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Abstract 
 

The Chow test is the standard method to test for differences in regression response 

across groups. In some cases, the groups being tested are composed of a time series 

of cross sections. For example, when testing for differences across industries, each 

industry may be composed of several observations on several individual firms. If 

the individuals themselves have systematic differences, the Chow test will be 

compromised: the individual and group effects become confounded. This can cause 

rejections in the absence of the group effect of interest. We illustrate the problem 

with a Monte Carlo analysis, and show that the effects cannot be separated. We 

propose a bootstrap-like testing procedure that can eliminate excessive Type I errors, 

and when used with the standard Chow test can help to arrive at an appropriate 

conclusion when both effects are present. 
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1. Introduction  

Consider the problem of testing whether firms in the steel and chemical industries 

have different dividend policies. A common method for this is the well-known 

Chow test (1960), which tests for group effects by comparing the error sum of 

squares (ESS) from regressions on the individual industries to the ESS from a 

pooled regression using an F-test. It is usually characterized as involving two groups, 

but the test is easily extended to several groups. This makes it an attractive tool for 

testing group differences in a wide range of fields study from public policy to 

biomedical engineering research (e.g. Kartikasari & Merianti, 2016; Chen et al., 

2019). Hence, any potential problems with or hidden violations of the test and its 

assumptions can have broad implications. 

The interest in this study is using the Chow test for detecting group effects, and 

examining a relatively little-known issue with how this can be done. To this end, 

consider Chow’s (1960) own example of comparing dividend behavior across the 

steel and chemical industries. Data for the test may consist of a single observation 

on many steel firms and many chemical firms. This is likely to require a large 

number of firms, which may be difficult to obtain, and perhaps impossible in some 

cases. In Chow’s own example, there are only a limited number of steel/chemical 

firms in existence, at least firms large enough to have stock price trading data 

publicly available. The alternative is to have time series observations on 𝑚1 steel 

firms and 𝑚2 chemical firms, a time series of cross-sections. Data of this type is 

also likely with geographic data, when there is panel-type data on a set of states or 

countries and the interest is in determining whether there are regional differences.  

It is this case, when there are multiple data points for each observational unit within 

a group, that is the focus of this paper. We show that, because the groups being 

examined (e.g. the chemical industry and the steel industry) are themselves 

composed of subgroups (chemical firms and steel firms), the results of the test are 

likely to be misinterpreted. In the extreme case, one may conclude there are group 

differences when in fact there are none: there are differences, but they have nothing 

to do with the hypothesis. The problem is that differences identified by the test may 

be due not only to the groups of interest but also to the subgroups. For example, 

there may be not only industry effects, but also firm effects. Finding a significant 

difference may indicate an industry difference, but it may also reflect idiosyncratic 

firm differences, of no interest to anyone except possibly the firms themselves. We 

demonstrate the nature of the problem with analytical arguments and a simple 

Monte Carlo analysis. We then argue that the two effects cannot be separately 

identified, making an accurate grouping test infeasible. We propose a solution to 

this problem using a bootstrap testing procedure, which is demonstrated with two 

applications using actual data. We end by presenting some results regarding power 

of the proposed procedure.  

Our work is related to previous work concerning pooling data (Baltagi, Bresson, 

and Pirotte, 2008). However, that work has been more concerned with the 

consequences of improper pooling rather than the detection of differences. 
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Throughout we use the example of firms and industries, though obviously results 

apply to any case with groups composed of subgroups (henceforth, without loss of 

generality, “industries” and “firms”, respectively). 

 

1.1 Overview of the Chow Test 

Consider a standard 𝑘-variable regression model 𝑌 = 𝑿𝛽 + 𝑒 , where 𝑒  is the 

usual error term and 𝑘 includes an intercept. Data is available from two distinct 

groups in the data, such as the industries in Chow’s example, or two geographic 

regions. Denoting the groups as A and B, the interest is in whether the same equation 

applies to both. That is, testing the null hypothesis 𝛽𝐴 = 𝛽𝐵, which is the hypothesis 

characterizing the Chow test. As suggested above, the standard procedure is to 

estimate three regressions:  one with the A data, one with the B data, and one with 

the data pooled in a single regression. Then the Chow test statistic is as follows: 

 
𝐸𝑆𝑆𝑃−(𝐸𝑆𝑆𝐴+𝐸𝑆𝑆𝐵)

𝐸𝑆𝑆𝐴+𝐸𝑆𝑆𝐵
×

𝑛𝐴+𝑛𝐵−2𝑘

𝑘
                             (1) 

where the ESS’s are the error sum of squares from the regressions. The statistic has 

an F distribution with 𝑘 and 𝑛𝐴 + 𝑛𝐵 − 2𝑘 degrees of freedom. Note that, should 

the hypothesis be extended to finitely many, or 𝑚 industries, then the last term 

being subtracted in the second degrees of freedom becomes 𝑚 ∗ 𝑘. In this example, 

𝑚 = 2 because there are two distinct groups (industries), making the subtracted 

term equal to 2𝑘. 

 

An alternative method to conduct the test is to use intercept and slope shifters 

(Gujarati, 1970). To illustrate we use a simple univariate model 𝑌 = 𝛼 + 𝑿𝛽 . 

