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Abstract 
 

This paper investigates the dynamic relationships between the number of   

COVID-19 infected cases and deaths in all the districts of Karnataka state, India, 

from July 2020 to December 2021 based on the panel Generalized Method of 

Moments (GMM). The panel GMM model with the first difference transformation 

was found suitable for studying the dynamics of the number of deaths due to 

COVID-19 infections over time. The one-period lag (DEATHS (-1)) has a positive 

and significant effect on the number of deaths (DEATH). The Wald test confirms 

the validity of the coefficients' significance and adds explanatory power to the 

model. The correlation between number of fatalities at time t positively correlated 

with the number of deaths in the previous period. Also, the number of infected cases 

positively and significantly influences the number of deaths over time. Granger 

pairwise causality test reveals the existence of bi-directional causality relationships 

between the COVID-19 infected cases and deaths.   
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1. Introduction  

The usual approach today when facing heteroskedasticity of unknown form is to use 

the Generalized Method of Moments (GMM), introduced by Hansen and Singleton 

(1982). It is a method for constructing estimators analogous to the Maximum 

Likelihood (ML) method. GMM uses assumptions about specific moments of the 

random variables instead of assumptions about the entire distribution, which makes 

GMM more robust than ML at the cost of some efficiency. GMM models are used 

when we are not sure of the distribution of the dependent variable. GMM uses the 

orthogonality conditions to allow for efficient estimation in the presence of 

heteroskedasticity of unknown form. These models are used when there is a 

presence of endogeneity in regression models. It is a combination of ordinary least 

squares (OLS) and the two stages least square method. GMM models are linear 

regression models and allow the dependent variable depends on its past realizations, 

thus making the model dynamic.  

GMM estimator makes it possible for researchers to eliminate the problems of serial 

correlation, heteroskedasticity, and endogeneity of some variables. This method 

uses the lags of dependent variables in the model to consider the dynamic effects. 

Dynamic relationships are modeled by inserting the lags of dependent variables that 

appear on the right side of the equation; OLS estimators are not consistent 

(Dilmaghani and Tehranchian, 2015).   

The present paper is aimed to estimate the dynamic relationships between   

COVID-19 infected cases and the number of deaths due to COVID-19 in all 30 

districts of Karnataka state, India, from July 2020 to December 2021, based on the 

GMM method.   

 

2. Materials and Methods  

2.1 Materials 

The monthly data on COVID-19 infected cases and deaths dataset was collected 

from the official Karnataka state government website www.covid19.karnataka.gov.in 

from July 2020 to December 2021 (eighteen months of data). Various econometric tools 

related to panel data auto-regression modeling were employed to investigate the 

dynamic relationships between COVID-19 infected cases and the number of deaths 

due to COVID-19 in all 30 districts of Karnataka state, India. Several methodologies 

for panel data regression modeling are discussed in the methods section. EViews 

Ver. 11. the software was used for the parameter estimation and model fit. 

  

2.2 Methods 

2.2.1 Generalized Method of Moments  

The GMM model is given by  
'

, 1 ,it it i iti ty y x   −= + + +            (1) 

i=1,2, 3,…,N (individuals), t=1,2,3,…,T (time)  

http://www.covid19.karnataka.gov.in/
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The above model is dynamic because the equation for time t includes an element 

from the previous period, the lagged response , 1i ty − . The introduction of lags 

becomes crucial to control the process's dynamics. In the above model, itx  the 

regressor is fixed individual effects, it has zero mean and constant variance, and is 

uncorrelated across time and individuals. 

As , 1i ty − is correlated i  because , 1i ty − it is a function of i , Generalised Least 

Squares (GLS), and OLS estimators are biased and inconsistent. Within Group 

(WG) estimators, so-called “fixed effects estimators” are also biased and unreliable 

because in the transformed model, when using variable deviations from the mean, 

the independent variable will be endogenous ( iy is correlated with i ). An 

alternative transformation to remove individual effects i is the so-called “first-

difference” transformation : 

 
'

, 1it it iti ty y x  − =  + +               (2) 

 

Again, WG and GLS estimators are inappropriate. Moreover, the model suffers 

from an endogeneity problem because the dynamic structure of equation (2) , 1i ty −  

is correlated it . To solve this problem, Anderson and Hsiao (1982) proposed to 

control endogeneity using  , 2i ty − or , 1i ty − as instruments , 1i ty − . Lagged levels 

of the endogenous variable aw, three or more periods before, can be used as 

instruments (Holtz-Eakin et al., 1988), and if the panel includes three or more 

periods, one should have more available instruments than unknown parameters.  

