸(ε𝑖

2) + 2∑∑kik𝑗E(εiεj)

𝑛

𝑗=2

𝑛−1

𝑖=1

  , 𝑠𝑖𝑛𝑐𝑒  ki 𝑎𝑛𝑑  k𝑗  𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

By classical linear regression assumption (6), 𝐸(ε𝑖
2) = 𝜎2  and assumption 

(7),  E(εiεj) = 0) , for 𝑖 ≠ 𝑗. 

var(β̂1) =∑𝑘𝑖
2 𝜎2 

∴  var(β̂1) = 𝜎
2∑𝑘𝑖

2 =
𝜎2

∑𝑥𝑖
2                                                                            (2.20) 

b. Variance of β̂0 

var(β̂0) = 𝐸 (β̂0 − 𝐸(β̂0))
2

= 𝐸(β̂0 − 𝛽0)
2
                            (2.21) 

Substituting equation (2.16) in (2.21) and we get, 

var(β̂0) = 𝐸 (∑(
1

𝑛
− �̅�𝐾𝑖) 𝜀𝑖)

2
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= 𝐸 [(
1

𝑛
− �̅�𝐾1) 𝜀1 + (

1

𝑛
− �̅�𝐾2) 𝜀2 +⋯+ (

1

𝑛
− �̅�𝐾𝑛−1) 𝜀𝑛−1 + (

1

𝑛
− �̅�𝐾𝑛) 𝜀𝑛]

2

 

= 𝐸 [(
1

𝑛
− �̅�𝐾1)

2

𝜀1
2 + (

1

𝑛
− �̅�𝐾2)

2

𝜀2
2 +⋯+ (

1

𝑛
− �̅�𝐾𝑛)

2

𝜀𝑛
2

+ 2(
1

𝑛
− �̅�𝐾1) (

1

𝑛
− �̅�𝐾2) 𝜀1𝜀2 +⋯

+ 2(
1

𝑛
− �̅�𝐾𝑛−1) (

1

𝑛
− �̅�𝐾𝑛) 𝜀𝑛−1𝜀𝑛] 

= 𝐸 [(
1

𝑛
− �̅�𝐾1)

2

𝜀1
2 + (

1

𝑛
− �̅�𝐾2)

2

𝜀2
2 +⋯+ (

1

𝑛
− �̅�𝐾𝑛)

2

𝜀𝑛
2]

+ 𝐸 [2 (
1

𝑛
− �̅�𝐾1) (

1

𝑛
− �̅�𝐾2) 𝜀1𝜀2 +⋯

+ 2(
1

𝑛
− �̅�𝐾𝑛−1) (

1

𝑛
− �̅�𝐾𝑛) 𝜀𝑛−1𝜀𝑛] 

= 𝐸∑(
1

𝑛
− �̅�𝐾𝑖)

2𝜀𝑖
2

𝑛

𝑖=1

+ 2E [∑∑(
1

𝑛
− �̅�𝑘𝑖) (

1

𝑛
− �̅�𝑘𝑗) 𝜀iεj

𝑛

𝑗=2

𝑛−1

𝑖=1

] ,       𝑖 ≠ 𝑗  

Since n, �̅� and 𝑘𝑖 are constant 

var(β̂0) =∑(
1

𝑛
− �̅�𝑘𝑖)

2

𝐸(𝜀𝑖
2)

+ 2 [∑∑(
1

𝑛
− �̅�𝑘𝑖) (

1

𝑛
− �̅�𝑘𝑗)𝐸(εiεj)

𝑛

𝑗=2

𝑛−1

𝑖=1

] , for  𝑖 ≠ 𝑗 

Again by assumption (6) & (7), 𝐸(𝜀𝑖
2) = 𝜎2 and 𝐸(εi𝜀j) = 0, 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

var(β̂0) = 𝜎
2∑(

1

𝑛
− �̅�ki)

2

  

= 𝜎2∑(
1

𝑛2
− 2 𝑛⁄ �̅�ki + �̅�

2𝑘𝑖
2) 

= 𝜎2 (
1

𝑛
− 2 𝑛⁄ �̅�∑ki + �̅�

2∑𝑘𝑖
2) 

By Lemma (1), ∑ki = 0 

var(β̂0) = 𝜎
2 (
1

𝑛
+ �̅�2∑𝑘𝑖

2) 

= 𝜎2 (
1

𝑛
+ �̅�2∑𝑘𝑖

2) 

By Lemma (2), ∑𝑘𝑖
2 =

1

∑𝑥𝑖
2 

var(β̂0) = 𝜎
2 (
1

𝑛
+
�̅�2

∑𝑥𝑖
2) 

where 
1

𝑛
+

�̅�2

∑𝑥𝑖
2 =

∑𝑥𝑖
2+𝑛�̅�2

𝑛∑𝑥𝑖
2 =

∑(𝑋𝑖−�̅�)
2+𝑛�̅�2

𝑛∑𝑥𝑖
2 =

∑(𝑋𝑖
2−2𝑋𝑖�̅�+�̅�

2)+𝑛�̅�2

𝑛∑𝑥𝑖
2  
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=
∑𝑋𝑖

2 − 2�̅� ∑𝑋𝑖 + ∑ �̅�
2 + 𝑛�̅�2

𝑛∑𝑥𝑖
2 =

∑𝑋𝑖
2 − 2�̅� ∑𝑋𝑖 + 𝑛�̅�

2 + 𝑛�̅�2

𝑛∑𝑥𝑖
2  

1

𝑛
+
�̅�2

∑𝑥𝑖
2 =

∑𝑋𝑖
2 − 2𝑛�̅�2 + 2𝑛�̅�2

𝑛 ∑𝑥𝑖
2 =

∑𝑋𝑖
2

𝑛∑𝑥𝑖
2                                (2.22) 

∴ var(β̂0) = 𝜎
2 (
1

𝑛
+
�̅�2

∑𝑥𝑖
2) = 𝜎

2 (
∑𝑋𝑖

2

𝑛∑𝑥𝑖
2)                                            (2.23) 

We have computed the variances of OLS estimates. Now, it is time to check whether 

the variances of OLS estimates (�̂�0 & �̂�1) do possess minimum variance property 

compared to the variances of other estimators of the true 𝛽0 and 𝛽1. 