Continuing the A-B distinction, we apply the test in the usual way. Thus, we 

estimate this equation three times, as described above. The alternative is to use the 

model 𝑌 = 𝛼 + 𝑿𝛽 + 𝛼1𝐷 + 𝛽1(𝐷𝑿), where 𝐷 is a dummy variable indicating 

either of the industries, say, B.  This is estimated once, using the pooled data. It 

yields an equivalent test because it yields coefficients numerically equivalent to 

those in the individual regressions. For example, �̂� will equal the original �̂�𝐴; �̂�1 

will be the same as (�̂�𝐵 − �̂�𝐴), and similarly for the 𝛼’s. It follows that an F test of 

𝛼1 = 𝛽1 = 0 in this model is a test that the coefficients for the industries are the 

same, that is, a Chow test.  

For either method, the generalization to 𝑚 industries is fairly obvious. One either 

estimates more individual regressions to obtain more individual ESS’s, or one uses 

a larger set of intercept and slope shifters.  
 

 



38                                          Binkley and Young  

1.2 Testing with Time Series-Cross Section Data 

We now consider the case of interest in this paper: testing when the cross sections 

being examined are each composed of time series. For convenience we continue the 

example of firms and industries. Suppose we have firm data on some relation, and 

it is of interest whether there are differences in response across industries, where 

each industry is a subset of firms. The vector of coefficients of firm 𝑖 in industry 

𝑔 can be thought of as 𝛽 + 𝜋𝑔, where 𝛽 is the effect common to all firms in all 

industries and 𝜋𝑔 is a 𝑘-vector of industry effects, specific to firms in industry 𝑔. 

The Chow test amounts to testing that 𝜋𝑔 = 𝜋ℎ = ⋯ = 𝜋𝑝, (or equivalently, they 

are all zero), where 𝑔, ℎ, … , 𝑝 account for all firms and each firm is in one of the 

industries. If the test is rejected, we conclude there are industry effects. 

A problem arises if the coefficient vector for firm 𝑖 in industry 𝑔 is actually 𝛽 +
𝜋𝑔 + 𝜈𝑖 , where 𝜈𝑖  is a 𝑘 -vector of elements measuring systematic coefficient 

differences in firm 𝑖 relative to the average firm, unrelated to industries. That is, 

𝜈𝑖 does not vary in time within a firm. It seems reasonable that this would be a 

common occurrence: each member of a group would not be expected to respond 

exactly as do other members of the industry. In the example, if such individual firm 

effects are “large,” rejection of the hypothesis may in part be due to some joint effect 

of the component firms, which could occur with any grouping of firms.  

Consider the simplest possible model 𝑦 = 𝜇 + 𝑒, where 𝜇  is the unconditional 

mean and 𝑒 is the usual error term. The OLS estimate is �̂� = �̅�. With industry 

effects, we have �̂�𝑔 + �̅� + 𝜃𝑔 . If there are no firm effects, then 𝜃𝑔 = �̂�𝑔 , the 

industry effect. With firm effects, 𝜃𝑔 is an estimate of 𝜋𝑔 +
1

𝑚
∑ (𝜈𝑖)

𝑚
𝑖=1 , where 𝑚 

is the number of firms in 𝑔 and we assume the sample size in each firm is the same. 

Since under this condition the Chow test is a test on the 𝜃’s rather than the �̂�’s, if 

the second term on the right is important relative to the first, a deceptive outcome 

is likely. Obviously this is more likely when the 𝜈’s are “large” relative to 𝜋𝑔. We 

see from the definition of 𝜃 it  is more likely when 𝑛, the number of observations 

per firm is large, making firm effects more detectable. It may also be more likely 

when m, the number of firms in an industry, is small, since then positive firm effects 

are less likely to be counterbalanced by negative effects. However, this itself may 

be counterbalanced by a reduction in the total number of observations, making any 

differences less detectable. In any case, if there are no actual industry effects, the 

Chow test may still reject the hypothesis, due to firm effects in the specified 

industries. This occurs even though the effect has nothing to do with the underlying 

grouping criterion but will occur with randomly chosen firms, as we show later. 
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1.3 Identifying Industry Effects 

In view of the foregoing, an important question is whether or not the group effects 

of interest and the underlying subgroup effects can be identified and separately 

tested in a traditional regression model, such as in a Least Squares Dummy Variable 

(LSDV) model. The answer to this question is “no”. To illustrate, consider a very 

simple case. Suppose we again have the univariate model 𝑌 = 𝛼 + 𝛽𝑋, and we 

have panel data on four firms, firms 1 and 2 from industry A and firms 3 and 4 from 

B. The interest is in whether there is an industry effect. Ignoring any firm 

differences, to test this we can employ the intercept-slope shifter method in the same 

vein as Gujarati (1970) and use the model 𝑌 = 𝛼 + 𝛽𝑋 + 𝛼𝐴𝐷𝐴 + 𝛽𝐴(𝐷𝐴𝑋𝐴) , 

where 𝐷𝐴 is a dummy variable indicating industry A. The test is  𝛼𝐴 = 𝛽𝐴 = 0.  