Arellano and Bond (1991) proposed a method that exploits all possible instruments. 

Using the GMM, they obtained estimators using the moment conditions generated 

by lagged levels of the dependent variable ( ), 2 , 3, ,...i t i ty y− −  with it . These 

estimators are called difference GMM estimators. 

Similar to all instrumental variables regressions, GMM estimators are unbiased. 

Arellano and Bond (1991) compared the performance of different GMM, OLS, and 

WG estimators. Using simulations, they found that GMM estimators exhibit the 

smallest bias variance. 

 

2.2.2 Wald test   

The Wald test (Wald, 1943) tests which model variables significantly contribute to 

the effect. The test (also called the Wald chi-squared test) is a way to determine 

whether the explanatory variables in a model are significant, meaning that they add 

explanatory power to the model; variables with no explanatory power can be deleted 

without affecting the model in any meaningful way. The null hypothesis for the test 

is some parameter = some value 
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2.2.3 Instrument validation 

Once difference or system GMM estimators are obtained, the model's validity must 

be checked. Arellano and Bond (1991) proposed a test to detect serial correlation in 

disturbances. Note that the presence of serial correlation in the disturbances affects 

the validity of some instruments: If it they are serially correlated of order 1, then 

it it is endogenous to it (by the presence of , 1i t − in the difference) and, 

therefore, , 2i ty − would be an invalid instrument. They tested the serial correlation 

of disturbances using difference it instead of level it . Therefore, to test the 

serial correlation of order 1 in levels, one must check for the correlation of order 2 

in differences. When the null hypothesis of this test (no serial correlation) is not 

rejected, validation of the instrumented variables is obtained. 

 

2.2.4 Testing for causality (Granger, 1969) 

The causal relationship between two stationary series, Xt and Yt, can be assessed 

based on the following bivariate autoregression:  

 

and   

 

where p is a suitably chosen positive integer; k  and k , k=0,1,2,3,…,p, are 

constants; tu  and t  are the usual disturbance terms with zero mean and finite 

variance.  The null- hypothesis that Xt does not Granger-cause Yt is rejected if k

k>0 in the first equation is jointly significantly different from zero according to a 

standard joint test (e.g., an F test). Similarly, Yt Granger causes Xt if the coefficients 

of k  and k>0 in the second equation are jointly different from zero. A 

bidirectional causality (or feedback) relation exists if both k  and k k>0 are 

different from zero. 
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3. Results and Discussion 

3.1 Summary statistics  

District-wise total numbers of infected cases are presented in Table 1 and depicted 

in Figure 1. The result reveals that all over Karnataka state, 3768297 COVID-19 

infected cases were registered during the study period. The highest number of 

COVID-19 infected cases were reported in Bengaluru Urban (1759033), followed 

by Mysuru (214833). The lowest number of cases are reported in Haveri (23570).  