To establish that �̂�0  and �̂�1  possess minimum variance property, we compare 

their variances with that of the variances of some other alternative linear and 

unbiased estimators of 𝛽0 and 𝛽1, say �̂�0
∗ and �̂�1

∗. Now, we want to prove that 

any other linear and unbiased estimator of the true population parameter obtained 

from any other econometric method has larger variance than that of OLS estimators. 

Let us first show the minimum variance of �̂�1 and then that of �̂�0. 
 

9.3 Minimum variance of �̂�1 

Suppose: �̂�1
∗ is an alternative linear and unbiased estimator of β1. 

Linearity property of �̂�1
∗ is given by: 

Let �̂�1
∗  = ∑𝑤𝑖 𝑌𝑖                                                                                 (2.24) 

where 𝑤𝑖 is the weighted value in other linear and unbiased estimator, which is 

differ from the collection of constant term, 𝑘𝑖 ( i.e. 𝑤𝑖 ≠ 𝑘𝑖), rather 𝑤𝑖 = 𝑘𝑖 + 𝑐𝑖. 
𝑐𝑖 is another constant term whose value is derived from an assumption. 

Unbiasedness of �̂�1
∗ is given by: 

�̂�1
∗  = ∑𝑤𝑖 (𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖) , since 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 
= 𝛽0∑𝑤𝑖 + 𝛽1∑𝑤𝑖 𝑋𝑖 + ∑𝑤𝑖 𝜀𝑖 

Since �̂�1
∗ is assumed to be an unbiased estimator. Then �̂�1

∗  is to be an unbiased 

estimator of 𝛽1, there must be true that ∑𝑤𝑖 = 0 and ∑𝑤𝑖 𝑋𝑖 = 1 in the above 

equation. 

However, 𝑤𝑖 = 𝑘𝑖 + 𝑐𝑖, thus ∑𝑤𝑖 = ∑(𝑘𝑖 + 𝑐𝑖) = ∑𝑘𝑖 + ∑𝑐𝑖 
From Lemma (1), ∑𝑘𝑖 = 0,  

Thus, ∑𝑤𝑖 to be zero, then ∑𝑐𝑖 should be zero: i.e. 

∑𝑐𝑖 = 0                                                                                        (2.25) 

Therefore, based on lemma (1) equation (2.25): 

∑𝑤𝑖 = 0                                                                                     (2.26) 

Moreover, ∑𝑤𝑖 𝑋𝑖 = ∑(𝑘𝑖 + 𝑐𝑖) 𝑋𝑖 = ∑𝑘𝑖𝑋𝑖 + ∑𝑐𝑖𝑋𝑖  
Again from lemma (4), ∑𝑘𝑖𝑋𝑖 = 1. 

Thus, ∑𝑤𝑖𝑋𝑖 to be one, then ∑𝑐𝑖𝑋𝑖 should be zero, How? 

Let derived it from ∑𝑐𝑖𝑥𝑖, , where 𝑥𝑖 = 𝑋𝑖 − �̅�. 
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Thus, ∑𝑐𝑖𝑥𝑖 = ∑𝑐𝑖 (𝑋𝑖 − �̅�) 

=∑𝑐𝑖 𝑋𝑖 − �̅�∑𝑐𝑖 

From equation (2.25) ∑𝑐𝑖 = 0, then 

∑𝑐𝑖𝑥𝑖 −∑𝑐𝑖 𝑋𝑖 = −�̅�∑𝑐𝑖 = 0 

Hence, ∑𝑐𝑖𝑥𝑖 and ∑𝑐𝑖𝑋𝑖 = 0. 

∑𝑐𝑖𝑋𝑖 = 0                                                                                          (2.27) 

Therefore, from lemma (4) and equation (2.27): 

∑𝑤𝑖𝑋𝑖 = 1                                                                                       (2.28) 

From equation (2.27 & 2.28), ∑𝑐𝑖 𝑋𝑖 = 0 and ∑𝑐𝑖 = 0, respectively, thus: 

∑𝑐𝑖𝑥𝑖 = 0                                                                                    (2.29) 

Thus, we have to put �̂�1
∗  as in the form 

�̂�1
∗  = 𝛽1 +∑𝑤𝑖𝜀𝑖 

�̂�1
∗  − 𝛽1 =∑𝑤𝑖𝜀𝑖                                                                            (2.30) 

Taking expectation 

𝐸(�̂�1
∗ ) = 𝛽1   +∑𝑤𝑖 𝐸(𝜀𝑖)                                                                     

Since 𝑤𝑖 is fixed and the only random variable is 𝜀𝑖, we apply expectation only 

for random variables, 𝜀𝑖 and its expected value is zero, (𝐸(𝜀𝑖) = 0). 