To allow for firm effects, it might seem we can use the model: 

 

𝑌 = 𝛼 + 𝛽𝑋 + 𝛼𝐴𝐷𝐴 + 𝛽𝐴(𝐷𝐴𝑋𝐴) + 𝛼1𝐷1 + 𝛽1(𝐷1𝑋1) + 𝛼3𝐷3 + 𝛽3(𝐷3𝑋3)   (2) 

where the subscripts are obvious. This model separates all firms, first by industry, 

then within each industry. However, under the null hypothesis of no industry effect, 

𝛼𝐴 = 𝛽𝐴 = 0 , the model in (2) becomes 𝑌 = 𝛼 + 𝛽𝑋 + 𝛼1𝐷1 + 𝛽1(𝐷1𝑋1) +
𝛼3𝐷3 + 𝛽3(𝐷3𝑋3), which does not fully separate the firms: firms 2 and 4 are now 

combined. This implies the hypothesis 𝛼𝐴 = 𝛽𝐴 = 0 can also be interpreted as a 

test of equality between firms 2 and 4. The ambiguity in interpretation arises 

because in order to identify firms 2 and 4, 𝛼𝐴 and 𝛽𝐴 must be in the model. In fact, 

because the model in (2) with 𝛼𝐴 and 𝛽𝐴 does separate the firms, it is statistically 

equivalent to the model: 

 

𝑌 = 𝛼 + 𝛽𝑋 + 𝛼2𝐷2 + 𝛽2(𝐷2𝑋2) + 𝛼1𝐷1 + 𝛽1(𝐷1𝑋1) + 𝛼3𝐷3 + 𝛽3(𝐷3𝑋3)   (3) 

a model which explicitly differentiates firms, with no allowance for industries. Thus, 

the industry test 𝛼𝐴 = 𝛽𝐴 = 0 in (2) is equivalent to the firm test 𝛼2 = 𝛽2 = 0 in 

(3), which explicitly tests that firms 2 and 4 respond equally. Note that if firms 2 

and 4 respond equally, then there must be no industry effect, given they are in 

different industries: although this may seem to be insufficient to conclude the 

absence of an industry effect, since firms 1 and 3 may still differ, and they are in 

different industries. But if 1, which is in the same industry as 2, differs from 3, 

which is the same industry as 4, and given that 2 and 4 do not differ, this difference 

in 1 and 3 must reflect firm differences. To eliminate this confounding, the model 

in (3) would need to also include the variables 𝐷2 and 𝐷2𝑋. But then we would 

have perfect multicollinearity: the parameters would be unidentified. We conclude 

that to identify industry effects while accounting for individual effects is not 

possible. They are confounded and hence not separable.  

This would seem to eliminate the possibility of validly testing for industry 

differences when there are multiple observations on the sampled units and the units 

have systematic differences. Essentially, with such multiple observations, the 
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standard test must be made under the maintained hypothesis of no individual effects. 

But of course, assuming does not make it so: a maintained hypothesis must have 

some credibility, and many cases of the kind considered herein do not. Thus, the 

solution requires a test which explicitly incorporates the possibility of individual 

effects into the maintained hypothesis. We propose such a test in the next section 

following a brief illustrative exercise. 

 

2. Empirical Illustration 

2.1 Monte Carlo 

Here we further illustrate the issue with a simple Monte Carlo analysis. For 

convenience, we continue the industry example, focusing on a model with firm 

effects, but no industry effects. This makes the Chow test’s performance easy to 

assess: the test should reject the null hypothesis with probability equal to a Type I 

error, or the size of the test. We employ the model: 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒                                                  (4) 

Where 𝑥1 and 𝑥2 are uniform (0, 20) variables and 𝑒 is a normally distributed 

error. A typical model coefficient is 𝛽𝑖 = 𝛽 + 𝜋𝑔𝑖 + 𝜈𝑖 where 𝛽 = 10, 𝜋𝑔𝑖 = 0, 

and 𝜈𝑖 is normal (0, 𝜎𝑣) with 𝜎𝑣 taking on different values; 𝜈𝑖 is a constant value 

for each coefficient in each experiment. For simplicity, we use two industries 

composed of a varying number of firms with a varying number of observations per 

firm. Since this exercise is meant only to be illustrative, we used only a small 

number of possible values of each of the four parameters of the experiment. They 

are listed in Table 1.  

 
Table 1: Parameter values in the analysis 

Parameter Values 

Observations per firm 10, 20, 30, 40, 50, 60 

𝜎𝑣   1, 2, 3, 4, 5   
Number of firms per industry 10, 20, 30 

𝜎𝑒𝑟𝑟𝑜𝑟 60, 80 

 

There are 180 different combinations possible. We conducted an analysis with each 

combination, performing 100 iterations in each case. For each iteration, a sample 

based on the particular set of parameters was generated.  

For 𝜎𝑒𝑟𝑟𝑜𝑟 = 60 and 𝜎𝑣 = 2, the 𝑅2 from OLS estimation of (4) is approximately 

0.60. Also note that 𝜎𝑣 = 2 implies that approximately 90% of the time, 𝜈𝑖 lies 

within the interval [-2(1.67), 2(1.67)]. Then two industry regressions and a pooled 

regression were estimated, followed by the Chow test. Our measure of test 

performance is the percent of rejections. 
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The basic results obtained from each parameter value are presented in Table 2, 

which is actually a set of several one-dimensional tables – that is, we ignore how 

the effect of one parameter might depend on others.  