 
Table 1: District-wise summary statistics of COVID-19 infected cases 

District Sum Mean Std.Err Maxi. Mini 

Bengaluru Urban 1759033 97724.06 34172.74 456462 4169 

Ballari 106102 5894.56 2279.16 38689 25 

Dakshina Kannada 126434 7024.11 1810.92 30157 369 

Dharwad 77730 4318.33 1625.16 24741 73 

Bengaluru Rural 76198 4233.22 1491.26 23182 63 

Vijayapura 37025 2056.94 695.27 11306 10 

Hassan 134045 7446.94 2745.31 44488 228 

Uttara Kannada 65319 3628.83 1465.09 25736 117 

Udupi 88427 4912.61 1566.02 26494 161 

Chamarajanagar 40227 2234.83 2234.83 15394 48 

Bagalkot 37347 2074.83 870.38 15360 3 

Tumakuru 147553 8197.39 3409.28 55328 226 

Davanagere 72263 4014.61 1879.02 34082 14 

Chikkaballapura 51693 2871.83 1042.00 16689 22 

Kalaburagi 69511 3861.72 1376.20 19445 23 

Ramanagara 27490 1527.22 644.03 11089 8 

Koppal 37796 2099.78 794.81 13222 3 

Raichur 42132 2340.67 946.31 16100 7 

Chitradurga 38949 2163.83 686.71 10076 41 

Yadgir 24910 1383.89 676.33 12161 1 

Bidar 27298 1516.56 560.70 8310 4 

Belagavi 86713 4817.39 1859.06 32858 76 

Kodagu 44871 2492.83 820.27 13351 119 

Mandya 91789 5099.39 2003.12 29152 93 

Kolar 59298 3294.33 1282.73 19609 95 

Shivamogga 75775 4209.722 1431.20 24042 87 

Gadag 28452 1580.67 625.47 10659 2 

Chikkamagaluru 55514 3084.11 1123.72 19188 80 

Mysuru 214833 11935.17 4075.50 65511 457 

Haveri 23570 1309.44 467.91 7311 2 
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In Bengaluru, a maximum (456462) number of cases was reported in December 

2021, and a minimum (4169) was reported in October 2021. In the case of the 

Mysuru district, a maximum (of 65511) number of cases was reported in April 2021, 

and a minimum (457) cases were reported in November 2021. 

 

 

Figure 1: District-wise total number of COVID-19 of infected cases 

 

District-wise total numbers of deaths due to COVID-19 infections are presented in 

Table 2 and depicted in Figure 2. The result reveals that all over Karnataka state, 

36845 deaths due to COVID -19 infections were registered during the study period. 

The highest number of deaths, 15592, have been reported in Bengaluru Urban, and 

the lowest of 195 in Yadagiri districts. Next to Bengaluru Urban, 2370 deaths in 

Mysuru, with a maximum of 538 deaths in May 2021; 1638 deaths in Dakshina 

Kannada, with a maximum of 276 deaths in May 2021; 1607 deaths in Ballari, with 

a maximum of 623 deaths in April 2021; 1253 in Dharwad, with a maximum of 262 

deaths in April 2021; 1230 in Hassana, with a maximum of 402 deaths in April 

2021; 1098 in Tumakuru, with a maximum of 422 deaths in April 2021; 1058 in 

Shivanmogga, with a maximum of 421 deaths in April 2021; 925 in Belagavi, with 

a maximum of 209 deaths in May 2021 have been reported. In Bengaluru Rural, 

850 total deaths have been notified, and a maximum of 430 deaths was reported in 

April 2020.  
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Month-wise total numbers of COVID-19 infected cases are reported in Table 3 and 

depicted in Figure 3. The highest number of 1058453 infected cases was reported 

in April 2021, and the lowest of 7086 cases in October 2021. In all the month's 

maximum number of infected cases have been reported in Bengaluru Urban.  

Month-wise total deaths due to COVID-19 infections are reported in Table 4 and 

depicted in Figure 4. The highest number of 13296 deaths was reported in April 

2021, and the lowest of 119 cases was in October 2021. The month's maximum 

number of deaths have been reported in Bengaluru Urban. 

 

Table 2: District-wise summary statistics of deaths due to COVID-19 infections 

District Sum Mean Std.Err Maxi. Mini 

Bengaluru Urban 15592 866.22 376.87 6809 48 

Ballari 1607 89.28 36.38 623 0 

Dakshina Kannada 1638 91.00 20.99 276 0 

Dharwad 1253 69.61 20.20 262 3 

Bengaluru Rural 850 47.22 23.85 430 0 

Vijayapura 468 26.00 9.89 168 0 

Hassan 1230 68.33 23.09 402 1 

Uttara Kannada 756 42.00 19.72 362 0 

Udupi 486 27.00 7.75 130 1 

Chamarajanagar 510 28.33 13.00 237 0 

Bagalakot 329 18.28 7.29 129 0 

Tumakuru 1098 61.00 22.88 422 5 

Davanagere 574 31.89 12.59 192 0 

Chikkaballapura 432 24.00 9.41 165 0 

Kalaburagi 807 44.83 17.36 296 0 

Ramanagara 318 17.67 8.01 147 0 

Koppal 498 27.67 10.60 139 0 

Raichur 328 18.22 6.74 103 0 

Chitradurga 204 11.33 3.73 65 0 

Yadgir 195 10.83 6.19 109 0 

Bidar 368 20.44 7.93 124 0 

Belagavi 925 51.39 15.21 209 0 

Kodagu 325 18.06 7.32 135 0 

Mandya 655 36.39 13.27 232 1 

Kolar 615 34.17 10.00 131 0 

Shivamogga 1058 58.78 24.80 421 0 

Gadag 315 17.50 6.88 109 0 

Chikkamagaluru 408 22.67 6.98 98 0 

Mysuru 2370 131.67 36.93 538 3 

Haveri 633 35.17 14.05 218 0 
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Figure 2: District-wise total number of deaths due to COVID-19 infections 