Finally, we have unbiased estimate given as below: 

𝐸(�̂�1
∗ ) = 𝛽1                                                                       (2.31) 

Variance of �̂�1
∗  is given by: 

To prove whether �̂�1
∗  has minimum variance, let’s compute 𝑣𝑎𝑟(�̂�1

∗ )  with 

𝑣𝑎𝑟(�̂�1
∗ ). 

var(�̂�1
∗ ) = E(�̂�1

∗  − E(�̂�1
∗ ))

2
= E(�̂�1

∗  − β1)
2
 

From equation (2.30), �̂�1
∗  − 𝛽1 = ∑𝑤𝑖𝜀𝑖, then 

𝑣𝑎𝑟(�̂�1
∗ ) = 𝐸 (∑𝑤𝑖𝜀𝑖)

2

  

= E(𝑤1ε1 +w2ε2 +⋯+𝑤n−1εn−1 +wnεn)
2 

= 𝐸[𝑤1
2ε1
2 + 𝑤2

2ε2
2 +⋯+𝑤𝑛

2ε𝑛
2 + 2w1w2ε1ε2 +⋯+ 2𝑤n−1w𝑛εn−1εn] 

= 𝐸[𝑤1
2ε1
2 + 𝑤2

2ε2
2 +⋯+𝑤𝑛

2ε𝑛
2 ] + E[2𝑤1𝑤2ε1ε2 +⋯+ 2wn−1𝑤𝑛εn−1εn] 

= 𝐸 [∑𝑤𝑖
2𝜀𝑖
2] + 2E [∑∑𝑤i𝑤𝑗εi𝜀j

𝑛

𝑗=2

𝑛−1

𝑖=1

]   , for  𝑖 ≠ 𝑗  

=∑𝑤𝑖
2 𝐸(𝜀𝑖

2) + 2∑∑wi𝑤𝑗E(εi𝜀j)

𝑛

𝑗=2

𝑛−1

𝑖=1

  , 𝑠𝑖𝑛𝑐𝑒 wi 𝑎𝑛𝑑 w𝑗  𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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By assumption (6) & (7),  𝐸(𝜀𝑖
2) = 𝜎2 and E(εi𝜀j) = 0, 𝑓𝑜𝑟  𝑖 ≠ 𝑗 

𝑣𝑎𝑟(�̂�1
∗ ) = 𝜎2∑𝑤𝑖

2 

However, ∑𝑤𝑖
2 = ∑(𝑘𝑖 + 𝑐𝑖)

2 = ∑𝑘𝑖
2 + 2∑𝑘𝑖𝑐𝑖 + ∑𝑐𝑖

2 

Now let us check whether ∑𝑘𝑖𝑐𝑖 = 0.  

We know the weight 𝑘𝑖 =
𝑥𝑖

∑𝑥𝑖
2 and from equation (2.29), ∑𝑐𝑖𝑥𝑖 = 0. 

Then 

∑𝑘𝑖𝑐𝑖 =
∑𝑥𝑖𝑐𝑖
∑𝑥𝑖

2 =
0

∑𝑥𝑖
2 = 0                                         (2.32) 

Thus, ∑𝑤𝑖
2 = ∑𝑘𝑖

2 + ∑𝑐𝑖
2                                                                                   (2.33) 

Therefore, 𝑣𝑎𝑟(�̂�1
∗ ) = 𝜎2(∑𝑘𝑖

2 + ∑𝑐𝑖
2) ⟹ 𝜎2 ∑𝑘𝑖

2 + 𝜎2 ∑𝑐𝑖
2  

From equation (2.20), 𝑣𝑎𝑟( �̂�1) = 𝜎
2 ∑𝑘𝑖

2, then 

𝑣𝑎𝑟(�̂�1
∗ ) = 𝑣𝑎𝑟(�̂�1) + 𝜎

2∑𝑐𝑖
2                                               (2.34) 

Given that ic  is an arbitrary constant, 𝜎2 ∑𝑐𝑖
2 is a positive i.e., it is greater than 

zero. Thus, 𝑣𝑎𝑟(�̂�1
∗ ) > 𝑣𝑎𝑟(�̂�1). This proves that �̂�1 possess minimum variance 

property. In the similar way we can prove that the least square estimate of the 

constant intercept ( 0


) possess minimum variance. 

 

9.4 Minimum Variance of �̂�0 

We take a new estimator �̂�0
∗   which we assume to be a linear and unbiased 

estimator of the function of 𝛽0. The least square estimator �̂�0 is given by: 

�̂�0 =∑(
1

𝑛
− �̅�ki) 𝑌i                                                             (2.35) 

By analogy with that the proof of the minimum variance property of �̂�1, let’s use 

the weights 𝑤𝑖 =  ci  +  ki. 

Linearity of 𝛽0 is given by: 

�̂�0
∗ =∑(

1

𝑛
− �̅�wi) 𝑌i                                                               (2.36) 

Unbisedness of �̂�0
∗ is given as: 

Since we want �̂�0
∗ to be an unbiased estimator of the true 𝛽0, that is, 𝐸(�̂�0

∗) = 𝛽0, 

we substitute for 𝑌i = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 in �̂�0
∗ and find the expected value of �̂�0

∗. 