 
Table 2: Percent of iterations resulting in rejection of null hypothesis 

(varying all 4 parameters) 

 

Observations per 

firm 
10 20 30 40 50 60 

% of tests rejected 0.23 0.41 0.48 0.51 0.57 0.62 

 

𝝈𝒗 1 2 3 4 5 - 

% of tests rejected 0.17 0.40 0.51 0.62 0.65 - 

 

Number of firms 10 20 30 - - - 

% of tests rejected 0.46 0.46 0.49 - - - 

 

𝝈𝒆𝒓𝒓𝒐𝒓 60 80 - - - - 

% of tests rejected 0.50 0.44 - - - - 

 

We found little evidence of interaction. Thus, the entries for a given parameter are 

the percentage of rejections for all experiments with the parameter set at the 

indicated values at 𝛼 = 0.05. If the Chow test performed correctly, then all entries 

in the table should be approximately 0.05.  

Briefly examining Table 2, we see considerable evidence that the test did not 

perform correctly: all entries exceed 0.05, in many cases by a large amount. The 

two most influential parameters are the observations per firm and the standard 

deviation of the firm effect. From the discussion above, both of these are what we 

expected. The error standard deviation is also influential, driving the number of 

rejections down as it increases. This is not surprising: the larger the error variance 

becomes, the less sensitive is any test. The number of firms per industry does not 

appear to be very influential, although we had no strong expectations about to the 

importance of its effect. 

We can summarize the results by regressing the percent of rejections at 𝛼 = 0.05 

in each experiment on the parameters of each experiment. This yields: 

 

𝟏{𝑅𝑒𝑗𝑒𝑐𝑡 𝑎𝑡 𝛼 = 0.05} = 0.110
(3.72) + 0.001

(0.84) 𝑓𝑖𝑟𝑚𝑠 − 0.030
(−7.78) 𝜎𝑒𝑟𝑟𝑜𝑟 + 0.007

(30.60) 𝑜𝑏𝑠 +

0.111
(42.17) 𝜎𝑣                                                                       (5) 

The t-statistics are listed in parenthesis, and the 𝑅2 is about 0.17. This regression 

essentially mirrors what is in the table: the important factors are the relative size of 
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firm effects and the number of observations per firm. The error standard deviation 

has less influence, and the number of firms per industry has virtually none. We also 

estimated this equation with interactions between all the variables. The coefficients 

were difficult to interpret (a result of multicollinearity) and the 𝑅2  was not an 

improvement over (5) (0.1733 versus 0.1728). From this, we conclude that the 

effects essentially act independently of one another. 

 

2.2 Descriptive Analysis 

To further examine the importance of the number of observations we conducted an 

experiment with varying observations per firm but all other parameters fixed. There 

are two industries, each with five firms. The standard deviation of firm effects is 2 

and the error standard deviation is 60.  Figure 1 graphs rejections versus sample 

size, for three conventional significance levels.  

Figure 1: Rejections at the 1%, 5%, and 10% significance levels, by firm 

sample size 

There is a clear response to increases in the number of observations. Each point is 

the average of 100 repetitions. As the number of observations per firm increases, 

the number of rejections also increases. From the graph, the slope appears to 

decrease as the number of observations increases. This is indeed the case; regressing 

the rejections on the observations in a quadratic model yields a significant quadratic 

term, and the model implies that at 60 observations per firm, there is no measurable 

effect brought about by additional observations. We also conducted a set of 

experiments comparing cases differing only by the number of firms, either five or 

ten, and found no discernible difference between the two. This supports the result 

that that the number of firms has little effect. 
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Thus, the evidence points to two key factors in determining the influence of firm 

effects in our problem: (a) the number of observations for each firm in the dataset, 

and (b) the magnitude of the firm effect. The number of firms has only a limited 

impact on the frequency of incorrect rejections in the Chow test. Hence, from a 

practical standpoint, it is better to have many firms, each with a small number of 

observations than to have a few firms, each with many observations. 

As a final point, it is of some interest that as the error variance increases, that is, as 

𝑅2 declines, over-rejection from the Chow test becomes less of a problem. In our 

simulation, the 𝑅2 was no larger than 0.60. In actual empirical studies, model fit 

is likely to be better than this. Therefore, we have if anything, understated the extent 

of over-rejection that is likely to occur in actual cases. 

 

3. Methodology 

3.1 Generating an Empirical F-Distribution 

As just suggested, the problem can be framed as a failure of the assumption of no 

individual or firm-level effects. To eliminate this assumption, we propose a simple 

bootstrap-like procedure. To illustrate, we again use Chow’s industry example. 

Suppose industry A is to be tested against industry B, and the data consists of 𝑡 

observations on each of 𝑛𝐴 firms and 𝑛𝐵  firms. The procedure is to generate a 

bootstrap F distribution, as follows. Step 1 is to create two artificial industries A’ 

and B’ by randomly assigning each of the 𝑛 = 𝑛𝐴 + 𝑛𝐵 firms to one of the two 

industries, requiring 𝑛𝐴′ = 𝑛𝐴 and 𝑛𝐵′ = 𝑛𝐵. Step 2 is to conduct a Chow test on 

these random industry groupings, generating an F statistic. Repeating this a large 

number of times generates a pseudo-F distribution. This distribution accounts for 

any firm heterogeneity that exists in the sample data, since it is based on the actual 

data generation process.  