 

Table 3: Month-wise summary statistics of the number of COVID-19 infections 

Month Sum Mean Std.Err Maxi. Mini 

July-2020 107098 3569.93 1616.47 49954 362 

August-2020 213126 7104.2 2241.90 69940 980 

September-2020 373121 12437.37 7157.95 219371 1260 

October-2020 208293 6943.1 3205.96 98953 544 

November-2020 33289 1109.63 582.04 17894 141 

December-2020 18791 626.37 327.38 10036 32 

January-2021 11473 382.43 214.77 6550 16 

February-2021 45404 1513.47 952.36 28980 32 

March-2021 519411 17313.7 10440.52 319007 879 

April-2021 1058453 35281.77 12394.29 387136 5897 

May-2021 224985 7499.50 1650.96 46912 320 

June-2021 56121 1870.7 508.03 13104 67 

July-2021 42460 1415.33 449.51 10109 32 

August-2021 25461 877.97 310.15 8234 12 

September-2021 11744 391.47 175.77 5221 4 

October-2021 7086 236.2 137.611 4169 2 

November-2021 10867 362.23 230.55 7001 1 

December-2021 801097 26703.23 14919.78 456462 1941 
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Figure 3: Month-wise total numbers of COVID-19 infected cases 

 

Table 4: Month-wise summary statistics of the number of deaths due to COVID-19 

infections 

District Sum Mean Std.Err Maxi. Mini 

July-2020 2063 68.77 30.48 932 3 

August-2020 3284 109.47 29.97 903 12 

September-2020 3027 100.9 30.87 931 10 

October-2020 2174 72.47 29.01 887 8 

November-2020 298 9.93 5.62 171 0 

December-2020 122 4.07 2.33 70 0 

January-2021 111 3.70 2.85 86 0 

February-2021 234 7.80 4.52 136 0 

March-2021 2938 97.93 57.25 1745 0 

April-2021 13296 443.2 220.94 6809 65 

May-2021 5486 182.87 65.79 2004 5 

June-2021 1433 47.77 10.12 228 0 

July-2021 731 24.37 5.96 142 1 

August-2021 451 15.55 5.80 155 0 

September-2021 274 9.13 4.06 121 0 

October-2021 119 3.97 1.58 48 0 

November-2021 122 4.07 2.03 62 0 

December-2021 678 22.6 6.41 191 0 
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Figure 4: Month-wise total numbers of deaths due to COVID-19 infections 

 

3.2 Investigating cross-sectional dependence 

Cross-sectional dependence is one of the essential diagnostics a researcher 

should investigate before performing panel data analysis. In this context, the 

Breusch and Pagan (1980) LM test, Pesaran (2004) scaled LM test, Pesaran 

(2004) CD test, and Baltagi et al. (2012) biased-corrected scaled LM test 

statistics values have been calculated and presented in Table 5. 

 
Table 5: Characteristics of Residual Cross-Sectional dependence test 

Test Statistic d.f. Prob. 

Breusch-Pagan LM 2812.204 435 0.0000 

Pesaran scaled LM 80.59476  0.0000 

Pesaran CD 44.24982  0.0000 

 

Evidence from the above table suggested a rejection of the null hypothesis of no 

cross-sectional dependence, i.e., the existence of cross-sectional dependence among 

the regressors at a 1 % significance level for the Breusch-Pagan LM and Pesaran 

Scaled LM tests. This means that there is a certain level of dependence among 

districts of Karnataka state, thereby confirming the appropriateness of the panel data 

modeling for the number of COVID-19 infected cases and deaths in the 30 different 

districts (cross-section) of Karnataka state. 
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3.3 Unit root tests 

Before estimating the model, it is necessary to conduct stationary tests for the 

variables. Spurious regression may occur if the variables are non-stationary 

(Dilmaghani and Tehranchian, 2015). Therefore, Levin-Lin-Chu unit root tests 

(Levin et al. 2002) were performed to test the stationarity of the study variables, 

viz., the number of COVID-19-infected patients (CASES) and deaths 

(DEATHS) due to COVID-19 and the results are reported in Table 6. The test 

results reveal that the two variables under study, CASE and DEATH, are 

stationary since the values of the Levin, Lin, and Chu t-statistics are highly 

significant (p<0.0000). Hence, the variables under study are stationary. 