�̂�0
∗ =∑(

1

𝑛
− �̅�wi) (𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖) 

=∑(
𝛽0
𝑛
+
𝛽1𝑋𝑖
𝑛
+
𝜀𝑖
𝑛
− �̅�wi𝛽0 − 𝛽1�̅�𝑋𝑖wi − �̅�wi𝜀𝑖)  

= 𝛽0 + 𝛽1�̅� +∑𝜀𝑖 𝑛⁄ − 𝛽0�̅�∑wi − 𝛽1�̅�∑wi𝑋𝑖 − �̅�∑wi𝜀𝑖 

For �̂�0
∗ to be an unbiased estimator of the true 𝛽0, the following must hold. That is 

given equation (2.26 & 2.28), ∑wi = 0 and ∑wi𝑋𝑖 = 1, we have  



Regression Analysis: A Theoretical Approach 33  

�̂�0
∗ = 𝛽0 + 𝛽1�̅� +

1

𝑛
∑𝜀𝑖 − 𝛽1�̅� − �̅�∑𝑤𝑖𝜀𝑖 

�̂�0
∗ = 𝛽0 +

1

𝑛
∑𝜀𝑖 − �̅�∑𝑤𝑖𝜀𝑖 

�̂�0
∗ − 𝛽0 =∑(

1

𝑛
− �̅�𝑤𝑖) 𝜀𝑖                                   (2.37) 

Taking expectation 

𝐸(�̂�0
∗) = 𝛽0   +∑(

1

𝑛
− �̅�𝑤𝑖) 𝐸(𝜀𝑖)                                                                 

Since 𝑤𝑖  and �̅�  are fixed and the only random variable is 𝜀𝑖 , we apply 

expectation only for random variables and its expected value is zero, (𝐸(𝜀𝑖) = 0). 

Finally, we have unbiased estimate given as below: 

As we know, 𝐸(𝜀𝑖) = 0 and other variable are fixed, we obtained an unbiased 

estimate of �̂�0
∗ as: 

𝐸(�̂�0
∗) = 𝛽0                                                       (2.38)  

Variance of �̂�0
∗ is given by: 

To prove whether �̂�0  has minimum variance, let’s compute 𝑣𝑎𝑟(�̂�0
∗)  with 

𝑣𝑎𝑟(�̂�0). 

𝑣𝑎𝑟(�̂�0
∗) = 𝐸(�̂�0

∗ − 𝐸(�̂�0
∗))

2
= 𝐸(�̂�0

∗ − 𝛽0)
2
 

From equation (2.37), �̂�0
∗ − 𝛽0 = ∑(

1

𝑛
− �̅�𝑤𝑖) 𝜀𝑖, then 𝑣𝑎𝑟(�̂�0

∗) is given by: 

𝑣𝑎𝑟(�̂�0
∗) = 𝐸 (∑(

1

𝑛
− �̅�𝑤𝑖) 𝜀𝑖)

2

 

= 𝐸 [(
1

𝑛
− �̅�𝑤1) 𝜀1 + (

1

𝑛
− �̅�𝑤2) 𝜀2 +⋯+ (

1

𝑛
− �̅�𝑤𝑛−1) 𝜀𝑛−1

+ (
1

𝑛
− �̅�𝑤𝑛) 𝜀𝑛]

2

 

= 𝐸 [(
1

𝑛
− �̅�𝑤1)

2

𝜀1
2 + (

1

𝑛
− �̅�𝑤2)

2

𝜀2
2 +⋯+ (

1

𝑛
− �̅�𝑤𝑛)

2

𝜀𝑛
2

+ 2(
1

𝑛
− �̅�𝑤1) (

1

𝑛
− �̅�𝑤2) 𝜀1𝜀2 +⋯

+ 2(
1

𝑛
− �̅�𝑤𝑛−1) (

1

𝑛
− �̅�𝑤𝑛) 𝜀𝑛−1𝜀𝑛] 

= 𝐸 [(
1

𝑛
− �̅�𝑤1)

2

𝜀1
2 + (

1

𝑛
− �̅�𝑤2)

2

𝜀2
2 +⋯+ (

1

𝑛
− �̅�𝑤𝑛)

2

𝜀𝑛
2]

+ 𝐸 [2 (
1

𝑛
− �̅�𝑤1) (

1

𝑛
− �̅�𝑤2) 𝜀1𝜀2 +⋯

+ 2(
1

𝑛
− �̅�𝑤𝑛−1) (

1

𝑛
− �̅�𝑤𝑛) 𝜀𝑛−1𝜀𝑛] 
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= 𝐸∑(
1

𝑛
− �̅�𝑤𝑖)

2 𝜀𝑖
2 + 2E [∑∑(

1

𝑛
− �̅�𝑤𝑖) (

1

𝑛
− �̅�𝑤𝑗) εi𝜀j

𝑛

𝑗=2

𝑛−1

𝑖=1

] ,→ 𝑖 ≠ 𝑗  

Since n, �̅� and 𝑤𝑖 are constant, apply expectation only for random variable, 𝜀𝑖 

=∑(
1

𝑛
− �̅�𝑤𝑖)

2

𝐸(𝜀𝑖
2) + 2 [∑∑(

1

𝑛
− �̅�𝑤𝑖) (

1

𝑛
− �̅�𝑤𝑗)𝐸(𝜀iεj)

𝑛

𝑗=2

𝑛−1

𝑖=1

] ,→ 𝑖 ≠ 𝑗 

By assumption (6) & (7), 𝐸(𝜀𝑖
2) = 𝜎2  and 𝑐𝑜𝑣(𝜀𝑖𝜀𝑗) = 0, 𝑖 ≠ 𝑗, respectively, 

then 

𝑣𝑎𝑟(�̂�0
∗) = (∑(

1

𝑛
− �̅�𝑤𝑖)

2 𝜎2) 

= 𝜎2∑(
1

𝑛
− �̅�𝑤𝑖)

2 

= 𝜎2∑(
1

𝑛2
+ �̅�2𝑤𝑖

2 − 2
1

𝑛
�̅�𝑤𝑖) 

= 𝜎2 (
1

𝑛
+ �̅�2∑𝑤𝑖

2 − 2
1

𝑛
�̅�∑𝑤𝑖) 