If there are firm effects, they will be in the random groupings to the same extent as 

in the correct industry grouping. The F statistic of interest, i.e., when the firms are 

correctly allocated to their industry, can then be compared to this empirical 

distribution. If there is no industry difference, this F statistic will be a random draw 

from the distribution. If there is an industry effect, the F statistic should be larger 

than a randomly drawn F from the empirical distribution. This follows since the 

correct allocation would be less heterogeneous: it not only accounts for any 

differences across the component firms, but also the industry differences. This 

procedure is termed “bootstrap-like” because resampling involves groupings of data 

(firms in the example), rather than individual observations, and the sampling is 

without replacement. 

 

3.2 Power of the Procedure 

These examples suggest that the procedure we have proposed is potentially useful 

in dealing with multiple-level effects when testing with the Chow test. We will now 

examine the power of the procedure, its ability to discern group effects when 

individual effects are present, and indeed when they are not. It is somewhat difficult 
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to do this in any fully general way, due to the wide variety of model structures – the 

number of groups and individuals – under which the test may be applied. We will 

limit the analysis to three structures, each involving the standard case of two groups, 

which for convenience we again think of as industries, composed of firms. The three 

are 8 firms, with 4 firms in each industry; 20 firms, with 10 in each industry; and 

20 firms, with 4 in one industry and 16 in the other. The regression model used is 

the same as employed in the Monte Carlo. As before, model coefficients can be 

expressed as 𝛽 + 𝜋𝑔 + 𝜈𝑖, where 𝛽 is always 10; 𝜋𝑔  is the group (industry) effect, 

taking values 0, 1, 2, 3, 4, and 5; and 𝜈𝑖  is a normal (0, 𝜎𝑣 ) random variable 

representing a firm effect, with 𝜎𝑣  also taking integer values from 0 to 5. 

Experiments were conducted with 10, 20, and 30 observations per firm. Note that 

with 𝛽 = 10, a value of, for instance, 𝜋 = 2 implies a 20% increase in 𝛽. Also, 

𝜋 = 2 is “larger” than 𝑣 = 2 in the sense that the average of the absolute value of a 

random variable distributed 𝑁(0,2) is less than 2. 

The experiments proceeded as follows. For each of the three structures there are 108 

combinations of parameters. For each of these, 50 samples were generated, and to 

each sample, the bootstrap procedure was applied. First a Chow test was performed 

with the firms correctly allocated to industries. Then the firms were randomly 

allocated to industries a number of times, each time conducting a Chow test. In 

experiments with 8 firms and two industries, the assignment was not actually 

random. This is because there are 35 unique ways to allocate 8 items to 2 groups. 

We simply conducted Chow tests for all 35, one of which was the correct allocation. 

For the experiments with 20 firms, the random assignment was repeated 60 times. 

Thus, each of the 50 runs generated either 61 or 35 F statistics, one of which was 

from the correct allocation of firms to industries. Call this F*. Our main interest is 

the location of F* in the empirical distribution of all the F’s from that run, as in 

Figures 2 and 3. This is the basis of whether one accepts or rejects when using the 

bootstrap procedure.  

The results for the three structures are presented in tables A1, A2, and A3 in the 

Appendix. In each case, we report (over the 50 experiments) the percent of times 

F* fell above the 75th and 95th percentiles of the empirical F distributions 

(percentages rounded to nearest integer). We also report the percent of F*’s that 

would lead to rejection (p < 0.05) by the standard Chow test. In order to avoid 

overdetailed tables, results for some values of 𝜋 and 𝑣 are not reported. A general 

point to be made here is that neither test performed well when the sample size is 

extremely small, bordering on inadequate for a meaningful estimation (e.g. 𝑛 = 10). 

Although it is unlikely that many impactful studies would base their findings on 

samples as small as these, including such a case in the power simulations was 

necessary. 

A brief examination of the tables shows that the results do not meaningfully differ 

across the three model structures. Thus, we will discuss them as a group. With no 

industry effect (𝜋 = 0) and with the presence of firm effects, the conventional test 

rejects too often, as much as 50 percent or more of the time when individual effects 
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are strong, especially as sample size increases. This is what we observed in the 

Monte Carlo. It is not true of the bootstrap test. For example, the number of times 

F* falls in the upper quartile of the empirical F distribution does not often differ 

from the expected 25 percent, although there is considerable variability. However, 

the amount above the 95th percentile appears excessive in some cases, being as large 

as 16 percent. It is not clear whether this is anything beyond sampling variation. In 

any case, it is clear that use of the empirical F distribution is far less likely to result 

in mistaking firm effects for a non-existent industry effect.  

Thus, the bootstrap method is effective in reducing Type I errors. The next question 

is how well it performs when the hypothesis is false. First consider the case where 

there is no individual firm effect, in which the textbook Chow test is fully applicable. 