 
Table 6: Unit root test results for the variable Cases and Deaths 

Method Cases Deaths 

Statistic Prob** Statistic Prob** 

Levin, Lin & Chu t* -8.7557 0.0000 -10.9169 0.0000 
** Probabilities are computed assuming asymptotic normality 

3.4 Panel Cointegration tests 

To avoid spurious regression, one should test the cointegration between the 

independent and dependent variables (Dilmaghani and Tehranchian,2015). For this 

purpose, the Pedronic cointegration test (Pedroni, 2000, 2004); (with no 

deterministic trend; deterministic intercept and trend; and no deterministic intercept 

or trend) has been carried out in addition to the Kao cointegration test (Kao and 

Chiang,2000 ) to assess the long-run equilibrium relationships between the 

variables in the model. The test results are presented in Table 7 through Table 10. 

The test results reveal that out of eleven tests for the null hypothesis of No 

Cointegration is rejected since most of the test statistics p values are <0.0.000, 

indicating that there exists a cointegration, i.e., long-term relationship between the 

number of deaths due to COVID-19 and the number of COVID-19 infected cases. 

The Kao cointegration test results in Table 10 reveal a strong long-term relationship 

and cointegration between the study variables since the null hypothesis of no 

cointegration is rejected. 

 
Table 7: Characteristics of Pedroni cointegration test (No deterministic trend) 

Name of the test Statistic Prob. Weigted Statistic Prob. 

Panel v-Statistic  31.48084  0.0000  5.122892  0.0000 

Panel rho-Statistic -9.530230  0.0000 -7.768760  0.0000 

Panel PP-Statistic -3.262046  0.0006 -7.765797  0.0000 

Panel ADF-Statistic -4.783584  0.0000 -9.051099  0.0000 

Group rho-Statistic -5.497392  0.0000   

Group PP-Statistic -4.716377  0.0000   

Group ADF-Statistic -4.825069  0.0000   
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Table 8: Characteristics of Pedroni cointegration test  

(Deterministic intercept and trend) 

Name of the test Statistic Prob. Weigted Statistic Prob. 

Panel v-Statistic  14.47767  0.0000 -1.347181  0.9110 

Panel rho-Statistic -4.567400  0.0000 -3.851955  0.0001 

Panel PP-Statistic -1.525791  0.0635 -7.193887  0.0000 

Panel ADF-Statistic -2.525812  0.0058 -8.135059  0.0000 

Group rho-Statistic -1.748681  0.0402   

Group PP-Statistic -3.487189  0.0002   

Group ADF-Statistic -3.547681  0.0002   

 
Table 9: Characteristics of Pedroni cointegration test  

(No deterministic intercept or trend) 

Name of the test Statistic Prob. Weigted Statistic Prob. 

Panel v-Statistic  53.91298  0.0000  12.53456  0.0000 

Panel rho-Statistic -15.42834  0.0000 -13.12926  0.0000 

Panel PP-Statistic -4.878379  0.0000 -9.039844  0.0000 

Panel ADF-Statistic -4.835779  0.0000 -9.834622  0.0000 

Group rho-Statistic -8.778302  0.0000   

Group PP-Statistic -7.285127  0.0000   

Group ADF-Statistic -7.087520  0.0000   

 
Table 10: Characteristics of Kao cointegration test (No deterministic trend) 

Test Name t-Statistic Prob. 

ADF -5.889986  0.0000 
 

Therefore, the long-run equilibrium relationship between the variables and the 

absence of spurious regression in the model is confirmed. 