From equation (2.26) ∑𝑤𝑖 = 0, then  

𝑣𝑎𝑟(�̂�0
∗) = 𝜎2 (

1

𝑛
+ �̅�2∑𝑤𝑖

2) 

Moreover, from equation (2.33), ∑𝑤𝑖
2 = ∑𝑘𝑖

2 +∑𝑐𝑖
2, thus 

𝑣𝑎𝑟(�̂�0
∗) = 𝜎2 (

1

𝑛
+ �̅�2 (∑𝑘𝑖

2 +∑𝑐𝑖
2)) = 𝜎2

1

𝑛
+ 𝜎2�̅�2∑𝑘𝑖

2 + 𝜎2�̅�2∑𝑐𝑖
2 

= 𝜎2 (
1

𝑛
+ �̅�2∑𝑘𝑖

2) + 𝜎2�̅�2∑𝑐𝑖
2  

𝑣𝑎𝑟(�̂�0
∗) = 𝜎2 (

1

𝑛
+
�̅�2

∑𝑥𝑖
2) + 𝜎

2�̅�2∑𝑐𝑖
2                                                 (2.39) 

From equation (2.22), 
1

𝑛
+

�̅�2

∑𝑥𝑖
2 =

∑𝑋𝑖
2

𝑛∑𝑥𝑖
2 

𝑣𝑎𝑟(�̂�0
∗) = 𝜎2 (

∑𝑋𝑖
2

𝑛∑𝑥𝑖
2) + 𝜎

2�̅�2∑𝑐𝑖
2                                                   (2.40)  

From equation (2.23), 𝑣𝑎𝑟(�̂�0) = 𝜎
2 (

∑𝑋𝑖
2

𝑛∑𝑥𝑖
2) 

Thus, 𝑣𝑎𝑟(�̂�0
∗) = 𝑣𝑎𝑟(�̂�0) + 𝜎

2�̅�2∑𝑐𝑖
2      

Hence, 𝑣𝑎𝑟(�̂�0
∗) > 𝑣𝑎𝑟(�̂�0) , since 𝜎2�̅�2∑𝑐𝑖

2 is quadratic (all are squared) its 

value is positive. i.e. 𝜎2�̅�2∑𝑐𝑖
2 > 0. 

Therefore, we have proved that the least square estimators of linear regression 

model are best, linear, and unbiased estimators. The sampling variance of the OLS 

estimators ( 𝑣𝑎𝑟(�̂�0)  and 𝑣𝑎𝑟(�̂�1) ) measure the statistical precision of the 

coefficient of OLS estimators of �̂�0 and �̂�1. 

The 𝑣𝑎𝑟(�̂�0) and 𝑣𝑎𝑟(�̂�1) measure the statistical precision of the coefficient of 
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OLS estimators of �̂�0 and �̂�1. Therefore, the estimates �̂�0 and �̂�1 to be precise, 

the variance of �̂�0 and �̂�1 (𝑣𝑎𝑟(�̂�0) and 𝑣𝑎𝑟(�̂�1)) should be minimum. 

Thus, the 𝑣𝑎𝑟(�̂�0) and 𝑣𝑎𝑟(�̂�1) become minimum if: 

• The smaller the error variance 2  i.e., the smaller the variance of the 

unobserved and unknown random influences on 𝑌𝑖. 
• The larger is the sample variation of 𝑋𝑖 about their sample mean, i.e., the larger 

the values of 𝑥𝑖
2 = (𝑋𝑖 − �̅�)

2, i=1,2….,n. 

• The larger is the size of the sample, i.e., the larger is n. 

 

9.5 Covariance �̂�𝟎 and �̂�𝟏 

The covariance of the OLS coefficient estimators β̂0 and β̂1 is defined as: 

𝑐𝑜𝑣(β̂0, β̂1) = 𝐸{[β̂0 − E( β̂0)][β̂1 − E( β̂1)]} 

Derivation of expression for 𝑐𝑜𝑣(β̂0, β̂1): 

𝑐𝑜𝑣(β̂0, β̂1) = 𝐸{[β̂0 − E( β̂0)][β̂1 − E( β̂1)]} 

From equation (2.15 & 2.17),  (β̂1 − β1) = ∑ki 𝜀𝑖  and (β̂0 − β0) = ∑(
1

𝑛
−

�̅�ki) 𝜀𝑖, respectively, then 

𝑐𝑜𝑣(β̂0, β̂1) = 𝐸 {[∑ki 𝜀𝑖] [∑(
1

𝑛
− �̅�ki) 𝜀𝑖]} 

= 𝐸 {[𝑘1𝜀1 + 𝑘2𝜀2 +⋯+ 𝑘𝑛𝜀𝑛] [(
1

𝑛
− �̅�k1) 𝜀1 + (

1

𝑛
− �̅�k2) 𝜀2 +⋯

+ (
1

𝑛
− �̅�kn) 𝜀𝑛]} 

= 𝐸 {[𝑘1 (
1

𝑛
− �̅�k1) 𝜀1𝜀1 + 𝑘2 (

1

𝑛
− �̅�k2) 𝜀2𝜀2 +⋯+ 𝑘𝑛 (

1

𝑛
− �̅�kn) 𝜀𝑛𝜀𝑛]