In each table there are three examples of this, with industry effects of 1, 3, and 5, 

which together with 3 structures and 3 sample sizes generates 27 cases. Of these, 

the bootstrap procedure was worse than the conventional test (i.e. had fewer 

rejections) 10 times, better twice, and in the remainder they were equal. Power for 

both methods increased with n. With   taking values of 3 and 5, both tests rejected 

the hypothesis in nearly all cases. 

With individual effects, performance of both tests declined. But the bootstrap test 

declined more. At high values of v, differences between the two tests were large in 

some cases. When 𝜋  is very small relative to 𝜈  (𝜋  = 1, 𝜈  = 5), bootstrap 

performance was quite poor, with often little more than 25% of F* values falling 

above the 75th percentile. However, the standard test also had many failures in this 

case. Indeed, when the industry effect is dominated by firm effects in this manner, 

one might legitimately question whether there is a viable industry effect. 

If 𝜋 and 𝑣 have the same value, both tests perform better the larger is the value. 

For example, performance is better when 𝜋 and 𝜈 are both 5 than when they are 

three. This occurs in all three tables, and suggests that the strength of the group 

effect is more important than the strength of the individual effect. Throughout, the 

bootstrap test is more likely to generate a Type II error, failing to detect a group 

effect.   

The key difference between the two procedures is clearly their differing response to 

the value of 𝜈, the strength of individual effects within the groups being tested. The 

bootstrap is much more sensitive, and the effect is always negative. When there is 

no group effect, or when it is minor and economically inconsequential, this is 

desirable: it reduces Type I errors. But in the presence of both effects, it is overly 

conservative and hence prone to Type II errors. Thus, if only one test is to be relied 

on, which is better depends on the relative cost of Type I-Type II errors.  

Of course, one need not rely on one test. The best way to proceed would seem to be 

to begin with a conventional Chow test. If it fails to reject the null hypothesis, there 

is no need for additional testing. If the hypothesis is rejected, and if it is reasonable 

to suspect there may be individual effects, then one is well advised to apply the 

bootstrap procedure and generate an empirical F distribution. With sufficient data 

for each unit, one can perform a standard Chow test within each industry to test for 

individual effects. If these are not rejected, one can conclude there are no individual 
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effects and the original test is valid. If F* falls at a sufficiently high percentile (e.g., 

at least 0.9), this corroborates the conventional test. If F* falls well above the 

median but below conventional levels of significance, the combination of tests can 

reasonably be construed as indicating both industry and firm effects. An F* at or 

below the center of the distribution, regardless of how highly significant it may be, 

is best interpreted as evidence of strong firm effects, and no industry effect.  

As a final point prior to application, it is well known that the Chow test is 

compromised if the individual regression models have different error variances. 

There is a large literature on the problem of heteroskedasticity in the Chow test, and 

alternative tests have been developed (Toyoda, 1974; Schmidt and Sickles 1977). 

Nevertheless, the problem is easily remedied by dividing each individual data set 

(e.g., for a firm) by the square root of the estimated error variance of the regression 

estimated with that data, that is, using weighted least squares. Note in this case the 

underlying heteroskedasticity model is known, eliminating the possibility of 

misspecification. This simple procedure has been found to be at least as good as 

more elaborate methods under most conditions (Thursby 1992). In all our tests 

involving actual data (discussed below), we performed this data weighting, without 

a prior test for heteroskedasticity. 

 

4. Results 

4.1 Application to Grocery Pricing Behavior 

To illustrate, we now apply our procedure to two data sets. The first application of 

our procedure uses milk pricing data derived from the Nielsen Consumer Homescan 

Panel to examine a question addressed in the marketing literature: do chains in the 

same metropolitan market price similarly (Shankar & Bolton, 2004)? This is a 

natural candidate for the Chow test. Since most applications would not have data as 

extensive as ours, we used a randomly selected subset: 10 markets and 12 

consecutive months (the same for each market). Of course, 10 markets is still quite 

large: most applications involve two. We tested the hypothesis with the stores 

correctly allocated to their markets, and a market fixed effect. The calculated F was 

2.22 with 10 and 220 degrees of freedom, which is highly significant (p <0.001), 

indicating similar pricing in local markets. We then generated an empirical F 

distribution by randomly allocating stores to the markets (with a market fixed effect), 

as described above. This is shown in Figure 2.  
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Figure 2: Bootstrap F distribution from regressions on the Nielsen data 

 

The 95th percentile of this distribution is 2.50, with the darker area being the 0.05 

rejection region; 2.22 is below this, around the 80th percentile. This would cast 

doubt on the original conclusion, and suggests firm effects in this sample. Indeed, 

67 percent of the bootstrap F’s were significant at 0.05 measured by the standard F. 

These results pertain to one set of 10 markets out of 49, over one of the 63 twelve-

month periods. We repeated the procedure 25 times, each time randomly drawing a 

different set of 10 firms over a different 12 months, but with 100 iterations. In 20 

of the 25 the hypothesis was rejected by a standard Chow test; but 5 of the 20 were 

not rejected by the bootstrap test. Thus in a large majority of these tests, the 

hypothesis would have been rejected by the standard test, but the fewer bootstrap 

rejections suggests that part of this strength is due to ignored firm effects. Indeed, 

32 percent of the random groupings were significant at 0.05 using the theoretical F 

distribution, which shows the strength of these effects. 