 

3.5 Pooled OLS regression or Constant Coefficients Model 

The panel least squares method is employed with the number of deaths due to 

COVID-19 as the dependent variable and the number of COVID-19-infected 

patients as the independent variable. The regression results based on EViews, 

Version 11, are presented in Table 11. The results reveal that the slope is highly 

significant, and the model F-statistic is also highly significant, with a very high R2 

of 47%. This shows that the number of COVID-19 infected cases is related to a 

considerable variation in the number of deaths due to COVID-19.   
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Table 11: Characteristics of pooled OLS regression   

 

The major problem with this model is that it does not distinguish between the 

various districts, nor does it tell us whether the response of total COVID-19 deaths 

to the explanatory variable over time is the same for all districts. Consequently, the 

error term may correlate with the model's regressor. If so, the estimated coefficients 

in the above model may be biased and inconsistent. 
 

3.6 Statistic panel model 

The statistic panel models viz, fixed and random effect models have been estimated 

and presented in Tables 12 and 13, respectively. To decide whether to consider the 

fixed effect or the random effect models, the Hasman test has been carried out, and 

the results are presented in Table 14. Since the Hasman test statistics’ p-value value 

is non-significant, indicating that the random effect model is appropriate. 

The random effect model presented in Table 13 reveals both the lag variables 

(exogenous variables) explain 58 % of variations in deaths. Furthermore, both the 

exogenous variables, viz., DEATHS (-1) and CASES(-1), are highly significant and 

show a positive influence on the endogenous variable (DEATH).  

Since the estimated Durbin-Watson stat value is 2.09, the errors due to the estimated 

model are uncorrelated, which is preparable. 

 
Table 12: Characteristics of estimated fixed effect model 

Variable Coefficient Std. Error t-Statistic Prob. 

DEATHS(-1) 0.376192 0.033038 11.38656 0.0000 

CASES 0.006508 0.000362 17.97833 0.0000 

C -5.195117 10.47488 -0.495960 0.6202 

Root MSE 215.7034     R-squared 0.586890 

Mean dependent var 68.20000     Adjusted R-squared 0.560099 

S.D. dependent var 335.9313     S.E. of regression 222.8066 

Akaike info criterion 13.71118     Sum squared resid 23729258 

Schwarz criterion 13.97686     Log-likelihood -3464.350 

Hannan-Quinn criteria. 13.81534     F-statistic 21.90574 

Durbin-Watson stat 2.141517     Prob(F-statistic) 0.000000 

Variable Coefficient Std. Error t-Statistic Prob. 

CASES 0.007109 0.000328 21.69516 0.0000 

C 18.62529 10.59094 1.758606 0.0792 

Root MSE 239.8618     R-squared 0.466630 

Mean dependent var 68.23148     Adjusted R-squared 0.465638 

S.D. dependent var 328.7375     S.E. of regression 240.3072 

Akaike info criterion 13.80541     Sum squared resid 31068195 

Schwarz criterion 13.82131     Log-likelihood -3725.461 

Hannan-Quinn criteria. 13.81163     F-statistic 470.6800 

Durbin-Watson stat 1.427732     Prob(F-statistic) 0.000000 
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Table 13: Characteristics of estimated random effect model 

Variable Coefficient Std. Error t-Statistic Prob. 

C -1.110829 10.22960 -0.108590 0.9136 

DEATHS(-1) 0.352382 0.030118 11.70007 0.0000 

CASES 0.006174 0.000314 19.66744 0.0000 

Effects Specification S.D. Rho 

Cross-section random 0.000000 0.0000 

Idiosyncratic random 222.8066 1.0000 

Weighted Statistics 

Root MSE 216.6220     R-squared 0.583364 

Mean dependent var 68.20000     Adjusted R-squared 0.581721 

S.D. dependent var 335.9313     S.E. of regression 217.2619 

Sum squared resid 23931793     F-statistic 354.9453 

Durbin-Watson stat 2.092160     Prob(F-statistic) 0.000000 

Unweighted Statistics 

R-squared 0.583364     Mean dependent var 68.20000 

Sum squared resid 23931793     Durbin-Watson stat 2.092160 

 
Table 14: Characteristics of estimated Hausman test 

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random 4.061228 2 0.1313 

 

3.7 GMM model 

To estimate the models through GMM, it is necessary to use instrumental variables. 

Instrumental variables should be chosen based on their abilities to estimate and 

identify the conditions. If adding a new instrumental variable positively affects the 

estimation quality, the variable will be used as the instrumental variable (Ghiasi et 

al. 2019). 