+ 2𝑘1 (
1

𝑛
− �̅�k2) 𝜀1𝜀2 +⋯+ 2𝑘𝑛−1 (

1

𝑛
− �̅�𝑘𝑛) 𝜀𝑛−1𝜀𝑛} 

= 𝐸∑𝑘𝑖(
1

𝑛
− �̅�𝑘𝑖) 𝜀𝑖

2 + 2E [∑∑𝑘𝑖 (
1

𝑛
− �̅�𝑘𝑗) εi𝜀j

𝑛

𝑗=2

𝑛−1

𝑖=1

] ,→ 𝑖 ≠ 𝑗  

=∑𝑘𝑖 (
1

𝑛
− �̅�𝑘𝑖)𝐸(𝜀𝑖

2) + 2E [∑∑𝑘𝑖 (
1

𝑛
− �̅�𝑘𝑗) 𝐸(εi𝜀j

𝑛

𝑗=2

𝑛−1

𝑖=1

)] ,→ 𝑖 ≠ 

=∑𝑘𝑖 (
1

𝑛
− �̅�𝑘𝑖) 𝜎

2, 𝑠𝑖𝑛𝑐𝑒 𝐸(𝜀𝑖
2) 𝑎𝑛𝑑  E(εi𝜀j) = 0, 𝑖 ≠ 

= 𝜎2 (
1

𝑛
∑𝑘𝑖 − �̅�∑𝑘𝑖

2) 

𝑐𝑜𝑣(β̂0, β̂1) = 𝜎
2(−�̅� ∑ 𝑘𝑖

2), since ∑𝑘𝑖 = 0 

= 𝜎2 (−
�̅�

∑𝑥𝑖
2) = −�̅� (

𝜎2

∑𝑥𝑖
2)  , since ∑𝑘𝑖

2 =
1

∑𝑥𝑖
2 
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= −�̅� (𝑉𝑎𝑟(β̂1))  since 𝑉𝑎𝑟(β̂1) =
𝜎2

∑𝑥𝑖
2 

∴ 𝐶𝑜𝑣(β̂0, β̂1) = −�̅� (
𝜎2

∑𝑥𝑖
2)  = −�̅� (𝑉𝑎𝑟(β̂1))                                     (2.41)  

Since both 𝜎2 and ∑𝑥𝑖
2 are positive, the sign of 𝐶𝑜𝑣(β̂0, β̂1) dependes on the 

sign of −�̅�. 

If �̅� > 0, 𝐶𝑜𝑣(β̂0, β̂1) < 0: the sampling errors (β̂0 − 𝛽0) and (β̂1 − 𝛽1) are 

of opposite sign. 

If �̅� < 0, 𝐶𝑜𝑣(β̂0, β̂1) > 0: the sampling errors (β̂0 − 𝛽0) and (β̂1 − 𝛽1) are 

of same sign. 

 

9.6 Estimation of the Population Variance 

As we know that the variances of the OLS estimates incorporate 𝜎2, which is the 

population variance of the random or disturbance term. However, it is difficult to 

obtain for the population value of the disturbance term because of technical and 

economic reasons. Hence, it is difficult to compute 𝜎2, and estimating the variances 

of OLS estimates are also difficult. However, we can compute these variances if we 

take the unbiased estimate of 𝜎2 which is �̂�2 computed from the sample value of 

the disturbance term 𝜀�̂�  in the expression: 

�̂�𝜀
2 =

∑(𝑌𝑖 − �̂�)
2

𝑛 − 2
=
∑𝜀�̂�

2

𝑛 − 2
                                                                 (2.42) 

To use �̂�2 in the expressions for the variances of �̂�0 and �̂�1 we have to prove 

whether �̂�2 is an unbiased estimator of 𝜎2, i.e., 𝐸(�̂�2) = 𝐸 (
∑ �̂�𝑖

2

𝑛−2
) = 𝜎2. 

 

Proof: 

To proof this we have to compute ∑𝜀�̂�
2 from the expressions of Y, �̂�, y, �̂� and 

𝜀�̂�. 

𝑌 = �̂�0 + �̂�1𝑋 + 𝜀̂ 

�̂� = �̂�0 + �̂�1𝑋 

𝑌 = �̂� + 𝜀̂                                                                                                    (2.43) 
𝜀̂ = 𝑌 − �̂�                                                                                                   (2.44) 

Apply summing for equation (2.43) will result the following expression 

∑𝑌𝑖 =∑�̂�𝑖 +∑𝜀�̂� 

∑𝑌𝑖 =∑�̂�𝑖 

Given that ∑𝜀�̂� = 0, now let us check whether the sum of residual is equal to zero. 

∑𝜀�̂�

𝑛

𝑖=1

=∑(𝑌𝑖

𝑛

𝑖=1

− �̂�0 − �̂�1𝑋𝑖) =∑𝑌𝑖

𝑛

𝑖=1

− 𝑛 �̂�0 − �̂�1∑𝑋𝑖

𝑛

𝑖=1

 

= 𝑛�̅� − 𝑛 �̂�0 − 𝑛 �̂�1�̅� = 𝑛(�̅� − �̂�0 − �̂�1 �̅�  )   
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∑𝜀�̂�

𝑛

𝑖=1

= 𝑛(�̅� − (�̅� − �̂�1�̅�) − �̂�1 �̅�) =   0 

 

 

Dividing both sides the above by the number of observation ‘n’ will give us 

∑𝑌𝑖
𝑛
=
∑ �̂�𝑖
𝑛
   →  �̅� =  �̅̂�                                                                              (2.45) 

Putting equation (2.43) and (2.44) together and subtract 

𝑌 = �̂� + 𝜀̂ 

�̅� =  �̅̂� 

⟹ (𝑌 − �̅�) = (�̂� − �̅̂�) + 𝜀̂ 

⟹ 𝑦𝑖 = �̂� + 𝜀̂                                                                       (2.46) 
From equation (2.46): 

𝜀̂ = 𝑦 − �̂�                                                    (2.47) 
where the y’s are in deviation form. 

Now, we should to find 𝑦 𝑎𝑛𝑑 �̂� in functional expression as derived below. 