 

4.2 Application to Investment Activity 

A possible problem with the method is that in many cases there may not be sufficient 

cross-section units (firms) to generate a usable bootstrap distribution. The range of 

combinations may be limited. For example, with two industries each with two firms, 

there are just three combinations. But a form of the method can still provide 

information about test validity. Hence, we turn to a second example, one similar to 
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that given originally by Chow. The data is the Grunfeld investment data, which has 

been used in numerous econometric studies and is available in Greene (2012). The 

data involves eleven firms, each with 20 observations, with variables measuring 

investment, market value of stock, and real value of assets. The first is regressed on 

the other two. The data is useful here because among the eleven firms, there are four 

pairs for which each member of the pair is from the same industry. We used these 

eight firms to conduct a Chow test for an industry effect. Note this test involves four 

industries rather than the two in Chow’s example. 

First, we conducted the test with the firms correctly allocated to their industry. The 

calculated F was 33.98 with 3 and 148 degrees of freedom, which is highly 

significant by any standard when compared to the usual F distribution. This would 

seem to provide strong evidence of an industry effect. We then generated a bootstrap 

F distribution by randomly grouping the eight firms into four industries 400 times, 

repeating the Chow test each time, thus generating 400 F statistics. This empirical 

distribution is shown in Figure 3.  

 

Figure 3: Bootstrap F distribution from regressions on the Grunfeld data 

As indicated, 33.98 is in the 85th percentile of this distribution. This is not significant 

by normal standards. Thus, while there is some evidence of an industry effect, it is 

not strong, and not at the level suggested by the original F statistic. On the other 

hand, there is very strong evidence of a firm effect. Note from the figure that the 

smallest F statistic exceeds 6.0, which in this case has a probability value below 

0.01. Some might argue that when conducting a Chow test, in many cases it makes 

more sense to permit intercept shifters for the industries and perform the test only 
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on the slope coefficients (Wooldridge 2013). This amounts to applying the Chow 

test to fixed effects models. The bootstrap exercise was repeated for this case, and 

the F statistic for the correct pairing was in the 82nd percentile, providing yet weaker 

evidence of an industry effect. 

One consideration in this case is that with only two firms and four industries, a large 

number of bootstrap samples is likely to have repetitions. That is assured here, for 

there are 115 unique possible pairings and we have 400 repetitions. However, 

repetitions do not invalidate bootstrap sampling. A more pertinent issue is that with 

only two firms per industries, many random pairings are likely to involve firms from 

the same industry, that is, correct groupings. With four industries, in any bootstrap 

sample we can have zero, one, two, or four such correct pairings. If samples with 

more correct pairings tend to have higher F values, this can be taken as evidence of 

an industry effect. We found some tendency for this in the samples. This is shown 

in Table 3, which has average F statistics for each of the four possibilities.  

 

 Table 3: F statistic descriptive data, by correct pairings 

 

The average F consistently rises as the number of correct matches increase. But the 

table also shows that for this data, it is possible to get very large F’s even with no 

matches. In general, then, the table leads to the same conclusion as obtained above: 

weak but perhaps non-trivial evidence of industry effects and very strong evidence 

of firm effects. 

A final point is that in this example, in which there are 115 possible groupings, the 

empirical F distribution has sufficient variability to enable meaningful probability 

statements. But if the number of unique pairings is very small, this may not be 

possible. But even with only a few different possibilities, meaningful conclusions 

may emerge. For example, with two firms and two industries, there are just three 

possible firm pairings: that with firms in the same industry grouped together, and 

the two incorrect pairings. We selected two industries from the Grunfeld data and 

conducted a Chow test for each of the three possible two-firm pairings of the four 

firms in these industries. When the firms were correctly paired by their industries, 

the F value was 5.98; the two incorrect pairings resulted in values of 2.10 and 6.59. 

All of these are “significant.” Since the F for the correct pairing falls between those 

for the incorrect pairings, neither of which can represent a test of industries, the 

appropriate conclusion would seem to be no real evidence of an industry effect, and 

(again) strong evidence of firm effects. This is similar to the previous case, and 

perhaps somewhat more definitive.  

Correct 

Pairings 
n 

 
F - Mean 

F - Std. 

Dev. 

F - 

Minimum 

F - 

Maximum 

0 254  19.91 9.08 6.53 36.40 

1 110  23.81 11.45 7.69 47.81 

2 41  27.52 10.85 7.65 38.87 

4 5  33.98 0.00 - - 
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5. Conclusions 

A question often encountered in econometric research is whether behavior differs 

across segments of a study population (in this paper, industries). To investigate this, 

one generally employs a Chow test, data for which consists of observations from 

the separate industries of interest. It may occur that these industries themselves are 

composed of multiple observations on component firms, such as several 

observations on each of several firms. In this paper we have shown that when this 

is the case, the Chow test can yield deceptive results (e.g. if region-level differences 

were of interest to a researcher, then sufficiently strong state-level heterogeneity 

could cause a Chow between states to overstate any differences, but it would be 

accounted for in our proposed testing procedure). This occurs when the firms 

themselves differ from each other, generating effects that become confounded with 

the effects of interest. As a result, the Chow test may reject the null when there are 

no differences in the industries of interest. In this paper we analytically examined 

the nature of the problem, and demonstrated its consequences using a simple Monte 

Carlo analysis. We proposed a bootstrapping procedure to deal with the problem. 