The panel GMM method with the first difference transformation has been calculated 

and presented in Table 15. R2 is not used as a statistical standard for determining 

the model's goodness of fit, but the J-statistics assess the validity of the instrument 

variable used in the model. The probability value of the J-test is estimated to be 

0.4512. Thus, H0 (i.e., the validity of the instruments defined in the model) is 

accepted; hence, the instrumental variable used in the model is valid. 
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Table 15: Characteristics of estimated GMM model  

Variable Coefficient Std. Error t-Statistic Prob. 

DEATHS(-1) 0.336319 0.001514 222.1124 0.0000 

CASES 0.011738 3.85E-05 304.7321 0.0000 

Effects Specification 

Cross-section fixed (first differences) 

Root MSE 312.5533     Mean dependent var -6.170000 

S.D. dependent var 439.2945     S.E. of regression 318.9984 

Sum squared resid 29306879     J-statistic 18.06828 

Instrument rank 30     Prob(J-statistic) 0.451163 

 

The one-period lag (DEATHS(-1)) has a positive and highly significant effect on 

the number of deaths (DEATH). The correlation between number of deaths at time 

t positively correlated with the number of deaths in the previous period. This result 

reflects the dynamics of the number of deaths over time. Also, the number of 

infected cases positively and highly significantly affects the number of deaths.  

 

3.8 Wald test   

According to the Wald test (Wald, 1943) results presented in Table 16, the 

hypothesis that all coefficients are zero is rejected at a 1% significance level; thus, 

the validity of the significance of coefficients is confirmed, meaning that they add 

explanatory power to the model. 

 
Table 16: Characteristics of Wald test 

Test Statistic Value df Probability 

F-statistic  2.21E+08 (2, 478)  0.0000 

Chi-square  4.42E+08  2  0.0000 

 

3.9 Arellano-Bond serial correlation test 

To ensure the absence of serial correlation of first-order difference in residuals, the 

first and second-order serial auto-correlation test proposed by Arellano and Bond 

(1991) is calculated and presented in Table 17. The test results reveal that the null 

hypothesis of the absence of serial auto-correlation, which should be greater than 5 

% in the first and second orders, is accepted. Hence, the residual due to the model 

is free from auto-correlation.   

 
Table 17: Characteristics of the Arellano-Bond serial correlation test 

Test order m-Statistic rho SE(rho) Prob. 

AR(1) -1.041994 -18859787.70 18099716.65 0.2974 

AR(2) 1.005126 4130237.36 4109172.35 0.3148 
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Since the null hypothesis of this test (no serial correlation) is accepted, validation 

of the instrumented variables is obtained. Therefore, the method of estimation is 

suitable for the model. 

 

3.10 Test of causality 

The pairwise Granger causality test was employed to assess whether causal 

relationships exist among the variables and determine the direction of the causality. 

The results are presented in Table 18. The test results reveal that the null hypothesis 

of no causality between the independent and dependent variables running in either 

direction is rejected; hence, bi-directional causality exists between the study 

variables. 

 
Table 18: Characteristics of pairwise Granger causality test 

 Null Hypothesis: Obs F-Statistic Prob.  

 CASES does not Granger Cause DEATHS  480  417.952 2E-105 

 DEATHS does not Granger Cause CASES  26.2602 2.E-11 

 

4. Conclusions 
The result reveals that all over Karnataka state, 3768297 COVID-19 infected cases 

have been registered from July 2020 to December 2021. The highest number of 

infected cases were reported in Bengaluru Urban (1759033), followed by Mysuru 

(214833). The lowest number of cases are reported in Haveri (23570). Due to 

COVID-19 infections,36845 deaths were registered all over the state during the 

study period. The highest number of deaths has been reported in Bengaluru Urban 

(15592) and the lowest of 195 in Yadagiri districts. The panel GMM model with 

the first difference transformation was found suitable for investigating the number 

of death dynamics over time. The one-period lag has a positive and significant effect 

on the number of deaths. The Wald test confirms the validity of the coefficients' 

significance and adds explanatory power to the model. The correlation between 

number of fatalities at time t positively correlated with the number of deaths in the 

previous period. Also, the number of infected cases positively and significantly 

affects the number of deaths. Bi-directional causality exists between the COVID-

19 infected cases and deaths. 
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