The regression equation is given by: 

𝑌 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀 
Then the average value of the regression is given by: 

�̅� = 𝛽0 + 𝛽1�̅� + 𝜀 ̅
Note: In this case, we assumed earlier that, 𝐸(𝜀𝑖) = 0, i.e. in taking a very large 

number of samples we expect 𝜀𝑖 to have a mean value of zero, but in any particular 

single sample 𝜀 ̅ is not necessarily zero. 

Now by subtraction we obtain 

𝑦 = (𝑌 − �̅�) = 𝛽1(𝑋 − �̅�) + (𝜀 − 𝜀)̅ = 𝛽1𝑥 + (𝜀 − 𝜀)̅ 
𝑦 = 𝛽1𝑥𝑖 + (𝜀 − 𝜀)̅                                                                        (2.48) 

Similarly from the fitted value: 

�̂� = �̂�0 + �̂�1𝑋 

Then the average value of the fitted line is given by: 

�̅̂� = �̂�0 + �̂�1�̅� 

By subtraction of the mean value of the fitted value from the total fitted value we 

get 

�̂� = �̂� − �̅̂� = �̂�0 + �̂�1𝑋 − (�̂�0 + �̂�1�̅�) = �̂�1(𝑋 − �̅�) 

�̂� = �̂�1𝑥                                                                                                        (2.49) 
Substituting (2.48) and (2.49) in (2.47) we get 

𝜀̂ = 𝑦 − �̂� = 𝛽1𝑥 + (𝜀 − 𝜀)̅ − �̂�1𝑥 

= (𝜀 − 𝜀)̅ − (�̂�1 − 𝛽1)𝑥 

The summation of the squared residuals over the ‘n’ samples on both side yields: 

∑𝜀�̂�
2 =∑[(𝜀𝑖 − 𝜀)̅ − (�̂�1 − 𝛽1)𝑥𝑖]

2
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=∑[(𝜀𝑖 − 𝜀)̅
2 + (�̂�1 − 𝛽1)

2
𝑥𝑖
2 − 2(�̂�1 − 𝛽1)𝑥𝑖(𝜀𝑖 − 𝜀)̅] 

=∑(𝜀𝑖 − 𝜀)̅
2 + (�̂�1 − 𝛽1)

2
∑𝑥𝑖

2 − 2 [(�̂�1 − 𝛽1)∑𝑥𝑖(𝜀𝑖 − 𝜀)̅] 

To find the unbiasedness, we apply expectation for the whole function 

𝐸 (∑𝜀�̂�
2) = 𝐸 (∑(𝜀𝑖 − 𝜀)̅

2) + 𝐸 [(�̂�1 − 𝛽1)
2
∑𝑥𝑖

2]

− 2𝐸 [(�̂�1 − 𝛽1)∑𝑥𝑖(𝜀𝑖 − 𝜀)̅]         (2.50) 

The right hand side terms of equation (2.50) may be rearranged as follows 

a. 𝐸(∑(𝜀𝑖 − 𝜀)̅
2) = 𝐸 ∑(𝜀𝑖

2 − 2𝜀�̅�𝑖 + 𝜀̅
2) = 𝐸(∑ 𝜀𝑖

2 − 2𝜀̅∑ 𝜀𝑖 + 𝜀̅∑ 𝜀𝑖) 

= 𝐸 (∑𝜀𝑖
2 − 𝜀̅∑𝜀𝑖) 

= 𝐸 (∑𝜀𝑖
2 −

(∑𝜀𝑖)
2

𝑛
) =∑𝐸(𝜀𝑖

2) −
𝐸(∑ 𝜀𝑖)

2

𝑛
 

= ∑𝜎𝜀
2 −

1

𝑛
𝐸(𝜀1 + 𝜀2 +⋯+ 𝜀𝑛)

2 = 𝑛𝜎𝜀
2 −

1

𝑛
𝐸(𝜀1 + 𝜀2 +⋯+ 𝜀𝑛)

2  since 

𝐸(𝜀𝑖
2) = 𝜎𝜀

2 

= 𝑛𝜎𝜀
2 −

1

𝑛
𝐸 (∑𝜀𝑖

2 + 2∑∑𝜀𝑖𝜀𝑗

𝑛

𝑗=2

𝑛−1

𝑖=1

) 

= 𝑛𝜎𝜀
2 −

1

𝑛
∑𝐸(𝜀𝑖

2) −
2

𝑛
∑𝐸(𝜀𝑖, 𝜀𝑗) , 𝑖 ≠ 𝑗 

= 𝑛𝜎𝜀
2 − 𝜎𝜀

2, ( 𝑔𝑖𝑣𝑒𝑛 𝐸(𝜀𝑖, 𝜀𝑗) = 0), 𝑓𝑜𝑟  𝑖 ≠ 𝑗 

= 𝜎𝜀
2(𝑛 − 1)                                                                    (2.51) 

b. 𝐸 [(�̂�1 − 𝛽1)
2
∑𝑥𝑖

2] = ∑𝑥𝑖
2 𝐸(�̂�1 − 𝛽1)

2
 

Given that the values of 𝑥𝑖 is derived from X’s which are fixed in all samples and 

we know that 

𝐸(�̂�1 − 𝛽1)
2
= 𝑣𝑎𝑟(�̂�1) = 𝜎𝜀

2
1

∑𝑥𝑖2
 

=∑𝑥𝑖
2 𝜎𝜀

2
1

∑𝑥𝑖2
 

Hence, 

∑𝑥𝑖
2𝐸(�̂�1 − 𝛽1)