Using actual data, we demonstrated it can be quite useful in reducing the effects of 

this confounding, thus reducing the danger of test misinterpretation. 

Our recommendation in performing a Chow test was not to rely on the results of 

only one test, but to begin with a conventional Chow test. Failure to reject the null 

hypothesis would imply that there is no issue, and thus is no need for running an 

additional test. However, if the null is rejected, there is reason to suspect the 

presence of any individual effects, then we recommend the researcher apply our 

bootstrap procedure in order to generate an empirical F distribution and re-evaluate. 

We ended with an examination of test power. We found that when there is no 

confounding, the bootstrap procedure performs with accuracy similar to the 

standard Chow test. When both types of effect are present, the power of both tests 

declines, but the bootstrap test is considerably less likely to detect the industry effect 

of interest. Thus, under the condition stated, the proposed test has lower power, 

making more Type II errors. We suggest that in order to avoid errors it is advisable 

that both tests be used.  

As a final point, it is evident that the data generating process underlying our analysis 

is similar to that underlying random coefficient and varying parameter models, for 

which various estimation methods have been proposed. One such method is to 

employ hierarchical modeling (Bryk & Raudenbush, 2002; Erkan et al., 2016; 

Meager, 2019), which estimates coefficient differences across the firms. However, 

this requires more information than that available for a Chow test, and goes beyond 

the simple purpose of determining whether there are differences in behavior. Our 

model is more akin to that underlying Swamy’s random coefficient model (Swamy, 

1970). This suggests the possibility of adapting Swamy’s method to the Chow test. 

We performed some preliminary examination of this question by using Swamy 

estimation to obtain the error sums of squares for the Chow test. The result was a 

test with little power. This is a topic for future research.  
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APPENDIX 

Table A1: Two industries, each with four firms 

 

Table A2: Two industries, each with ten firms 

  10 Observations 20 Observations 30 Observations 

π v F Empirical F F Empirical F F Empirical F 

  P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 

0 0 10 29 5 4 24 4 8 28 5 

0 1 8 27 5 10 26 5 10 26 2 

0 3 28 32 5 42 29 7 55 28 7 

0 5 37 24 7 51 34 9 62 28 3 

1 0 16 45 15 38 73 35 55 78 49 

1 1 23 48 15 45 59 20 48 56 24 

1 3 38 37 10 61 38 9 57 32 8 

1 5 38 26 8 54 29 8 69 30 8 

3 0 95 100 89 100 100 99 100 100 100 

3 1 94 98 80 99 99 89 100 100 96 

3 3 68 63 29 89 78 41 91 70 33 

3 5 66 53 20 77 52 15 82 51 18 

5 0 100 100 100 100 100 100 100 100 100 

5 1 100 100 98 100 100 100 100 100 100 

5 3 96 95 71 99 97 82 99 97 77 

5 5 88 76 34 94 82 45 96 79 40 

  10 Observations 20 Observations 30 Observations 

π v F Empirical F F Empirical F F Empirical F   
P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 

0 0 8 28 6 2 30 6 2 32 6 

0 1 14 22 8 12 26 14 12 30 8 

0 3 16 20 4 34 26 8 48 34 10 

0 5 46 36 10 48 24 10 71 20 4 

1 0 42 72 40 66 82 68 82 98 78 

1 1 44 60 38 70 82 52 76 82 66 

1 3 40 46 16 46 34 10 72 54 20 

1 5 40 26 8 60 30 18 68 34 10 

3 0 100 100 100 100 100 100 100 100 100 

3 1 100 100 100 100 100 100 100 100 100 

3 3 90 94 76 100 98 92 96 92 82 

3 5 72 66 54 98 86 48 94 74 50 

5 0 100 100 100 100 100 100 100 100 100 

5 1 100 100 100 100 100 100 100 100 100 

5 3 100 100 100 100 100 100 100 100 100 

5 5 96 94 86 98 96 90 100 98 84 
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Table A3: Two industries – one with four firms, the other with sixteen 

 

 

 

 

  10 Observations 20 Observations 30 Observations 

π v F Empirical F F Empirical F F Empirical F   
P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 P=.05 P=.25 P=.05 

0 0 8 25 8 0 28 6 7 22 8 

0 1 6 29 6 10 22 8 14 24 10 

0 3 15 17 4 45 30 11 50 36 16 

0 5 30 20 2 48 14 2 47 16 4 

1 0 18 53 25 42 68 32 64 92 62 

1 1 25 47 16 39 57 39 53 67 27 

1 3 42 48 12 42 26 12 68 44 12 

1 5 29 27 6 66 38 10 58 40 15 

3 0 98 100 96 100 100 100 100 100 100 

3 1 96 98 92 100 100 100 100 100 100 

3 3 84 88 67 92 88 72 100 96 80 

3 5 74 64 28 82 72 40 84 65 29 

5 0 100 100 100 100 100 100 100 100 100 

5 1 100 100 100 100 100 100 100 100 100 

5 3 100 100 92 100 100 100 100 100 96 

5 5 92 86 51 98 92 73 100 87 79 