2
= 𝜎𝜀

2                                                                      (2.52) 

c. −2𝐸[(�̂�1 − 𝛽1)∑𝑥𝑖(𝜀𝑖 − 𝜀)̅] = −2𝐸[(�̂�1 − 𝛽1)(∑𝑥𝑖𝜀𝑖 − 𝜀̅∑ 𝑥𝑖)] 

= −2𝐸[(�̂�1 − 𝛽1)(∑𝑥𝑖𝜀𝑖)] since ∑𝑥𝑖 = 0 

However, from (2.8), (�̂�1 − 𝛽1) = ∑𝑘𝜀𝑖 and substitute it in the above expression, 

we will get: 

= −2𝐸 [(∑𝑘𝑖𝜀𝑖) (∑𝑥𝑖𝜀𝑖)] 

where 𝑘𝑖 =
𝑥𝑖

∑𝑥𝑖
2 = 
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−2𝐸 [∑((
𝑥𝑖
∑𝑥𝑖2

) 𝜀𝑖) (∑𝑥𝑖𝜀𝑖)] = −2𝐸 [
(∑𝑥𝑖𝜀𝑖)

∑ 𝑥𝑖2
(∑𝑥𝑖𝜀𝑖)] 

= −2𝐸 [
(∑𝑥𝑖𝜀𝑖)

2

∑𝑥𝑖2
] 

= −2𝐸 [
(𝑥1𝜀1 + 𝑥2𝜀2…+ 𝑥𝑛−1𝜀𝑛−1 + 𝑥𝑛𝜀𝑛)

2

∑𝑥𝑖2
] 

= −2𝐸 [
(∑𝑥𝑖

2𝜀𝑖
2) + 2(∑ ∑ 𝑥𝑖𝑥𝑗𝜀𝑖𝜀𝑗

𝑛
𝑗=2

𝑛−1
𝑖=1

∑𝑥𝑖2
] 

= −2 [
∑𝑥𝑖

2 𝐸(𝜀𝑖
2)

∑ 𝑥𝑖2
+
2(∑∑𝑥𝑖𝑥𝑗𝐸(𝜀𝑖𝜀𝑗)

∑𝑥𝑖2
] , 𝑖 ≠ 𝑗 

= −2
∑𝑥𝑖

2 𝐸(𝜀𝑖
2)

∑𝑥𝑖2
(𝑔𝑖𝑣𝑒𝑛 𝐸(𝜀𝑖𝜀𝑗) = 0,   𝑖 ≠ 𝑗) 

−2𝐸(𝜀𝑖
2) = −2𝜎2                                                          (2.53)     

Consequently, equation (51) can be written in terms of (2.51), (2.52), and (2.53) as 

follows: 

𝐸 (∑𝜀�̂�
2) = 𝜎𝜀

2(𝑛 − 1) + 𝜎𝜀
2 − 2𝜎𝜀

2                                                (2.54) 

From which we get 

𝐸 (∑𝜀�̂�
2) = 𝜎𝜀

2𝑛 − 2𝜎𝜀
2 = 𝜎𝜀

2(𝑛 − 2)                                          

𝐸 (∑𝜀�̂�
2) = 𝜎𝜀

2(𝑛 − 2)                                          

Divide both sides by 𝑛 − 2 results 

𝐸 (
∑𝜀�̂�

2

𝑛 − 2
) = 𝜎𝜀

2                                                 

By equation (2.42), �̂�𝜀
2 =

∑(𝑌𝑖−�̂�)
2

𝑛−2
=

∑ �̂�𝑖
2

𝑛−2
. where 𝑛 − 2 is the df. 

Thus,  

𝐸 (
∑𝜀�̂�

2

𝑛 − 2
) = 𝐸(�̂�𝜀

2) = 𝜎𝜀
2                                                (2.53) 

Therefore, the sample variance of an error term, �̂�𝜀
2 =

∑ �̂�𝑖
2

𝑛−2
 is unbiased estimate of 

the true or population variance of the error term (𝜎𝜀
2). 

Now, we can substitute �̂�𝜀
2 =

∑ �̂�𝑖
2

𝑛−2
 for 𝜎𝜀

2 in the variance expression of �̂�0 and 
�̂�1, since 𝐸(�̂�𝜀

2) = 𝜎𝜀
2.  

Hence the formula of variance of �̂�0 and  �̂�1, becomes; 

𝑣𝑎𝑟(�̂�1) =
�̂�𝜀
2

∑𝑥𝑖
2 =

∑𝜀�̂�
2

(𝑛 − 2)∑𝑥𝑖
2                                                                      (2.54) 

𝑣𝑎𝑟(�̂�0) = �̂�𝜀
2 (

∑𝑋𝑖
2

𝑛∑𝑥𝑖
2) =

∑ 𝜀�̂�
2∑𝑋𝑖

2

𝑛(𝑛 − 2)∑𝑥𝑖
2                                                        (2.55) 
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where 𝑣𝑎𝑟(�̂�1)  and 𝑣𝑎𝑟(�̂�0)  measure the statistical precision of the OLS 

coefficient estimators (�̂�1) and �̂�0, respectively. 

 

10. Conclusion 

The classical regression model is still the fundamental even for the development of 

new approaches, which is based on extensions of the classical assumptions. 

Following that, in this study, we try to cover the basic concept of regression analysis 

especially simple linear regression, their assumptions known as Gauss-Markov 

assumptions, estimation of the parameters using ordinary least square (OLS), and 

proofing the best linear unbiased estimator properties of OLS estimates. Thus, in 

the estimation of classical linear regression model using an ordinary least square 

should satisfy the Gauss Markov assumptions. If the Gauss–Markov assumptions hold 

true, the OLS procedure creates the best possible estimates. 
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